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Abstract

The present paper deals with the blind deconvolution problem of multiple-input multiple output finite impulse
response (MIMO-FIR) channels driven by source signals which are white in the sense of second-order statistics
and spatially higher-order uncorrelated but temporally higher-order colored signals. Our goal is to solve the
blind deconvolution problem using a deflation approach. To this goal, we propose an algorithm obtained by
modifying the super-exponential deflation algorithm (SEDA) proposed by Inouye and Tanebe [8] to the case of
the blind deconvolution problem of MIMO-FIR channels driven by the source signals which possess higher-order
auto-correlations, which is referred to as a modified super-exponential deflation algorithm (MSEDA). Using the
MSEDA, the colored source signals which are the inputs of the MIMO-FIR channels are extracted from the
outputs of the MIMO-FIR channels one by one. To show the validity of the proposed approach, some simulation
results are presented.

1 Introduction

The blind deconvolution problem consists of extract-
ing source signals from their convolutive mixtures ob-
served by sensors without knowledge about the source
signals and the transfer functions (transmission chan-
nels) between the sources and the sensors. Almost
all of the proposed methods for solving the blind de-
convolution problem have been developed under the
assumption that the source signals are temporally in-
dependent and identically distributed (i.i.d.) and spa-
tially independent (e.g., [2, 4, 8, 13, 17, 20]. However,
in some applications, the i.i.d. assumption for the
source signals becomes very strong. As an example,
in digital communications, the information bearing
sequences are coded in order to reduce noise corrup-
tions and channel distortions. These codes implicitly
are not mutually independent among sequences and
hence it is unlikely that they are i.i.d. signals. On
the other hand, these coded sequences are interleaved
to avoid burst errors when the codes are transmitted
[15]. These interleaved sequences are usually consid-
ered to be uncorrelated. To solve the blind deconvo-
lution problem for such an application, therefore, one
must assume that the source signals have a weaker

condition than the i.i.d. condition, for example, the
source signals are temporally second-order uncorre-
lated but higher-order correlated [11, 18].

The present paper deals with the blind deconvolu-
tion problem of MIMO-FIR channels driven by source
signals which are temporally higher-order colored sig-
nals (but temporally second-order white and spatially
second- and higher-order uncorrelated signals). This
condition for the source signals is weaker than the
i.i.d. condition. To solve the blind deconvolution
problem, we consider a deflation approach. The con-
ventional algorithms based on deflation approaches
have been used to achieve the blind deconvolution un-
der the assumption that source signals are i.i.d. and
spatially independent signals (e.g., [8, 20]). There-
fore, it cannot be seen whether deflation approaches
can be applied to the MIMO-FIR channels in the case
that the sources are higher-order colored signals. It
has been shown by Simon et al. [18] that a deflation
approach can be applied to multiple-input multiple-
output infinite impulse response (MIMO-IIR) chan-
nels in the case that source signals are colored signals
(but white signals in the sense of second-order statis-
tics). Their proposed algorithm, however, does not
work so as to extract an original colored signal but
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works so as to extract an i.i.d. signal from the outputs
of the MIMO-IIR channels. This means that if the col-
ored source signals are generated by linearly filtering
i.i.d. signals (see Section 2), the original i.i.d. signal
can be recovered by the algorithm. Then if the linear
filters can be estimated, the colored source signals can
be acquired. However, if the colored source signals are
generated by non-linearly filtering i.i.d. signals (see
Section 2), it may be impossible by the algorithm to
recover the original i.i.d. signal. This means that it
is very difficult to obtain the colored source signals
from the signals extracted by the algorithm. Such an
example is shown in Section IV. Our proposed defla-
tion algorithm can be also applied to the above two
types of colored source signals. This means that our
proposed deflation approach can be used to recover
the colored source signals which are generated by lin-
early or non-linearly filtering i.i.d. signals. Such an
example is shown in Section IV.

The proposed algorithm is a modification of the
super-exponential deflation algorithm (SEDA) pro-
posed by Inouye and Tanebe [8], which is referred
to as a modified super-exponential deflation algorithm
(MSEDA). The MSEDA is used to extract one by one
the colored source signals which are the inputs of the
MIMO-FIR channels. It consists of n repeats of defla-
tions, where n is the number of the sources. In each
repeat of deflations in the algorithm, at first, a cas-
caded integrator-comb (CIC)-filtered source signal is
extracted from the outputs of the MIMO-FIR chan-
nels. Next, the colored source signal corresponding
to the extracted filtered source signal is recovered by
making the extracted filtered source signal white in
the sense of second-order statistics. Finally, the con-
tributions of the extracted colored source signal to the
outputs are removed from the outputs of the MIMO-
FIR channels. Simulation examples are presented to
illustrate the performance of the proposed approach.

