

島根大学学術情報リポジトリ
S W A N
Shimane University Web Archives of kNowledge

Title

Appropriate strategies of electrodegradation for the alleviation of growth retardation during autotoxicity of lettuce in recycled hydroponics

Author(s)

Md Abdur Razzak, Md Raihan Talukder, Md Asaduzzaman, Hideyuki Tanaka & Toshiki Asao

Journal

New Zealand Journal of Crop and Horticultural Science

Published

28 Jun 2021

URL

<https://doi.org/10.1080/01140671.2021.1944884>

この論文は出版社版ではありません。

引用の際には出版社版をご確認のうえご利用ください。

1 **Appropriate strategies of electrodegradation for the alleviation of growth**
2 **retardation during autotoxicity of lettuce in recycled hydroponics**

3 **Abstract:**

4 Recycled hydroponic solutions used for growing crops can accumulate allelochemicals that inhibit plant
5 growth. We applied alternating current electrodegradation (AC-ED) to fresh nonrenewed nutrient
6 solutions (i.e., solutions remaining unchanged throughout the culture period) and once-used
7 nonrenewed solutions (i.e., solutions that had been used for a previous culture) for detoxifying autotoxic
8 chemicals. Four experiments were conducted in which lettuce plants were grown in different
9 nonrenewed solutions treated with AC-ED and in renewed solution that was not treated with AC-ED.
10 Renewed solution (50% “Enshi” solution) was changed at 14-day intervals. In fresh starting solutions,
11 no substantial difference was found in shoot fresh weight (SFW) between renewed and AC-ED-treated
12 nonrenewed solutions at different intervals (experiment I) and frequencies (experiment III), but notably,
13 the lowest yield was recorded in non-renewed solution. In contrast, in the case of once-used nonrenewed
14 solution, weekly (experiment II) and thrice-weekly and continuous (experiment IV) AC-ED application
15 showed significantly higher SFW compared to values for other solutions, and the lowest value was also
16 found in nonrenewed once-used culture solution. Therefore, we recommend the application of AC-ED
17 to non-renewed solution either thrice weekly or continuously for efficient detoxification of accumulated
18 allelochemicals to improve the growth, yield and quality of lettuce under two or more successive
19 cultivations in recycled hydroponics.

20 Keywords: *Lactuca sativa* L.; autotoxicity; plant factory; nonrenewed solution; mineral nutrients; root
21 exudate

22

23

24 **Introduction**

25 Lettuce is a popular leafy vegetable that is generally consumed fresh worldwide. It is a good
26 source of mineral nutrients, such as potassium, calcium, iron and copper, and vitamins A and
27 C. Lettuce grown traditionally in soil may include pathogens and parasites resulting from the
28 use of irrigation water and soil amendments (Jensen et al. 2013; Williams et al. 2013).
29 Moreover, open field cultivation of lettuce faces challenges, especially from high temperatures,
30 insect pests and diseases. In this regard, hydroponic systems provide better control over
31 environmental factors and nutrient management practices for maintaining the quality of lettuce.

32 The cultivation of leafy vegetables, including lettuce, in hydroponics is gaining popularity
33 throughout the world and production in hydroponics has greatly expanded (Kozai 2013) .
34 Hydroponic systems can lead to faster and maximized production of lettuce, as the plants are
35 supplied with balanced nutrients throughout the culture period. After each lettuce culture, once-
36 used nutrient solutions with unused residual nutrients are disposed of in the surrounding
37 environment, causing pollution. Thus, recycled hydroponics are advantageous for sequential
38 culture of lettuce with the same culture solutions after EC-based nutrient adjustment. This
39 particular hydroponic system has been widely used in controlled environment agriculture and
40 in plant factories (Ruijs 1995). This type of hydroponic production system maintains
41 sustainability. In this system, both water and mineral nutrients are used efficiently; therefore,
42 it minimizes the wastage of costly fertilizer and reduces environmental pollution.

43 However, under this managed culture system, crop yield has been found to be greatly affected
44 due to the accumulation of inhibitory root exudates (Lee et al. 2006; Talukder et al. 2019b).
45 Lower yield and yield characteristics (individual fruit weight, number of fruits/plant, fruit
46 brix%) of strawberry were reported for nonrenewed nutrient solution than with renewed
47 solution (Kitazawa et al. 2005; Talukder et al. 2019a). Similar results have also been evident
48 in beans (Asaduzzaman and Asao 2012), taro (Asao et al. 2003), lettuce (Lee et al. 2006;
49 Talukder et al. 2019b), several leafy vegetables (Asao et al. 2004) and certain ornamentals

50 (Asao et al. 2007). Recently, it was reported that non-recycled hydroponics may result in
51 physiological disorders, such as yellowing of eggplant fruit (Singh et al. 2019). Retardation of
52 the growth and yield of crops grown in recycled hydroponics occurs as a result of increasing
53 concentrations of phytotoxic root exudates causing autotoxicity phenomena (Tang & Young
54 1982; Asao et al. 1998; Singh et al. 1999; Asao et al. 2003; Asao et al. 2004; Kitazawa et al.
55 2005; Asao et al. 2007; Asao et al. 2008; Asaduzzaman et al. 2012). As plant roots are first
56 affected by phytotoxic chemicals in their rhizosphere, water and nutrient element uptake are
57 most affected (Blum and Gerig 2005).

58 The growth and yield of lettuce have also been found to be reduced by the phenomenon of
59 autotoxicity in successive cultivation with recycled nutrient solution (Lee et al. 2006).
60 Therefore, cleaning nutrient solution by exclusion or detoxification of accumulated autotoxic
61 chemicals may reduce the inhibition of crop growth in sequential production. Researchers have
62 tried various methods for detoxifying autotoxic chemicals, such as activated charcoal (Asao et
63 al. 1998), application of amino acids (Mondal et al. 2013) and electrodegradation in nutrient
64 solution (Talukder et al. 2019b; Asaduzzaman et al. 2012; Asao et al. 2008), and have found
65 positive results in terms of restricting the inhibitory effect of those allelochemicals. Alternating
66 current electrodegradation (AC-ED) has been found to have a positive role in the growth
67 retardation of lettuce grown in recycled hydroponic systems by detoxifying the allelochemicals
68 accumulated in culture solution (Talukder et al. 2019b). In an AC-ED machine, the culture
69 solution can pass through the electrode where ED takes place. At the anode, autotoxic
70 compounds are oxidized and decomposed to carbon dioxide (CO₂) (Comninellis and Pulgarin
71 1991; Feng and Li 2003; Fleszar and Poszyńska 1985).

72 In recent research, the detrimental effect of autotoxicity in lettuce (Talukder et al. 2019b) and
73 strawberry (Talukder et al. 2019a) under recycled hydroponics was alleviated by degrading
74 allelochemicals through alternating current electrodegradation (AC-ED).

75 The present study was conducted to determine the appropriate interval and frequency of AC-
76 ED application to nonrenewal solutions to minimize the inhibitory effect of autotoxicity on
77 successive lettuce production in recycled hydroponics.

