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Abstract

Stochastic quantization method is applied to U(1) gauge field. The stabilization of
random trajectories of gauge-dependent quantities is discussed. It is shown that such a
stabilization is possible by modifying the correlation of the white noise. As an example the
propagator of the axial gauge condition is derived.

§1. Introduction

It is known that the stochastic quantization proposed by Parisi and Wu®) is
equivalent to other conventional quantizations for non-gauge theories. For gauge
theories the equivalence between the stochastic and the other quantizations is proved
perturbatively by many authors.2~8 The outstanding point of this method is that
we can quantize the gauge fields without any gauge fixing.

Nevertheless, it is still inconvenient to quantize the gauge fields without the gauge
fixing because gauge-dependent quantities contain divergent terms while the gauge-
invariant ones are of course calculated unambiguously (see below).

The outline of this method would be easily understood by showing the application
to U (1) gauge field.

The starting point of the stochastic quantization is the Langevin equation,

0A,(x,1) _ oS[4,]
ot 0d,(x, 1) s 1), (1)

with the introduction of a fictitious time 7. S[A4,] is the classical Euclidean action for
the gauge field 4, and is given by

S(4,1=1 S A4 F, (X)F (). (1.2)
Thus eq. (1.1) is explicitely written as

LA, x, )= = (a0 =30 A%, D+1,(x, 1) (L.1)
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The white noise #,(x, ) is supposed to satisfy the stochastic average
<n(x, 9> =0,
<, D', 1)) =26,,6(x —x")o(t 1),
1> EOMX5 0),(X3, 13)16(Xa, 10))
=1, (%15 EON(X25 12)) {Mp(X35 L3)M6(X 45 14))
+ other combinations,
............ (1.3)

It can be shown that
lit ( (A, (1)) = S IT dA,(x)B(A,) et / SH A, et (1.4)
t=o0 x X

where ®&(4,(x, 1)) is a gauge-invariant function of 4,(x, ¢) with the same time 7. The
right-hand side is the Green function in the Euclidean field theory. If &(4,)is a gauge-
dependent function, however, the left-hand side of (1.4) never converges. This can be
easily seen from (1.1"), which gives

aita,,A,,(x, D=0,m,(x, 1). (1.5)

The longitudinal component of A4, never relaxes on the equilibrium for lack of friction
terms on the right-hand side of the above equation.

In order to stabilize the random trajectory the friction terms are introduced by
several authors in some different ways.2)-3):6)~8)

In this paper we discuss another possibility for such a stabilization. It is shown in
the next section that in U (1) gauge field the modification of the correlation of the
white noise (1.3) with an adequate choice of the initial condition of the Langevin
equation (1.1") makes the stochastic average of &(4,) converge. As an example we
derive the propagator for the axial gauge condition by such a modification.

§2. Modification of the stochastic correlation of the white noise

The equation (1.1) can be written in the momentum space as
LAk, D=~ Gk = o)A, 1+, 0K, ), @.1)

where the quantity with tilde is the Fourier transform of its correspondent. The above
equation is solved as
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Ak, 1= g de’ [(% ek, >exp{ k(- )} + K kuk, }h(k )

N O S—

Then the stochastic correlation of the product A,(k, 1)4,(p, ?) is given by

}A (k, 0). (2.2)

Ay, 03,7, 0y =30+ )| (00— 45 )11 —exp (~ 2020y p-2+ 2o |

kkl

+{(6u- bl Jexp (—k20) + 5212, 0)

(0= 2he Jexp (—p0+ LB 35,00, (23)
where we use
s 1P, 0> =280+ POI=1). @4)

For large t, eq. (2.3) leads to

CAye, (0, 1) — 80+ p) | — a2 Yem2 4 2Hden |

k,k ~
+ e Ak, 0)A,(p, 0) @5

Namiki et al.®) have taken the average with respect to the initial value ffu(k, 0) and
have supposed

{4k, AP, 0)}aver, =05,,,0(k +p)- (2.6)

Then they have obtained

ALk, DALP, O aper. — S(k+p)k~ 2{(5”—(1 ) “ *+2k,k t} 2.7
It was shown that the initial value of the field is related to the gauge parameter of the
propagator in the conventional quantizations.

The divergent term in the right-hand side on (2.7) is due to the non-relaxation of
the longitudinal component of the field as explained before. A direct way to cancel
such a divergent term is to impose a constraint on the field 4,. For example we
suppose

A,(x, 1)=0. (2.8)

In this case all the components of the white noise #, are no longer independent of each
other; we have
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0%, 1)=0, 2.9)

from (1.5). The above equation implies that the correlation (1.3) of #, should be
modified as

kk

<k, OB, 1)) =2(S= 45" )k +P)6(1—1). (2.10)

The stochastic correlation of the product 4,(k, HA,(p, ©) is

Al DA, D=0k +p)- (30— S50 Y1 —exp (~ 20202

+exp {— (k> + p?)t} A, (k, 0)A,(p, 0)
— 6(k+p) (6,” - ﬁzle—)k-z (2.11)

Conversely the modification (2.10) of the correlation of #, means the constraint (2.8)
by tracing back the above line of reasoning (more precisely we need additionally
0,4,(x, 0)=0 as the initial condition).