2 Problem formulation

Throughout the present paper, let us consider the fol-
lowing MIMO-FIR system:

x(t) =
K∑

k=0

H(k)s(t − k), (1)

where x(t) represents an m-column output vector
called the observed signal, s(t) represents an n-column
input vector called the source signal, {H(k)} is an
m × n matrix sequence representing the impulse re-
sponse of the transmission channel, and the number
K denotes its order. It can be written in scalar form
as

xi(t) =
m∑

j=1

K∑
k=0

h
(k)
ij sj(t − k), j = 1, · · · , m. (2)

Equation (1) can be written as

x(t) = H(z)s(t), (3)

where H(z) = [hij(z)] is the z-transform of the im-
pulse response {H(k)}, that is, H(z) =

∑K
k=0H

(k)zk.
Note that the notation z is used instead of the com-
monly used z−1 in the z-transform.

Our objective is to extract the source signals si(t)
(i = 1, · · · , n) from the observed signals one by one,
using a deflation approach. To this end, the following
multi-input single-output (MISO)-FIR system called
a filter which is driven by the observed signals is used:

yl(t) =
m∑

i=1

L∑
k=0

w
(k)
li xi(t−k) =

L∑
k=0

w
(k)T
l x(t−k), (4)

where yl(t) is the output signal of the filter, {w(k)
l } =

[{w(k)
l1 },· · ·,{w(k)

lm }]T is an m-column vector sequence.
Equation (4) can be written as

yl(t) =
m∑

i=1

wli(z)xi(t) = wl(z)T x(t), (5)

where wli(z) is the z-transform of the impulse re-
sponse {w(k)

li }, that is, wli(z) =
∑L

k=0w
(k)
li zk, and

wl(z) is an m-column vector whose elements are
wli(z) (i = 1, · · · , m). Note that the number l cor-
responds to the repeat number of deflations, which
means the order of extracted sources, and the num-
ber L is the order of the filter. Therefore, the filters
wl(z) (l = 1, · · · , n) are used for extracting the source
signals si(t) (i = 1, · · · , n) from the observed signals
one by one, using a deflation approach.

Here, all variables can be complex-valued (this is
required for such an application using quadrature am-
plitude modulation (QAM) signals [15]).

Using (3) and (5), the input-output relation of the
composite system can be written as

yl(t) =
m∑

i=0

n∑
j=0

wli(z)hij(z)sj(t)

=
n∑

j=0

glj(z)sj(t) = gl(z)T s(t) (6)

where

glj(z) :=
m∑

i=0

wli(z)hij(z) =
K+L∑
k=0

g
(k)
lj zk, (7)

and gl(z) is an n-column vector whose elements are
glj(z) (j = 1, · · · , n). The composite system of the
two systems is illustrated in Figure 1.

If all the glj(z)’s (j = 1 · · ·n) except for j = j0
are equal to zero, (6) becomes yl(t) = glj0(z)sj0(t).
This means that a filtered source signal is acquired.
Moreover, if glj0(z) = zk, then (6) becomes yl(t) =
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Figure 1: The composite system of an unknown sys-
tem and a filter.

sj0(t−k), that is, the j0th source signal is acquired. In
the present paper, for each repeat number l = 1, · · · , n,
at first, we consider finding a filtered version of source
spl

(t) as

yl(t) = glpl
(z)spl

(t), l = 1, 2, · · · , n (8)

where {p1,p2,· · ·,pn} is a permutation of {1, 2, · · · , n},
and then, by using the output yl(t), the source signal
spl

(t − k) is found. Here for glpl
(z) in (8) we choose

the transfer function of a CIC filter, that is,

glpl
(z) = gl0(1 + z + · · · + zM ), (9)

where gl0 is a non-zero complex constant and the num-
ber M is the order of glpl

(z), that is, M = K + L.
The choice of the transfer function is related to the
proposed algorithm introduced in Section III. Under
the following assumptions, we consider extracting n
CIC-filtered source signals from the observed signals.

A1) The transfer function H(z) in (3) is irreducible
[9], that is, rank H(z) = n for any z ∈ C (this im-
plies that the unknown system has less inputs than
outputs, that is, n ≤ m).