78 **Materials and Methods**

79 ***Preparation of planting materials***

80 Lettuce seeds (*Lactuca sativa* cv. Souther) obtained from Takii Seed Company, Japan, were used
81 as plant material. Seeds were grown in medium-sized (1-5 mm) vermiculite-filled cell trays (72
82 cells/tray) and put into a growth chamber (temperature: 25/20 °C day/night, relative humidity:
83 60%, intensity of fluorescent light: 140~160 $\mu\text{mol m}^{-2} \text{s}^{-1}$, photoperiod: 12 hours). After two
84 weeks in experiments I, II and III or one week in experiment IV, seedlings were moved to
85 hydroponic system nursery beds in plastic containers (68 cm \times 53 cm \times 23 cm) that contained 30
86 L of 50% Enshi solution and kept in a control room maintaining the same environmental
87 conditions for seedling preparation, including 1000 ppm ambient CO₂ level. A pump (MX
88 808ST-W, Enomoto, Micro Pump Mfg. Co., Ltd., Japan; flow rate 25 L min.⁻¹) was used for
89 continuous aeration of the solutions at the nursery. Nursery culture was continued for up to 14
90 days, and seedlings of similar size were chosen for final culturing.

91 ***Maintenance of hydroponic nutrient solution***

92 Lettuce plants were cultivated in 50% “Enshi” solution (Hori 1966). The pH of the nutrient
93 solution was 7.15, and EC was 1.4 dS m⁻¹. The recommended pH and EC for lettuce production
94 in hydroponics are 6.0-7.0 and 1.2-1.8 dS m⁻¹, respectively (Singh and Bruce 2016). The EC of
95 the culture solution was quantified by an EC meter (ES-51, Horiba, Ltd., Kyoto, Japan), and the

96 pH was checked by a pH meter (D-12, Horiba, Ltd., Kyoto, Japan) at 7-day intervals. Weekly
97 data on the pH, EC and temperature of the culture solutions for all experiments are included as
98 supplemental information in Tables S1- S4. The nutrient solution was replaced at 14-day
99 intervals with 50% “Enshi” solution in renewed treatments. For nonrenewed systems, however,
100 the culture solution was unchanged throughout the cultivation period, but the concentrations of
101 mineral nutrients (NO_3^- , PO_4^{3-} , K^+ , Ca^{2+} and Fe^{3+}) were adjusted to the original contents in 50%
102 “Enshi” solution based on chemical analyses at 14-day intervals. Chemical analytical data during
103 nutrient adjustment of the culture solutions for all experiments are included as supplemental
104 information in Tables S5-S9. Similar nutrient solution adjustment has been successfully
105 performed in strawberry (Asaduzzaman et al. 2012) and lettuce (Talukder et al. 2019b).

106 ***Process of lettuce cultivation***

107 After completing the nursery period, almost identical lettuce seedlings were grown in three steps
108 in vertical growing beds (125 cm \times 90 cm \times 10.5 cm) in a plant factory room. Each growing bed
109 contained 20 lettuce seedlings fixed in place with urethane cubes (23 mm \times 23 mm \times 27 mm).
110 Fifty percent “Enshi” nutrient solution was supplied into three beds, each of which had a 50-L
111 capacity joined to a 300-L storage tank. Recycling of the nutrient solutions at 55/5 min
112 (recycled/stop) was performed by using an automatic pump (KP-101, Koshin, Kyoto, Japan)
113 and timer (KS-1500, Iuchi, Osaka, Japan). The environmental conditions of the room were the
114 same as those of the nursery hydroponic system, but the fluorescent light intensity was
115 maintained at 250~280 $\mu\text{mol m}^{-2} \text{s}^{-1}$ throughout the culture period. Pictures of plants at the start
116 and end of culture are shown in Figure 1 and Figure 2.

117 ***Electrodegradation of culture solution***

118 An AC-type electrode (Yonago Shinko Co., Ltd., Tottori, Japan) was used to degrade the
119 accumulated autotoxic chemicals (mainly benzoic acid) in the lettuce culture solution. The AC-
120 ED electrode had a middle core made of titanium with a surface area of 53.1 cm^2 (anode/cathode)

121 surrounded by a cylindrical tube of 95.5 cm² (cathode/anode) titanium. The solution was able to
122 pass through the electrode where ED occurred. The electrodes were connected with a digital AC
123 power provider (AD-8735D, AND, Japan), and 500 Hertz, 50% duty ratio, 1.8 amp and 24 volts
124 were maintained during ED. These electrical conditions have been successfully applied in
125 strawberry (Talukder et al. 2019a) and lettuce (Talukder et al. 2019b) to degrade allelochemicals.

126 ***Experimental treatments and data collection***

127 **Experiment I**

128 Lettuce seedlings were transplanted on 24 April 2019 and harvested on 5 June 2019 at the age of
129 42 days. Lettuce plants were grown in five types of nutrient solutions: i) renewed, ii) nonrenewed,
130 iii) nonrenewed + AC-ED (weekly), iv) nonrenewed + AC-ED (two-weekly) and v) nonrenewed
131 + AC-ED (three-weekly). In the case of AC-ED-treated culture solution, AC-ED was applied for
132 24 hours according to the treatments. Data on growth attributes, yield, and chlorophyll content
133 (measured by SPAD meter, Konica Minolta, Tokyo, Japan) were collected at harvest.

134 **Experiment II**

135 Lettuce plants were transplanted on 5 June 2019 and harvested on 10 July 2019 at the age of 35
136 days. There were five treatments in this experiment: i) renewed, ii) nonrenewed with once-used
137 starting solution {used in Experiment I termed as nonrenewed 2C (second cycle)}, iii)
138 nonrenewed 2C+AC-ED (weekly), iv) nonrenewed 2C+AC-ED (two-weekly) and v)
139 nonrenewed 2C+AC-ED (three-weekly). AC-ED was applied for 24 hours according to the
140 desired nutrient solution treatments. Data were collected at harvest on growth attributes, yields,
141 and chlorophyll contents.

142 **Experiment III**

143 In the third experiment, we applied AC-ED more frequently per week. Lettuce seedlings were
144 transplanted on 17 July 2019 and harvested on 21 August 2019 after 35 days. Five types of culture
145 solutions were used in this experiment: i) renewed, ii) nonrenewed, iii) nonrenewed + AC-ED

146 once weekly, iv) nonrenewed + AC-ED thrice weekly (Monday, Wednesday and Friday) and v)
147 nonrenewed + AC-ED (continuously). Data on growth attributes, yields, and chlorophyll
148 contents were collected at harvest.

149 **Experiment IV**

150 Lettuce seedlings were planted on 21 August 2019 and harvested on 25 September 2019 at the
151 age of 35 days. In this experiment, lettuce plants were cultivated in five types of nutrient
152 solutions: i) renewed, ii) nonrenewed with once-used starting solution (used in Experiment III,
153 2C solution), iii) nonrenewed 2C+AC-ED once weekly, iv) nonrenewed 2C+AC-ED thrice
154 weekly (Monday, Wednesday and Friday) and v) nonrenewed 2C+AC-ED (continuously). Data
155 were collected at harvest on growth attributes, yields, and chlorophyll contents.