Now, we consider the modification of the correlation of #, which does not induce
the constraint on 4,. Here we search such a modification that the propagator of the
axial gauge condition is derived. We put

<ﬁu(ka t)ﬁv(p’ t,)> = 26(p + k)a(t - t/)
X {0,y + Bd,30,3+ C(d,3k,+6,3k,)+ Dk k,}, (2.12)

where B, C and D are functions of k,. From (2.2) the correlation of the product
/Tn(k, 1)A(p, 1) is given by

Ak, AP, z>>=26(k+p)§;dt'[(auv Halie Yexp (—2k2 - 1)y +
(0= Ym0 ) (5o 5
rel(s— Bk Yexp k2w =)+ K3 ke, + (w4 DI, |
+{(5, = Yexp (—r20) + Kake L (5, — 22 Yexp (— o0
+ 2L, 0, 0 ,(p, 0). @.13)

The condition that the terms of O(¢) in the above equation should vanish is
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k2 + Bk2 +2Ck2k, + Dk4=0.

17

(2.14)

Taking the average with respect to the initial value 4,(k, 0) and the limit ¢ o0, we have

lim <Zu(k, t)gv(p9 t)>aver.
t—00
= S(k+ p){gm 14+3K% B+4k30>+Bé,,35v3
k3 -2
+2(k 03, +kv63u)(——2k2 B+C )}k

k k vFPe ¢ %
—7&#— {Ap(k’ O)Za(p’ O)}aver.

This should be equal to the axial gauge propagator,

80+ P) {310 = (enby By + g L2

The functions B, C and D and {Ap(k, 0)A,(p, 0)} 4yer. should satisfy
B=0,

=1
2C= ks

<kz +3%5 oy >5(k+P)—k'z’—p§{Zp(k, 04,(p, O} aer..

The combination of the above equations with (2.14) gives
B=D=0,
_ 1
C==2,>
> > 1 1
(0 AP, Obaver. =50 77 =77 )80+ D).

We write the modified correlation of #,;

ks 0,5, 1) =200k + POt —1) (S == Gusks + 8,56}

(2.15)

(2.16)

(2.17)

(2.18)

The axial gauge propagator (2.16) can be derived also by imposing the constraint

A3(x, t) = 0,

(see Appendix). In this case, however, n5(x, t) becomes a dependent variable.

(2.19)
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In contrast to this or to the case of the covariant gauge (see (2.10)), eq. (2.18)
shows that all the components of #j, are independent of each other. The third com-
ponent of the potential, 45 correlates with other components when ¢ is finite.

§3. Concluding remark

In stochastic quantization the Green functions of quantum theories are obtained
from the correlation functions by taking limit of the fictitious time to intinity. There-
fore, at finite ¢ there may exist several types of the formulations and what we have
discussed in the previous section and appendix are examples for this fact. This freedom
of choice may enable us to expand the territory of quantum theory together with that
in stochastic quantization we need neither the Lagrangian nor the Hamiltonian but
only the classical equation of motion.

It is inconvenient to apply the procedure discussed here to non-abelian gauge
fields for the following reason. If the gauge group is non-abelian, the modified cor-
relation such as (2.18) is not invariant even for t-independent gauge transformation
because it is non-local. Therefore the manifestation of the gauge invariance of the
theory is lost.

Appendix
Imposing (2.19) on (2.1) we have

0=-2 A0k, =kskidik, 1) +3(k; 1),
or
ﬁ3(k7 t)= - k3k114~1(k9 t) ’ (Al)

where the Latin index runs from 0 to 2. The above equation implies that the third
component of the white noise is not an independent variable. Instead of eqgs..(2.1),
(2.19) and (A.1) we have equivalently

2 Ak, 0= = (Bl ~ ko) Ak, 1+ 7k, 1) A2
with 4;=0. This equation is easily solved as

Ay, )=, dr'{(60 -5 Yexp o 1)+ 5L exp k3~ D)k, 1)

(60— 5 Yexp (o) + BfL exp (— k| Ak, 0), (A3

where k2=k3+k?+k3. Then we have
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lim (A (k, DA(p, 0> =3(k+ D)o+ 5L 2,
t—+a0 3

(s, AP, )y =0. (Ad)

In the above equation the limit t— oo cancels the dependence on the initial values of A,
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