A2) The input sequence {s(t)} is a zero-mean sta-
tionary vector process whose component processes
{si(t)} (i = 1, · · · , n) are temporally second-order
white and spatially second- and higher-order uncor-
related. At most, one component of {s(t)} can be
Gaussian, and all the others should be non-Gaussian
with unit variance and nonzero Γi (< ∞), where Γi is
the sum of all the higher-order auto-cumulants of the
ith component signal (see (13)).

Under the assumption (A1), we can show that there
exists a filter wli(z) satisfying (9), because H(z) has
a causal left inverse. As for (A2), two examples of
a component process {si(t)} satisfying A2) are pre-
sented below: The one is a source signal generated by
a linear filter and the other is a source generated by
a non-linear filter.

1) A source generated by a linear filter: Let us
consider a real-valued linear random process {x(t)}
generated by x(t) = h(z)w(t), where {w(t)} is a
real-valued i.i.d. random process with variance σ2

w

�= 0 and kurtosis κw �= 0, and h(z) is an all-
pass transfer function with real coefficients, that is,
|h(e−jω)| = 1 for any real ω. Here, h(z) may
be a transfer function representing an IIR system.
Then the second-order spectrum sx(ω) is given by
sx(ω) = |h(e−jω)|2σ2

w = σ2
w, and the fourth-order

spectrum sx(ω1, ω2, ω3) is given by sx(ω1, ω2, ω3) =

h(e−jω1)h(e−jω2)h(e−jω3)h(ej(ω1+ω2+ω3))κw, which
is not constant except when h(z) is monomial. This
means that the random process {x(t)} is white in
the sense of second-order statistics but colored in the
fourth-order sense [11].

2) A source generated by a non-linear filter: Let
us consider a complex-valued process {x(t)} gener-
ated by x(t + 1) = jα(t + 1)x(t), t = 0, 1, 2, · · ·,
which is called a pseudo-quaternary phase-shift key-
ing (PQPSK) signal [5]. Suppose that the initial
value x(0) of x(t) is given by choosing one of val-
ues 1,−1, j,−j with probability 1/4, and αt takes 1
or −1 with probability 1/2. Then the mean value
E[x(t)] of x(t) becomes zero, and it is clear that
E[|x(t)|2] = 1, E[x(t)2] = 0, E[x(t)x(t− τ)] = 0, and
E[x(t)x(t − τ)∗] = 0. This means that the process
{x(t)} is white in the sense of second-order statistics.
Moreover, it can be seen that the conditional expec-
tation E[x(t)2|x(t − 1)] (= −1 or 1) is not equal to
E[x(t)2] (= 0). This means that the process {x(t)} is
colored in the higher-order sense.

The other examples of sources generated by non-
linear filters are shown in [3]. We shall see some com-
puter simulation results of the blind deconvolution for
the both kinds of sources in Section IV. As for finding
spl

(t − k) using yl(t), we will show an algorithm in
Section III B

3 A Blind Deflation Approach

3.1 An iterative procedure for a repeat
of deflations

To generate a CIC-filtered source signal, a super-
exponential deflation algorithm (SEDA) based on In-
ouye and Tanebe [8] is considered. In this subsection,
we explain how to modify the SEDA proposed by In-
ouye and Tanebe to the case where the elements of the
input signals si(t) possess various higher-order auto-
cumulants. Inouye and Tanebe proposed an SEDA of
adjusting the elements glj

(k) (j = 1, · · · , n) by the fol-
lowing two-step iterative procedure, in which source
signals are assumed to be i.i.d. signals;

glj
(k)[1] =

ρj

σj
2
(glj

(k))p(glj
(k)∗)r, (10)

glj
(k)[2] =

glj
(k)[1]√∑n

j=1

∑
l σj

2|glj
(l)[1]|2

, (11)

where (·)[1], (·)[2] stand for the result of the first step
and the result of the second step per iteration, p and
r are nonnegative integers such that p + r ≥ 2, ρj

denotes the (p + r + 1)st cumulant of sj(t), that is,

ρj = Cum{sj(t), sj(t), · · · , sj(t)︸ ︷︷ ︸
p

,

sj(t)∗, · · · , sj(t)∗︸ ︷︷ ︸
r+1

}, (12)
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and σj
2 denotes the variance of sj(t).