156 ***Mineral nutrient determination in the shoots and roots of lettuce***

157 At harvest roots and shoots of the plants were separated and placed in a steady temperature oven
158 (DKN812, Yamato Scientific Co., Ltd., Japan), maintaining 80 °C temperature for 72 hours.
159 When the dry matter reached constant weight, the material was ground into powder with a mixer
160 machine (National MX-X53, Japan). Ground 0.25-g samples were digested by a microwave
161 digestion system (ETHOS1, Milestone S.r.l, Bergamo, Italy), after mixing the samples with 8 ml
162 of HNO₃ (60% conc.). After completing digestion, distilled water was added to each digested
163 sample solution to a volume of 50 ml, and then the solution was filtered with filter paper
164 (Advantec Grade no. 131, 185 mm). Finally, nutrient element content was determined by atomic
165 absorption spectrophotometry (Z-2310, Hitachi High Technologies Corporation, Tokyo, Japan).

166 ***Determination of ascorbic acid in lettuce***

167 Harvested lettuce shoots were stored in a freezer (at -30 °C) to determine ascorbic acid contents.
168 Stored samples were removed from the freezer and pressed to obtain sufficient juice for analysis.
169 Ascorbic acid content was calculated using 2,4-dinitrophenylhydrazine (DNP) colorimetry. After
170 leaf extract filtering, 0.5 ml of juice from each sample was placed in a 50-ml test tube, and the

171 following chemicals were added to the sample solution: i) 0.5 ml of 10% meta-phosphoric acid
172 solution, ii) 1 ml distilled water, iii) 1 ml of 0.03% 2,6-dichlorophenol-indophenol (DCP)
173 solution, iv) 2 ml thiourea solution and v) 1 ml DNP solution. After the addition of all chemicals,
174 test tubes were incubated in a water bath at 37 °C for 3 hours. After completing incubation, 5 ml
175 of 85% H₂SO₄ was poured into each test tube solution sitting in ice water. Afterwards, the
176 ascorbic acid content was determined by a spectrophotometer (U-2900, Hitachi High
177 Technologies Corporation, Tokyo, Japan) at 520 nm.

178 ***Experimental design and statistical analysis***

179 In this study, AC-ED was applied in nonrenewed nutrient solution from successive cultures of
180 lettuce grown in recycled hydroponics to determine the appropriate frequencies and intervals.
181 Fresh nonrenewed culture solutions were used in experiment I and III on the other hand, for
182 experiment II and IV these solution were prepared from the once-used nutrient solution from the
183 previous culture of experiment I and III, respectively, and renewed nutrient solution was used as
184 a control in every experiment. All experiments were structured in a completely randomized
185 design of three replications. The Statcel 4 computer package (OMS publication, Tokorozawa,
186 Saitama, Japan) was used to analyze the variance for all results. The Tukey-Kramar test (at
187 P<0.05) was performed to determine significant differences in means. Finally, ANOVA of four
188 experiments was organized based on the solution types nested with AC-ED using a heat map.

189 **Results**

190 ***Effect of AC-ED application intervals on nonrenewed fresh culture solution (Experiment I)***

191 The use of AC-ED in nonrenewed culture solution at different intervals significantly affected
192 lettuce growth performance (Tables 1; Figure 3). All growth features were substantially
193 influenced except relative chlorophyll content and root dry weight. The highest leaf number
194 was recorded in the treatment in which nonrenewed culture solution was subjected to AC-ED
195 every three weeks. The plants in nonrenewed solution subjected to weekly AC-ED featured the

196 greatest lengths and widths of leaves and root lengths, which were similar to those from
197 renewed and other AC-ED-treated nonrenewed solutions. On the other hand, such growth
198 features in untreated nonrenewed culture solution were reported to be the lowest. Shoot fresh
199 weight was the highest (369.7 g plant⁻¹) in nonrenewed culture solution subjected to weekly
200 AC-ED application, and this weight was similar to values for renewed solutions and
201 nonrenewed solutions subjected to two-weekly or three-weekly AC-ED application (Figure 3).
202 SFW was the lowest (230.1 g plant⁻¹) in untreated nonrenewed culture solution. The shoot dry
203 weight was the highest in the renewed solution, which was also statistically identical to the
204 nonrenewed culture solution subjected to weekly AC-ED application. The ascorbic acid
205 content in lettuce was higher in nutrient solution subjected to three-weekly AC-ED application,
206 which was analogous to renewed solution. Among the different culture solutions, the amounts
207 of calcium, magnesium and zinc in the lettuce roots were noticeably different but did not affect
208 the sodium and potassium concentrations in the lettuce plants (Tables 2).

209 ***Effect of different intervals of application of AC-ED to nonrenewed nutrient solution***
210 ***(Experiment II)***

211 Lettuce growth in once-used nonrenewed (nonrenewed 2C) nutrient solution decreased
212 considerably compared to that in nonrenewed solution (Tables 1; Figure 3). Weekly use of AC-
213 ED in nonrenewed 2C nutrient solution improved development over that of other culture
214 solutions. The AC-ED treatments improved the maximum lengths and widths of leaves and the
215 dry weights of shoots and roots, while the numbers of leaves, longest root lengths and SPAD
216 values were not remarkably varied. On the other hand, in plants cultivated in nonrenewed 2C
217 solution, the overall leaf lengths and widths and shoot dry weights were reduced considerably
218 compared to the AC-ED-treated nonrenewed 2C nutrient solutions. Among the three AC-ED-
219 treated culture solutions, the weekly AC-ED solution showed better performance than did
220 solutions subjected to two-weekly or three-weekly AC-ED. The most important growth

221 parameter for leafy vegetables is the fresh weight of the shoot, which was recorded to be the
222 highest (234.0 g plant⁻¹) in weekly AC-ED subjected nonrenewed 2C nutrient solution (Figure
223 3). The minimum (152.8 g plant⁻¹) fresh weight of shoots was found in nonrenewed 2C culture
224 solution. No substantial change was recorded with respect to lettuce ascorbic acid content
225 among all culture solutions. The AC-ED-treated nonrenewed 2C nutrient solution showed great
226 variation in levels of mineral nutrients, in particular calcium and sodium in roots and shoots
227 and potassium in roots, as well as zinc in lettuce shoots (Tables 2). The calcium and potassium
228 contents in lettuce roots decreased significantly in nonrenewed 2C solution, but the sodium
229 content was higher in nonrenewed 2C nutrient solutions.

230 ***Effect of AC-ED application frequency per week in nonrenewed fresh nutrient solution***

231 ***(Experiment III)***

232 The frequency of application of AC-ED in nonrenewed solutions greatly influenced the growth
233 of lettuce (Tables 1; Figure 4). The leaf number, maximum leaf width, longest root length and
234 shoot dry weight were the lowest in the untreated nonrenewed culture solution. Plants in
235 nonrenewed solution subjected to continuous AC-ED achieved the maximum numbers of
236 leaves, leaf widths and shoot dry weights, which were similar to those in renewed and other
237 AC-ED treated culture solutions. However, the lowest root dry weight was recorded in
238 continuously applied AC-ED-treated culture solution, and the highest root dry weight was
239 recorded in renewed culture solution. The maximum shoot fresh weight (267.4 g plant⁻¹) was
240 found in nonrenewed culture solution subjected once weekly to AC-ED , which was identical
241 to renewal and thrice weekly and continuous AC-ED treated culture solutions (Figure 4), and
242 the minimum shoot fresh weight (130.2 g plant⁻¹) was found in recycled culture solution. The
243 ascorbic acid content of lettuce was higher in nonrenewed nutrient solution than in the other
244 treatments. In lettuce shoots and roots, the amounts of magnesium and zinc were noticeably

245 different, but calcium, potassium and sodium concentrations did not differ between shoots and
246 roots (Tables 2).

247 In both experiments I and III, the starting solution was fresh, but in the renewal treatment,
248 lower lettuce yield was recorded in experiment III than in experiment I. This difference may
249 have been due to the culture duration. The culture periods in experiment I and experiment III
250 were 42 days and 35 days, respectively.

251

252 ***Effect of AC-ED application frequency per week on nonrenewed once-used (nonrenewed***
253 ***2C) nutrient solution (Experiment IV)***

254 In nonrenewed 2C nutrient solution, plant growth characteristics such as fresh weight of shoot,
255 dry weight of shoot and root were reduced remarkably (Table 1; Figure 4). However, the
256 numbers of leaves, maximum lengths and widths of leaves, longest root lengths and relative
257 chlorophyll contents did not vary substantially among the nutrient solutions used. The highest
258 dry weights of shoots (4.8 g plant^{-1}) and roots ($0.41 \text{ g plant}^{-1}$) were found in once-used culture
259 subjected thrice weekly to AC-ED. On the other hand, the lowest dry weights of shoots (2.7 g
260 plant^{-1}) and roots ($0.27 \text{ g plant}^{-1}$) were recorded in nonrenewed 2C nutrient solution. Shoot
261 weight reached a maximum ($108.8 \text{ g plant}^{-1}$) in nonrenewed 2C nutrient solution subjected
262 thrice weekly to AC-ED and was similar under this condition to values observed for
263 nonrenewed 2C nutrient solution subjected continuously to AC-ED. Shoot weight was found
264 to be the lowest ($64.8 \text{ g plant}^{-1}$) in nonrenewed 2C nutrient solution (Figure 4). The amounts of
265 calcium, magnesium and zinc in the roots and zinc in the shoots of lettuce plants were notably
266 affected by renewal and different AC-ED treatments, but concentrations of potassium, sodium
267 and calcium in the shoots of the plants were not affected (Tables 2).

268 Lettuce growth performance and shoot fresh weight were lower in the once-used culture
269 solution (experiment IV) than in the fresh culture solution (experiment III). A similar difference

270 in lettuce performance was also observed between the once-used culture solution tested in
271 experiment II and the fresh culture solution used in experiment I.

272 **Discussion**

273 The use of recycled hydroponics is limited due to the accumulation of phytotoxic compounds
274 in the nutrient medium. Recent studies have stated that in nonrenewed solutions,
275 allelochemicals are derived from root exudates in lettuce (Lee et al. 2006; Talukder et al.
276 2019b), strawberry (Asaduzzaman et al. 2012; Asao et al. 2008; Mondal et al. 2013; Kitazawa
277 et al. 2005), cucumber (Asao et al. 1998; Yu and Matsui 1994), several leafy vegetables (Asao
278 et al. 2004) and some ornamental plants (Asao et al. 2007) grown in recycled hydroponics.

279 Efficient management of culture solutions for increasing lettuce yield in hydroponic systems
280 should mitigate the inhibitory effect of allelochemicals. The application of AC-ED in
281 nonrenewed nutrient medium was found to be an effective technique for removing
282 allelochemicals from culture solution for continuous cultivation of lettuce (Talukder et al.
283 2019b). To apply AC-ED in nonrenewed nutrient solution, application intervals and
284 frequencies need to be identified, and we conducted several experiments on successive
285 cultivations of lettuce in hydroponic systems.

286 In fresh culture solution (experiment I), lettuce growth and yield declined considerably in the
287 nonrenewed culture solution (Tables 1; Figure 3). Nutrient content in all types of culture
288 solution was maintained as close as possible to that of 50% “Enshi” nutrient solution
289 throughout the growing period. The contents of residual minerals in the cultivation solution did
290 not fluctuate greatly. Therefore, the reduction in lettuce growth in the nonrenewed nutrient
291 solution might be due only to inhibition by the accumulated allelochemicals.

292 Allelochemicals resulting from root exudation to the rhizosphere (Bertin et al. 2003) have been
293 found to be responsible for influencing various physiological processes, such as transpiration,

294 water consumption, photosystem II (PSII) output, nutrient absorption, dark respiration,
295 adenosine triphosphate (ATP) production, cell cycling, phytohormone metabolism and gene
296 expression. (Blum and Gerig 2005; Inderjit and Duke 2003). Therefore, in the nonrenewed
297 solution, we found lower lettuce growth. Plants subjected to stressful conditions produce more
298 reactive oxygen species (ROS), including allelochemicals that accumulate in the rhizosphere
299 (Halliwell 2006; Rhoads et al. 2006; Yamamoto et al. 2003). These ROS are either toxic
300 byproducts of aerobic metabolism or key growth, development and defense regulators (Laloi
301 et al. 2004; Mehdy et al. 2008; Mittler et al. 2004). Several studies have shown that
302 allelochemical stress can cause oxidative damage, as demonstrated by increased activity of
303 ROS-scavenging enzymes and increased levels of lipid peroxidation of the membranes
304 (Baziramakenga et al. 1995; Lara-Nuñez et al. 2006; Politycka 1996; Ye et al., 2004, 2006; Yu
305 et al. 2003).

306 In addition, allelochemicals cause genome-wide gene expression changes and ultimately lead
307 to root cell death (Bais et al. 2003). Hence, in the nonrenewed culture solution, we obtained
308 reduced root growth. Damaged roots in turn impede water and the absorption of mineral
309 nutrients. These effects resulted in reductions in leaf number per plant, leaf length and width,
310 root length, shoot fresh and dry weight, etc. Lettuce cultivated in a nonrenewed nutrient
311 solution showed lower contents of minerals; in particular, zinc was significantly lower in plant
312 parts (Tables 2). This could be attributed to reduced nutrient uptake due to the accumulation of
313 rhizospheric growth inhibitors (Singh et al. 1999). Autotoxic chemicals hamper the growth of
314 roots; consequently, plant water and nutrient uptake declines considerably, resulting in low
315 shoot dry weight.