In the present paper, since the source signals sj(t)
(j = 1, · · · , n) are assumed to possess non-zero vari-
ous higher-order auto-cumulants, that is, the source
signals are not i.i.d. signals, then instead of ρi in
(12), we consider the sum of all the higher-order auto-
cumulants of sj(t), which is denoted by Γj , that is,

Γj =
∑

τp1 , · · · , τpp−1︸ ︷︷ ︸
p−1

,τr1 , · · · , τrr+1︸ ︷︷ ︸
r+1

∈Z

Cum{sj(t), sj(t − τp1 ), · · · ,

sj(t − τpp−1), sj(t − τr1)
∗, · · · , sj(t − τrr+1)

∗} (13)

This is our original idea in which the deflation ap-
proach can be applied to the blind deconvolution in
the case where the elements of the input signals si(t)
possess various higher-order auto-cumulants. Then,
the equation (10) can be modified to the following
equation;

glj
(k)[1] =

Γj

σj
2
(

M∑
m=0

glj
(m))p(

M∑
m=0

glj
(m)∗)r,

j = 1, · · · , n (14)

where M = K + L. Therefore, the two-step pro-
cedure (14) and (11) becomes one cycle of iterations
in the modified super-exponential deflation algorithm
(MSEDA) mentioned in Section III B. It should be
noted in (14) that the elements glj

(k)’s (where k =
0, · · · , M) take an identical value for fixed l and j.
Hence, a CIC filter like (9) can be obtained by using
(14).

Using the similar way as in [8], one can easily prove
that the following two-step iterative procedure with
respect to w̃l can be derived from (14) and (11) (the
proof is found in the Appendix):

w̃l
[1] = R̃

†
D̃l, l = 1, · · · , m, (15)

w̃l
[2] =

w̃l
[1]√

w̃l
[1]∗T R̃w̃l

[1]
, l = 1, · · · , m, (16)

where w̃l is an (L + 1)m-column vector consisting of
the coefficients (corresponding to the lth output) of
the filter defined by

w̃l := [w̃T
l1, w̃

T
l2, · · · , w̃T

lm]T , (17)
w̃lj := [wlj

(0), wlj
(1), · · · , wlj

(L)]T , (18)

† denotes the pseudo-inverse operation of a matrix, R̃
is the m × m block matrix defined by

R̃ :=




R̃11 R̃12 · · · R̃1m

R̃21 R̃22 · · · R̃2m

...
...

...
...

R̃m1 R̃m2 · · · R̃mm


 (19)

whose (i, j)th block element R̃ij is the (L+1) × (L+1)
matrix with the (i1, j1)th element [R̃ij ]i1j1 defined by

[R̃ij ]i1j1 = Cum{xj(t − j1), xi(t − i1)∗},
i1, j1 = 0, · · · , L, (20)

and D̃l is the n-block vector defined by

D̃l := [dT
l1, d

T
l2, · · · , dT

lm]T (21)

where the dljth is the (L+1)-column vector with the
j1th element [dlj ]j1 given by

[dlj ]j1 =
∑

τp1 , ..., τpp−1︸ ︷︷ ︸
p−1

,τr1 , ..., τrr+1︸ ︷︷ ︸
r+1

∈Z

Cum{yl(t), yl(t − τp1 ), · · · , yl(t − τpp)

, yl(t − τr1)
∗, · · · , yl(t − τrr )∗, xl(t − j1 − τrr+1)

∗},
j1 = 0, · · · , L. (22)

In the case of p = 2 and r = 1, (22) becomes

[dlj ]j1 =
∑

τ1,τ2,τ3∈Z

Cum{yl(t), yl(t − τ2), yl(t − τ1)∗

, xj(t − j1 − τ3)∗}, j1 = 0, · · · , L. (23)

In Section IV, we confine ourselves to the case of p = 2
and r = 1. Then (14) and (11) in the case of p = 2
and r = 1 is referred to as the fourth-order modified
super-exponential deflation algorithm (FOMSEDA).
Note that if we take into account the high-order auto-
correlations of the source signals, the parameters p
and r in (22) corresponding to the properties of si(t)
can be adjusted. Equations (15) and (16) are the main
two steps in the proposed algorithm.

Remark 1: In the case that the source signals si(t)
of the system (3) possess non-zero various higher-
order auto-cumulants, that is, the input signals are
not i.i.d. signals, (15) and (16) are not obtained from
(10) and (11) any longer. Therefore, equations (14)
and (11) must be taken into account in the higher-
order colored sources case.