316

317 In contrast, the application of AC-ED to the fresh nonrenewed culture solution at different
318 intervals (weekly, two-weekly, and three-weekly) significantly increased lettuce growth, yield

319 and nutritional quality, which were statistically similar to values from renewed culture
320 of once used culture solution weekly application of AC-ED showed better performance
321 compare to other treatments. The mechanisms underlying this enhanced plant growth may
322 include degradation of autotoxic substances, resulting in the elimination of deleterious effects
323 on nutrient solution, due to application of AC-ED in nonrenewed culture media. Similar results
324 have also been obtained for closed hydroponic strawberry (Asaduzzaman et al. 2012; Talukder
325 et al. 2019a) and lettuce (Talukder et al. 2019b) production. No significant variation among the
326 three AC-ED application intervals was observed, but the average value was highest in nutrient
327 solution treated weekly by AC-ED

328 With fresh culture solution (experiment I), lettuce growth and yield did not substantially differ
329 among weekly, two-weekly and three-weekly AC-ED-treated nonrenewed culture solutions.
330 Similar results have also been reported in lettuce (Talukder et al. 2019b), for which yield did
331 not vary substantially between weekly and two-weekly AC-ED-treated nonrenewed culture
332 solutions. However, in the once-used culture solution in the present study (experiment II),
333 different results were obtained; i.e., lettuce plant growth and yield were higher in nonrenewed
334 2C culture solution treated weekly by AC-ED. In the nonrenewed 2C solution, the calcium and
335 potassium contents in the lettuce roots were markedly reduced, but the sodium content was
336 higher in once-used nonrenewed nutrient solutions (Tables 2).

337 Lettuce growth and yield were remarkably lower in used culture solution (experiment II) than
338 in fresh culture solution (experiment I). Relative chlorophyll content (SPAD value) was
339 significantly decreased in the reused culture solutions (Figure 5). Lower chlorophyll content in
340 leaves affects lettuce growth, resulting in reduced shoot fresh weight in reused culture solution
341 compared to the fresh solution. This might be due to the accumulation of more autotoxic
342 chemicals in the reused culture solution.

343 Many recent research findings have identified several organic acids, such as benzoic,
344 phenylacetic, cinnamic, p-hydroxybenzoic, lauric, phthalic, vanillic, palmitic, and stearic acids,
345 present in the root exudates of lettuce grown in nonrenewed solution (Asao et al. 2004; Lee et
346 al. 2006), and these compounds have been recognized as key growth inhibitors. Lee et al. (Lee
347 et al. 2006) also noted that the amounts and concentrations of these organic acids in nutrient
348 solutions varied greatly with the frequency of reuse, usually suggesting an increasing trend
349 with increasing reuse frequency. At comparatively low concentrations in the first culture, a few
350 allelochemicals might be exuded from the roots. Afterwards, in the nonrenewed solution, the
351 numbers of allelochemicals and their concentrations were found to be rising. As the level of
352 allelochemicals was found to have increased in once-used nonrenewed solution, plant growth
353 was severely affected by additive or synergistic means (Inderjit 1996). Consequently, further
354 reduction of the growth and yield of lettuce plants was reported in once-used nonrenewed
355 nutrient solution. For continuous and sequential production of lettuce by utilizing identical
356 culture solutions in closed hydroponic systems, more frequent application of AC-ED is
357 required to achieve a higher yield by reducing the negative effect of autotoxic chemicals.
358 As frequent (weekly) AC-ED application was found to be better for subsequent lettuce
359 production in similar culture solutions, it was necessary to determine the most favorable
360 frequency of AC-ED application per week in nonrenewed culture solution. We therefore
361 attempted to identify a suitable frequency (number of times per week) for AC-ED application
362 in nonrenewal culture (experiment III) and in once-used (nonrenewed 2C) nutrient solution
363 (experiment IV). In both experiments, AC-ED was applied once weekly, thrice weekly, and
364 continuously to culture solutions.
365 In experiment III, leaf number, maximum leaf width, maximum root length, and shoot fresh
366 and dry weight were found to be lower in nonrenewed culture solution than in all other
367 treatments (Tables 1; Figure 4). Lettuce showed better growth and yield in nutrient solutions

368 treated by AC-ED at all frequencies and resembled lettuce grown in renewed nutrient solution.
369 The reason for the growth enhancement in AC-ED-treated culture solution may be the
370 detoxifying effect of AC-ED on allelochemicals. Similar results have also been achieved in
371 closed hydroponic strawberry production (Asao et al. 2008). In the nonrenewed solution, root
372 dry weight was recorded to be slightly higher, but nonrenewed solution showed shorter root
373 length as well as lower shoots fresh and dry weights. This may reduce elongation of the primary
374 root and induce the development of additional lateral roots due to the effect of allelochemicals.
375 Similar results have also been reported in *Arabidopsis thaliana* by Abenavoli (Abenavoli et al.
376 2008). In experiment IV, lettuce was cultivated in once-used (nonrenewed 2C) nutrient solution
377 (culture solution used in experiment III), including renewal solution. Plant growth and yield
378 were greater in thrice-weekly AC-ED-treated nonrenewed 2C solution, which showed results
379 similar to those for nutrient solution continuously treated by AC-ED (Tables 1; Figure 4).
380 Similar environmental conditions were maintained in all experiments (Experiments I, II, III
381 and IV). However, growth and yield performance of lettuce varied greatly among experiments.
382 This high variation may have been due to differences in seedling age and culture periods. The
383 culture periods were different in experiment I (42 days) and experiment III (35 days). Both the
384 seedling and nursery periods were 14 days in all experiments except in experiment IV. Seven-
385 day-old seedlings were used in the nursery system for that experiment.
386 The shoot fresh weight of lettuce was higher in fresh culture solution (experiment III) than in
387 the used culture solution (experiment IV). The SPAD value of leaves was also recorded to be
388 significantly higher in fresh culture solution, resulting in increased growth and yield of lettuce
389 (Figure 6). There was a positive correlation between the relative chlorophyll content and shoot
390 fresh weight. This may be due to lower phytotoxic chemical accumulation in fresh culture
391 solution in experiment III than in experiment IV.

392 In experiment III, all culture solutions were newly prepared to start with, and lettuce plant
393 growth and yield did not vary remarkably among application frequencies of AC-ED. In contrast,
394 more frequent (continuous or thrice weekly) application of AC-ED is better for lettuce growth
395 and yield for cultivation in continuously used culture solution. These results may be due to the
396 higher inhibitory effect of AC-ED on autotoxic chemicals that remained in the once-used
397 culture solution.

398 The energy requirement for the AC-ED device is 0.144 megajoules (MJ) per hour. For
399 detoxifying autotoxic chemicals in lettuce production, in practice, AC-ED machines need to be
400 used for 24 hours at 14-day intervals. For one culture (4 weeks) of lettuce, two AC-ED
401 applications are necessary, and the total energy requirement for that culture is 6.912 MJ.

402 For fresh culture solution (experiments I and III), the energy requirement (MJ/kg fresh weight)
403 for AC-ED treatments was found to be lower than that of the once-used culture solution
404 (experiments II and IV) for higher lettuce yield. The cost of energy is compensated for in the
405 culture solution renewal process through continuous use without the reduction in yield of
406 lettuce that occurs in nonrenewed culture solution.

407 AC-ED can be performed with an inexpensive and easily movable electric device in unchanged
408 culture solution for hydroponic lettuce cultivation by using the same previously cultured
409 nutrient solution. Thrice-weekly or continuous AC-ED application can improve lettuce yield
410 under autotoxicity. On the other hand, nutrient solution renewal systems have a negative effect
411 on our environment due to the disposal of used solution after each culture. Consequently,
412 growing lettuce hydroponically in culture solution that has been previously used several times
413 with AC-ED application thrice per week or continuously would be beneficial for lettuce
414 producers. This would eventually reduce environmental pollution through the repeated use of
415 the same culture solution for the production of lettuce in recycled hydroponic systems.

416 **Acknowledgments**

417 The authors thank the faculty of Life and Environmental Sciences at Shimane University,
418 Japan, for financial support in publishing this report.

419 **Declaration of interest statement**

420 The authors declare no conflict of interest.

421 **References**

422 Abenavoli MR, Nicolò A, Lupini A, Oliva S, Sorgonà A. 2008. Effects of different
423 allelochemicals on root morphology of *Arabidopsis thaliana*. *Allelopathy J.* 22(1):245-252.

424 Asaduzzaman M, Asao T. 2012. Autotoxicity in beans and their allelochemicals. *Sci Hortic*
425 (Amsterdam). 134:26-31.

426 Asaduzzaman M, Kobayashi Y, Isogami K, Tokura M, Tokumasa K, Asao T. 2012. Growth
427 and yield recovery in strawberry plants under autotoxicity through electrodegradation. *Eur J*
428 *Hortic Sci.* 77(2):58–67.

429 Asao T, Hasegawa K, Sueda Y, Tomita K, Taniguchi K, Hosoki T, Pramanik MHR, Matsui
430 Y. 2003. Autotoxicity of root exudates from taro. *Sci Hortic* (Amsterdam). 97(3–4):389–396.

431 Asao T, Kitazawa H, Ban T, Pramanik MHR, Matsui Y, Hosoki T. 2004. Search of autotoxic
432 substances in some leaf vegetables. *J Japanese Soc Hortic Sci.* 73(3):247–249.

433 Asao T, Kitazawa H, Ban T, Pramanik MHR, Tokumasa K. 2008. Electrodegradation of Root
434 Exudates to Mitigate Autotoxicity in Hydroponically Grown Strawberry (*Fragaria x*
435 *ananassa* Duch.) Plants. *HortScience*. 43(7):2034–2038.

436 Asao T, Kitazawa H, Ushio K, Sueda Y, Ban T, Rahman Pramanik MH. 2007. Autotoxicity
437 in some ornamentals with the means to overcome it. *HortScience*. 42(6):1346–1350.

438 Asao T, Umeyama M, Ohta K, Hosoki T, Ito N, Ueda H. 1998. Decrease of yield of
439 cucumber by non-renewal of the nutrient hydroponic solution and its reversal by
440 supplementation of activated charcoal. *J Japanese Soc Hortic Sci.* 67(1):99–105.

441 Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM. 2003. Allelopathy and exotic
442 plant invasion: From molecules and genes to species interactions. *Science.* 301(5638):1377–
443 1380.

444 Baziramakenga R, Leroux GD, Simard RR. 1995. Effects of benzoic and cinnamic acids on
445 membrane permeability of soybean roots. *J Chem Ecol.* 21(9):1271–1285.

446 Bertin C, Yang X, Weston LA. 2003. The role of root exudates and allelochemicals in the
447 rhizosphere. *Plant Soil.* 256(1):67–83.

448 Blum U, Gerig TM. 2005. Relationships between phenolic acid concentrations, transpiration,
449 water utilization, leaf area expansion, and uptake of phenolic acids: Nutrient culture studies. *J*
450 *Chem Ecol.* 31(8):1907–1932.

451 Comninellis C, Pulgarin C. 1991. Anodic oxidation of phenol for waste water treatment. *J*
452 *Appl Electrochem.* 21(8):703–708.

453 Feng YJ, Li XY. 2003. Electro-catalytic oxidation of phenol on several metal-oxide
454 electrodes in aqueous solution. *Water Res.* 37(10):2399–2407.

455 Fleszar B, Poszyńska J. 1985. An attempt to define benzene and phenol electrochemical
456 oxidation mechanism. *Electrochim Acta.* 30(1):31–42.

457 Mondal FM, Asaduzzaman M, Kobayashi Y, Ban T, Asao T. 2013. Recovery from
458 autotoxicity in strawberry by supplementation of amino acids. *Sci Hortic (Amsterdam).*
459 164:137–144.

460 Halliwell B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme
461 of aerobic life. *Plant Physiol.* 141(2):312–322.

462 Hori Y. 1966. Nutrient solution. In: *Gravel Cult Veg ornamentals*. Tokyo, Japan; p. 69–80.

463 Inderjit. 1996. Plant Phenolics in Allelopathy. *Bot Rev.* 62(2):186–202.

464 Inderjit, Duke SO. 2003. Ecophysiological aspects of allelopathy. *Planta*. 217(4):529–539.

465 Jensen AN, Storm C, Forslund A, L. Baggesen D, Dalsgaard A. 2013. *Escherichia coli*
466 contamination of lettuce grown in soils amended with animal slurry. *J Food Prot.* 76 (7):
467 1137–1144.

468 Kitazawa H, Asao T, Ban T, Pramanik MHR, Hosoki T. 2005. Autotoxicity of root exudates
469 from strawberry in hydroponic culture. *J Hortic Sci Biotechnol.* 80(6):677–680.

470 Kozai T. 2013. Plant factory in Japan - current situation and perspectives plant factory in
471 Japan - current situation and perspectives. *Chron Horticult.* 53:8–11.

472 Laloi C, Apel K, Danon A. 2004. Reactive oxygen signalling: The latest news. *Curr Opin*
473 *Plant Biol.* 7(3):323–328.

474 Lara-Nuñez A, Romero-Romero T, Ventura JL, Blancas V, Anaya AL, Cruz-Ortega R. 2006.
475 Allelochemical stress causes inhibition of growth and oxidative damage in *Lycopersicon*
476 *esculentum* Mill. *Plant, Cell Environ.* 29(11):2009–2016.

477 Lee JG, Lee BY, Lee HJ. 2006. Accumulation of phytotoxic organic acids in reused nutrient
478 solution during hydroponic cultivation of lettuce (*Lactuca sativa* L.). *Sci Hortic*
479 (Amsterdam). 110(2):119–128.

480 Mehdy MC, Sharma YK, Sathasivan K, Bays NW. 2008. The role of activated oxygen

481 species in plant disease resistance. *Physiol Plant.* 98(2):365–374.

482 Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene
483 network of plants. *Trends Plant Sci.* 9(10):490–498.