Our objective of finding the filter glpl
(z) in (9) from

the output yl(t) in (6) using (14) and (11) is guaran-
teed by Theorem 1 below. Before explaining the the-
orem, we introduce the following notation. For each
j, we define the following (M + 1)-column vector g̃lj

whose elements are the impulse response parameters
of the filter glj(z), that is,

g̃lj = [g(0)
lj , g

(1)
lj , · · · , g(M)

lj ]T . (24)

Moreover, let us denote the (M + 1)-column vector
whose elements all equal a complex constant gl0 whose
absolute value is 1/

√
M + 1 by ĝ, that is,

ĝ = [gl0 , gl0 , · · · , gl0 ]
T . (25)

Theorem: Let us consider the MISO system defined
by (6). Infinite iterations of two steps (14) and (11)
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can yield an SISO cascade system such that the im-
pulse response vectors g̃lj ’s of (6) satisfy

g̃lj = ĝ �= 0 for some j = j0,
g̃lj = 0 for all j �= j0,

(26)

where j0 = arg maxj∈{1,···,n} |Γj ||
∑M

k=0 glj
(k)(0)|, and

the impulse response sequence {g(k)
lj (0)} means the se-

quence of the initial values of {g(k)
lj }, [where the argu-

ment j0 is assumed to be unique by choosing appro-
priate values of {g(k)

lj (0)}]. Proof From (14), choosing
j0 so that

∑M
k=0 glj0

(k)(i) �= 0, we obtain

|∑M
k=0 glj

(k)[1](i)|
|∑M

k=0 glj0
(k)[1](i)|

=
|Γj |
|Γj0 |

(
|∑M

k=0 glj
(k)[1](i − 1)|

|∑M
k=0 glj0

(k)[1](i − 1)|

)p+r

, (27)

where an integer i denotes the iteration time. Note
that |∑M

k=0 glj
(k)(i)|/|∑M

k=0 glj0
(k)(i)| is not modified

by the normalization of the second step. Therefore, it
is possible to solve |∑M

k=0 glj
(k)(i)|/|∑M

k=0 glj0
(k)(i)|

from the recursive formula (27), which yields

|∑M
k=0 glj

(k)[2](i)|
|∑M

k=0 glj0
(k)[2](i)|

=
|Γj0 |

1
p+r−1

|Γj | 1
p+q−1

(
|Γj | 1

p+r−1

|Γj0 |
1

p+q−1

|∑M
k=0 glj

(k)[2](0)|
|∑M

k=0 glj0
(k)[2](0)|

)(p+q)i

(28)

∀i > 0. For j0 = maxj |Γj ||
∑M

k=0 glj
(k)[2](0)| (where

j0 is assumed to be unique), we see that all the
other values |∑M

k=0 g
(k)[2]
lj (i)|, j �= j0, quickly be-

come small compared to |∑M
k=0 glj0

(k)[2](i)|. Taking
into account

∑n
j=1

∑M
k=0 |glj

(k)[2](i)|2 = 1, this means
that |∑M

k=0 glj0
(k)[2](i)| �= 0 and |∑M

k=0 glj
(k)[2](i)| →

0 for all j �= j0. This implies that the algorithms
(14) and (11) give the expected solution (26), tak-
ing into account that |∑M

k=0 glj
(k)[2](i)| → 0 becomes

g
(k)
lj (i) = 0 (k = 0, · · · , M) for all j �= j0 and |g(k)

lj0
(i)|

(k = 0, · · · , M) become 1/
√

M + 1 from (11).
Remark 2: It can be seen from the proof of The-

orem 1 that if |∑M
k=0 glj

(k)(0)| for all j are equal to
zero, then {g(k)

lj (1)} which is the sequence of the val-

ues of {g(k)
lj } obtained by calculating (14) and (11) at

the first cycle of the iterations becomes a sequence
of zeros. This corresponds to a pathological case.
In this case, we consider that by resetting the ini-
tial values of glj

(k)(0) to be appropriate values, one
of |∑M

k=0 glj
(k)(0)| (j = 1, · · · , n) becomes at least

nonzero.