484 Politycka B. 1996. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings
485 influenced by derivatives of cinnamic and benzoic acids. *Acta Physiol Plant.* 18(4):365–370.

486 Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN. 2006. Mitochondrial reactive oxygen
487 species. Contribution to oxidative stress and interorganellar signaling. *Plant Physiol.*
488 141(2):357–366.

489 Ruijs MNA. 1995. Economic Evaluation of Closed Production Systems in Glasshouse
490 Horticulture. *Acta Hortic.*(340):87–94.

491 Singh H, Dunn BL, Payton M, Brandenberger L. 2019. Selection of fertilizer and cultivar of
492 sweet pepper and eggplant for hydroponic production. *Agronomy.* 9(8), 433;
493 <https://doi.org/10.3390/agronomy9080433>.

494 Singh H, Dunn Bruce. 2016. Electrical Conductivity and pH Guide for Hydroponics
495 [Internet]. (October). <http://osufacts.okstate.edu>

496 Singh HP, Batish DR, Kohli RK. 1999. Autotoxicity: Concept, organisms, and ecological
497 significance. *CRC Crit Rev Plant Sci.* 18(6):757–772.

498 Talukder MR, Asaduzzaman M, Tanaka H, Asao T. 2019a. Electro-degradation of culture
499 solution improves growth, yield and quality of strawberry plants grown in closed
500 hydroponics. *Sci Hortic (Amsterdam).* 243:243–251.

501 Talukder MR, Asaduzzaman M, Tanaka H, Asao T. 2019b. Application of alternating current

502 electro-degradation improves retarded growth and quality in lettuce under autotoxicity in
503 successive cultivation. *Sci Hortic* (Amsterdam). 252:324–331.

504 Tang C-S, Young C-C. 1982. Collection and identification of allelopathic compounds from
505 the undisturbed root system of Bigalta Limpograss (*Hemarthria altissima*) . *Plant Physiol.*
506 69(1):155–160.

507 Williams TR, Moyne AL, Harris LJ, Marco ML. 2013. Season, irrigation, leaf age, and
508 *Escherichia coli* inoculation influence the bacterial diversity in the Lettuce Phyllosphere.
509 *PLoS One*. 8(7): e68642. <https://doi.org/10.1371/journal.pone.0068642>.

510 Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H. 2003. Oxidative stress
511 triggered by aluminum in plant roots. In: *Plant Soil*. Vol. 255. p. 239–243.

512 Ye SF, Yu JQ, Peng YH, Zheng JH, Zou LY. 2004. Incidence of *Fusarium* wilt in *Cucumis*
513 *sativus* L. is promoted by cinnamic acid, an autotoxin in root exudates. *Plant Soil*.
514 263(1):143–150.

515 Ye SF, Zhou YH, Sun Y, Zou LY, Yu JQ. 2006. Cinnamic acid causes oxidative stress in
516 cucumber roots, and promotes incidence of *Fusarium* wilt. *Environ Exp Bot*. 56(3):255–262.

517 Yu JQ, Matsui Y. 1994. Phytotoxic substances in root exudates of cucumber (*Cucumis*
518 *sativus* L.). *J Chem Ecol*. 20(1):21–31.

519 Yu JQ, Ye SF, Zhang MF, Hu WH. 2003. Effects of root exudates and aqueous root extracts
520 of cucumber (*Cucumis sativus*) and allelochemicals, on photosynthesis and antioxidant
521 enzymes in cucumber. *Biochem Syst Ecol*. 31(2):129–139.

522

523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

544 **List of figure captions**

545 Figure 1. Pictures showing the status of lettuce plants at culture initiation (a) and before harvest
546 (b) in 3-step vertical growing beds in the plant factory.

547
548 Figure 2. Pictures showing the variation in growth of lettuce plants under different treatments
549 {Experiments I and II (from left to right): RW, NR, weekly AC-ED, two-weekly AC-ED, three-
550 weekly AC-ED} & {Experiment III (from left to right): RW, NR, AC-ED once weekly, AC-
551 ED thrice weekly, AC-ED continuously}.

552
553 Figure 3. Effects of interval of application of alternating current electrodegradation (AC-ED)
554 to nonrenewed nutrient solution on yield (fresh weight of shoot) of lettuce cultivated in fresh
555 (Experiment I) and once-used (Experiment II) culture solutions. The renewed solution was
556 changed at 14-day intervals. Nonrenewed solutions were not changed, but nutrients were
557 adjusted with 50% Enshi solution. (Bars represent standard errors of means, n = 9).

558 Significant differences among treatments are indicated by different letters according to
559 Tukey-Kramar test at $P<0.05$.

560

561 Figure 4. Effect of frequency of application of alternating current electrodegradation (AC-
562 ED) to nonrenewed fresh (Experiment III) and once-used (2C) (Experiment IV) culture
563 solutions on fresh shoot weight of lettuce grown in recycled hydroponics. The renewed
564 solution was changed at 2-week intervals. Nonrenewed solutions were not changed, but
565 nutrients were adjusted with 50% Enshi solution. (Bars represent standard errors of means, n
566 = 9). Significant differences among treatments are indicated by different letters according to
567 Tukey-Kramar test at $P<0.05$.

568

569 Figure 5. Variation in the relative chlorophyll content (SPAD value) of lettuce leaves grown
570 in fresh and once-used culture solution under different intervals (Experiments I and II) and of
571 alternating current electrodegradation (AC-ED). Bars represent standard errors of the means,
572 n=9. Significant differences among treatments are indicated by different letters according to
573 Tukey-Kramar test at $P<0.05$.

574

575 Figure 6. Relative chlorophyll content (SPAD value) of lettuce leaves grown in fresh and once-
576 used culture solution under different frequencies (Experiments III and IV) of alternating current
577 electrodegradation (AC-ED). Bars represent standard errors of the means, n=9. Significant
578 differences among treatments are indicated by different letters according to Tukey-Kramar test
579 at $P<0.05$.

Table 1: Growth and yield performance of lettuce under different treatments which are rearranged with experiment runs nested within solution type (fresh vs used culture solution)

Solution	Run	Renewal	AC-ED (hr./week)	Experiment	Treatments	Shoot Fresh wt. (g/plant) ²	Energy (MJ/kg) ¹	Leaf no. /plant	Max. leaf length (cm)	Max. leaf width (cm)	Ascorbic acid (ppm)	Shoot dry wt./plant (g)	Root dry wt./plant (g)	Max. Root length (cm)	Root/Shoot ratio (%)
Fresh	24/04/2019	0	0	1	Nonrenewed	230 ²		16.7	25.6	17.1	67.2	7.3	0.25	43.1	3.4
		0	24	1	Nonrenewed+ AC-ED weekly	370	0.17	23.3	36.6	25.9	56.8	11.3	0.46	56.2	4.1
		0	12	1	Nonrenewed+ AC-ED two-weekly	350	0.10	23.8	35.0	24.2	69.3	8.6	0.37	53.4	4.3
		0	8	1	Nonrenewed+ AC-ED three-weekly	340	0.07	26.6	33.4	22.8	77.1	9.3	0.45	55.3	4.8
		1	0	1	Renewed	360		21.4	33.9	24.3	73.5	12.5	0.34	55.9	2.7
	17/07/2019	0	0	3	Nonrenewed	130		23.6	30.3	22.9	132.0	4.3	0.39	44.9	9.1
		0	24	3	Nonrenewed+ AC-ED once-weekly	267	0.17	22.3	33.3	25.6	58.1	7.1	0.33	52.0	4.6
		0	72	3	Nonrenewed+ AC-ED thrice-weekly	240	0.64	23.8	33.8	26.3	73.3	7.4	0.34	54.0	4.6
		0	168	3	Nonrenewed+ AC-ED continuously	260	1.26	27.1	33.0	27.7	78.5	8.8	0.30	53.9	3.4
		1	0	3	Renewed	230		16.2	20.4	17.0	81.4	7.6	0.48	52.0	6.3
Used	05/06/2019	0	0	2	Nonrenewed	153		16.9	24.2	22.1	73.6	5.7	0.23	51.4	4.0
		0	24	2	Nonrenewed+ AC-ED weekly	234	0.29	17.3	27.6	23.9	76.4	8.7	0.43	50.3	4.9
		0	12	2	Nonrenewed+ AC-ED two-weekly	210	0.20	16.3	24.8	21.2	78.1	8.7	0.42	51.0	4.8
		0	8	2	Nonrenewed+ AC-ED three-weekly	200	0.16	16.6	26.2	22.2	77.3	8.3	0.45	52.0	5.4
		1	0	2	Renewed	185		16.3	24.2	19.9	79.7	7.5	0.42	45.8	5.6
	21/08/2019	0	0	4	Nonrenewed	65		14.8	19.7	14.8		2.7	0.27	48.7	10.0
		0	24	4	Nonrenewed+ AC-ED once-weekly	70	4.49	15.9	20.7	15.6		3.4	0.39	45.2	11.5
		0	72	4	Nonrenewed+ AC-ED thrice-weekly	109	1.59	17.1	19.2	16.4		4.8	0.41	47.6	8.5
		0	168	4	Nonrenewed+ AC-ED continuously	100	4.64	15.7	20.2	16.0		3.5	0.35	48.2	10.0
		1	0	4	Renewed	80		16.2	20.4	14.7		2.8	0.33	48.6	11.8

¹ Amount of electrical energy (MJ/kg) required to impose each treatment of AC-ED

² Indicates the average value

The different colors represent the trend of variation among of the parameters of four experiments together. In each column, values highlighted in darker color represent higher value. All data of different parameters presented were tested at 5% level using Tukey-Kramar test.

Average of all cultures					209	1.15	19.4	27.1	21.0	77.0	7.0	0.37	50.5	6.2
-------------------------	--	--	--	--	-----	------	------	------	------	------	-----	------	------	-----

Table 2: Nutrient content in shoot and root of lettuce under different treatments which are rearranged with experiment runs nested within solution type (fresh vs used culture solution)

Solution	Run	Renewal	AC-ED (hr./week)	Experiment	Treatments	Ca Shoot (g/kg)	Ca Root (g/kg)	Mg Shoot (g/kg)	Mg Root (g/kg)	K Shoot (g/kg)	K Root (g/kg)	Na Shoot (g/kg)	Na Root (g/kg)	Zn Shoot (mg/kg)	Zn Root (mg/kg)
Fresh	24/04/2019	0	0	1	Nonrenewed	18.8 ¹	12.9	3.6	2.10	70.8	90.5	1.26	3.10	14.9	24.3
		0	24	1	Nonrenewed+ AC-ED weekly	17.6	12.2	4.0	2.60	60.9	85.5	1.50	2.90	16.9	57.3
		0	12	1	Nonrenewed+ AC-ED two-weekly	16.6	15.9	3.8	3.60	55.8	83.3	1.61	2.90	12.4	34.8
		0	8	1	Nonrenewed+ AC-ED three-weekly	15.3	11.7	3.2	2.10	59.3	89.5	0.93	2.80	14.7	43.6
		1	0	1	Renewed	16.0	11.1	3.2	2.40	63.6	81.2	0.83	1.70	14.2	44.7
		0	0	3	Nonrenewed	11.4	5.4	3.2	3.90	54.9	82.8	0.69	1.68	30.3	51.4
		0	24	3	Nonrenewed+ AC-ED once-weekly	9.9	5.8	3.1	2.90	50.7	98.0	0.56	2.01	17.1	70.3
		0	72	3	Nonrenewed+ AC-ED thrice-weekly	10.5	6.2	2.6	2.10	48.6	84.1	0.62	1.87	20.4	66.2
		0	168	3	Nonrenewed+ AC-ED continuously	10.6	6.7	2.6	1.80	49.6	80.9	0.59	1.74	15.8	69.6
		1	0	3	Renewed	11.6	6.0	3.4	3.20	53.8	91.6	0.68	1.81	28.9	62.7
Used	05/06/2019	0	0	2	Nonrenewed	9.9	3.6	4.2	2.40	79.0	49.4	1.60	5.60	33.1	41.8
		0	24	2	Nonrenewed+ AC-ED weekly	7.8	4.2	4.8	2.70	66.8	88.0	1.30	2.50	35.6	70.0
		0	12	2	Nonrenewed+ AC-ED two-weekly	8.0	4.9	3.6	2.50	75.2	85.2	1.00	2.50	33.3	70.6
		0	8	2	Nonrenewed+ AC-ED three-weekly	6.5	6.8	4.3	2.50	78.0	96.8	1.40	2.50	29.8	67.1
		1	0	2	Renewed	7.3	5.5	3.5	2.80	68.1	88.4	1.40	1.90	22.4	68.0
	21/08/2019	0	0	4	Nonrenewed	13.8	7.3	3.6	3.70	69.5	51.3	1.00	1.60	19.6	33.3
		0	24	4	Nonrenewed+ AC-ED once-weekly	14.4	9.8	4.0	2.50	73.1	53.1	1.00	1.80	18.7	33.3
		0	72	4	Nonrenewed+ AC-ED thrice-weekly	15.7	5.1	3.5	2.10	66.6	60.2	1.00	1.80	25.1	40.7
		0	168	4	Nonrenewed+ AC-ED continuously	14.7	3.4	3.8	1.80	74.7	56.1	1.00	1.60	17.6	32.7
		1	0	4	Renewed	14.7	4.9	3.4	0.50	68.8	54.4	0.90	1.50	19.3	46.7

¹ Indicates the average value

The different colors represent the trend of variation among of the parameters of four experiments together. In each column, values highlighted in darker color represent higher value. All data of different parameters presented were tested at 5% level using Tukey-Kramar test.

Average of all cultures	12.6	7.5	3.6	2.51	64.4	77.5	1.05	2.29	22.0	51.5
-------------------------	------	-----	-----	------	------	------	------	------	------	------