3.2 The modified super-exponential
deflation algorithm (MSEDA)

The modified super-exponential deflation algorithm
(MSEDA) is used to recover the n colored source
signals one by one from the observed signals {xi(t)}
(i = 1, · · · , m). The MSEDA can be summarized in
the following steps:
Step 1: Set l = 1 (where l denotes the repeat number
of deflations and corresponds to the order of a CIC-
filtered input extracted).
Step 2: Choose random initial values wlj

(k)(0)
of wlj

(k) (k = 0, · · · , M), and then calculate

w̃l(0)/
√

w̃l(0)∗T
R̃w̃l(0), where w̃l(0) is the initial

value of w̃l. Set i in w̃l(i) to 0 (i denotes the iteration
number).
Step 3: Calculate w̃l(i) using (15) and (16). The
expectation can be estimated using large samples of
yl(t) and xj(t) (j = 1, · · · , m) (in our experimental
studies, we used about 10,000 points for discrete time
t)
Step 4: If |w̃l

∗T (i)R̃ w̃l(i− 1)| is not close enough to
1, set i = i + 1 and go back to Step 3. Otherwise go
to the next step.
Step 5: Consider an AR model

yl(t) = −
M ′∑
k=1

vl
(k)yl(t − k) + βul(t). (29)

with sufficiently large order M ′ (M ′ 	 M) and find
the parameters β and vi

(k) by using the Yule-Walker
equations and the Levinson algorithm [14].
Step 6: We compute a scaled and time-shifted ver-
sion ul(t) of the input spl

(t) by using the following
equations:

yl(t) =
m∑

j=1

∑
k

wlj
(k)xj(t − k),

ul(t) = β−1(yl(t) +
M ′∑
k=1

vl
(k)yl(t − k)) = vl(z)yl(t),

where wlj
(k) and vl

(k) are obtained by the above five
steps, and vl(z) = β−1(1 +

∑M ′

k=1 vl
(k)zk).

Step 7: Estimate the scale and the time-shift of hjpl

(τ)

by using the cross-correlation of the observed signals
xj(t) and ul(t) as

ĥjpl

(τ) = E[xj(t)ul(t − τ)∗], j = 1, 2, · · · , m. (30)

Step 8: Estimate the contribution of spl
(t) to the

observed signals xj(t) (j = 1, 2, · · · , m), that is,∑
τ hjpl

(τ) spl
(t − τ), using

x̂jpl
(t) =

∑
τ

ĥjpl
(τ)ul(t − τ), (31)
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Figure 2: Signal constellations of the source signals:
(a) source signal s1(t); (b) source signal s2(t).

Step 9: Remove the above contribution using the fol-
lowing equation:

xj
(l)(t) = xj(t) − x̂jpl

(t), (32)

where xj
(l)(t) (j = 1, · · · , m) are the outputs of a

linear unknown multichannel system with m outputs
and n − 1 inputs.
Step 10: If the superscript (l) of xj

(l)(t) is less than
n, then set xj(t) = xj

(l)(t) (j = 1, · · · , m), l = l + 1,
and the procedures mentioned above (Step 2 to Step
9) are continued until l = n.

In Step 4, |w̃l
∗T (i)R̃ w̃l(i − 1)| ≈ 1 means w̃l(i)

≈ w̃l(i − 1) [7]. Step 5 is a procedure of recover-
ing approximately a source signal spl

(t) from the out-
put yl(t) in (8) by making yl(t) white in the sense
of second-order statistics, because the source signal
spl

(t) is white in the sense of second-order statistics
but the obtained output yl(t) based on Theorem 1 is
a colored signal. Therefore, in Step 5, one can acquire
the source signal spl

(t). The procedure from Step 7
to Step 10 are implemented for making it possible
to extract the other source signals from the observed
signals and the extracted source signals. On a justifi-
cation of this extraction, for example, see [20].

4 Computer Simulations

To demonstrate the validity of the proposed algo-
rithm, many computer simulations were conducted.
Some results are shown in this section. We considered
the following two-input and three-output FIR system.

H(z) =
 1.0 + 0.6z + 0.3z2 0.6 + 0.5z − 0.2z2

0.5 − 0.1z + 0.2z2 0.3 + 0.4z + 0.5z2

0.7 + 0.1z + 0.4z2 0.1 + 0.2z + 0.1z2


 . (33)

It should be noted that H(z) satisfies (A1). The
observed signals x(t) = [x1(t), x2(t), x3(t)]T (t =
0, 1, 2, · · ·) were calculated by (2). We used (23) (p
= 2 and r = 1 in (22)). The values of τ1, τ2, and τ3 in
(23) were set to belong to the intervals [0,10], [0,10],
and [0,10], respectively. The order L of the filter was
overestimated by calculating L = nK−1 proposed by
Inouye and Liu [9]. We considered the case where the
order K of H(z) given in (33) is unknown. Therefore,
we assumed K = 3. The order of the filter was set to

L = 5 calculating L = 2× 3− 1. The order of the AR
model was set to M ′ = 30. The expectations in (15)
were estimated using 3000 data samples of yi(t) and
xj(t).

Example 1: In this example, the source signals
{si(t)} (i = 1, 2) were generated by using the follow-
ing system:[

s1(t)
s2(t)

]
=

[ 0.3+z
1+0.3z 0

0 0.7+z
1+0.7z

] [
ν1(t)
ν2(t)

]
. (34)

where {ν1(t)} and {ν2(t)} were non-Gaussian i.i.d.
signals with zero mean and unit variance, but were
independent with each other. Since the filters (0.3 +
z)/(1 + 0.3z) and (0.7 + z)/(1 + 0.7z) in (34) are all-
pass filters, the source signals {s1(t)} and {s2(t)} be-
come temporally second-order white but temporally
higher-order colored signals.

We examined the FOMSEDA using randomly cho-
sen values as the initialization of w̃i. The algorithm
was tested in 20 independent Monte Carlo runs. The
algorithm converged to a desired solution and suc-
ceeded in recovering the first and the second sources.
We confirmed the first and the second sources were re-
covered by Theorem 1 and the comments mentioned
below the algorithm. As a measure of performance, we
used the multichannel intersymbol interference (MISI)
[8] defined by

MISI =
n∑

l=1

|∑n
j=1

∑M+M ′

k=0 |g′lj(k)|2 − |g′l·(·)|2max|
|g′l·(·)|2max

+
n∑

j=1

|∑n
l=1

∑M+M ′

k=0 |g′lj(k)|2 − |g′·j(·)|2max|
|g′·j(·)|2max

(35)

where g′lj
(k) denote the parameters of the filter be-

tween ul(t) and si(t) and |g′l·(·)|2max and |g′·j(·)|2maxare
defined by

|g′l·(·)|2max := max
j,k

|g′lj(k)|2,

|g′·j(·)|2max := max
l,k

|g′lj(k)|2.

In this experiment, we found that the average MISI is
−9.2515 [dB].

Table 1: Average MISI values when Gaussian noise
was added to the outputs of channels at various

SNR’s.

MISI [dB] SNR [dB]
Result 1 −8.1471 30
Result 2 −7.7281 25
Result 3 −5.8975 20
Result 4 −0.4192 15

We examined the effects of noise presented at chan-
nels. Two independent white Gaussian noises (with
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Figure 3: Signal constellations of equalizer outputs
and filter outputs: (a) outputs obtained using the Si-
mon et al. algorithm; (b) outputs obtained by apply-
ing outputs η(t) to Step 5.

identical variance σ2
w) were added to the three output

channels at various SNR levels. The SNR is, for con-
venience, defined as SNR := 10log10(σ2

i /σ2
w), where

σ2
i ’s are the variances of si(t)’s and are equal to 1.

Table 1 shows the results (Result 1 through Result 4)
of performance for the algorithm when the SNR level
was taken to be 30[dB], ,25[dB], 20[dB], and 15[dB],
respectively, for the algorithm.

Example 2: In this example, we show the results
obtained by using the Simon et al. algorithm and our
proposed algorithm (FOMSEDA) in the case that the
source signals {si(t)} (i = 1, 2) were generated by[

s1(t + 1)
s2(t + 1)

]
=

[
jα1(t + 1) 0

0 jα2(t + 1)

]

×
[

s1(t)
s2(t)

]
, t = 0, 1, · · · , (36)

where the initial values s1(0) and s2(0) were set to, re-
spectively, with probability 1/4, one of {1,−1, j,−j}
and one of { 1√

2
+ j√

2
, − 1√

2
+ j√

2
, 1√

2
− j√

2
, − 1√

2
− j√

2
},

and αi(t) (i = 1, 2) took 1 or −1 with probability 1/2.
The source signals are shown in Figure 2.

Figure 3 (a) shows the result obtained by apply-
ing the Simon et al. algorithm to the observed signals
xi(t) (i = 1, 2, 3) in Example 1. From Figure 2 and
Figure 3(a), one may consider that the output η(t) ob-
tained by their algorithm is similar to the source signal
s2(t). However, the statistical property of the output
is different from those of the source signals s1(t) and
s2(t), because the auto-correlation E[η(t)η(t + 1)∗] is
not equal to zero (it is equal to 0.5172+j0.0091), while
E[si(t)si(t + 1)∗] (i = 1, 2) are equal to zero. Figure
3(b) shows the result obtained by applying the output
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Figure 4: Signal constellations of equalizer outputs
and filter outputs: (a) outputs y1(t); (b) outputs
u1(t).

η(t) to Step 5 and Step 6 in Section III B. One can
see that one of the source signals is not acquired, even
if the whitening is applied to the output η(t). On the
other hand, Figure 4(a) and Figure 4(b) show y1(t) (l
= 1, that is, the first repeat of deflations) obtained us-
ing the FOMSEDA and u1(t) obtained applying y1(t)
to Step 5 in Section III B. It can be shown that the
output u1(t) is close to the source signal s1(t), because
v1(z)g11(z) ≈ 0 and v1(z)g12(z) ≈ 1.

5 Conclusions

The present paper proposed an iterative algorithm for
the blind deconvolution problem in the case of tem-
porally second-order white and spatially second- and
higher-order uncorrelated signals. The proposed algo-
rithm, referred to as the modified super-exponential
deflation algorithm (MSEDA), was a modification
of the super-exponential deflation algorithm (SEDA)
proposed by Inouye and Tanebe [8] to the case of the
blind deconvolution problem of MIMO-FIR channels
driven by higher-order colored source signals. The
MSEDA was used to generate the colored source sig-
nals from their mixtures one by one.

Computer simulations were carried out to demon-
strate the proposed approach using FOMSEDA. The
results without noise have shown that the proposed al-
gorithm can be used successfully to achieve the blind
deconvolution. Moreover, from the computer simula-
tions, it can also be confirmed that the proposed de-
flation algorithm will be globally convergent almost
always (this result is similar to [8]). The results with
noise have shown that the performance of the algo-
rithm gradually becomes worse as the SNR level is
low.

The authors have not yet carried out any theoretical
analysis of the effects of measurement noise. This will
be treated in our future work.

Appendix

Derivations of (15) and (16) from (14) and (11):
Since the second step (11) is the same one as in [8], the
proof of the derivation of (16) from (11) is omitted.
To derive (15) from (14), the same strategy shown in
[8] is used. Namely, we consider that w̃l

[1]’s are given
by

w̃l
[1] := (H̃

T∗
Λ̃H̃)†H̃

T∗
Λ̃f̃ l, l = 1, 2, · · · , m, (37)

which are the solutions of the weighted squares prob-
lem

min
w̃l

(H̃w̃l − f̃ l)
T∗Λ̃(H̃w̃l − f̃ l), (38)
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where H̃ is the n × m block matrix defined by

H̃ :=




H11 H12 · · · H1m

H21 H22 · · · H2m

...
...

. . .
...

Hn1 Hn2 · · · Hnm


 (39)

whose (i, j)th block element H ij is a (K + L + 1) ×
(L + 1) matrix with the (i1, j1)th element [Hij ]i1j1

defined by [H ij ]i1j1 := hji(i1− j1), i1 = 0, · · · , K +L;
j1 = 0, · · · , L. Λ̃ is a diagonal matrix whose elements
are positive, and f̃ l is an (K +L+1)n-column vector
consisting of the coefficients defined by

f̃ l := [f̃
T

l1, f̃
T

l2, · · · , f̃
T

ln]T , (40)

f̃ lj := [flj
(0), flj

(1), · · · , flj
(K+L)]T , (41)

flj
(k) :=

γj

σj
2
(

M∑
m=0

glj
(m))2(

M∑
m=0

glj
(m)∗). (42)

Here, as for (42), we consider the case of (14) with
p = 2 and r = 1, and γj is given by

γj =
∑

τ1,τ2,τ3∈Z

Cum{sj(t), sj(t − τ2),

sj(t − τ1)∗, sj(t − τ3)∗}. (43)

Suppose we put Λ̃ = Σ̃, where Σ̃ is the n×n block
diagonal matrix defined by

Σ̃ :=




Σ11 0 · · · 0
0 Σ22 · · · 0
...

...
. . .

...
0 0 · · · Σnn


 (44)

Σii := σiI i = 1, 2, · · · , n,

Here, I denotes the (K +L+1)× (K +L+1) identity
matrix. Since it has been shown in [8] that the term
H̃T∗Σ̃H̃ can be obtained from (20), let us show that
the term H̃T∗Σ̃f̃ l can be obtained from (23). From
(2), (4), A2), and the properties of cumulants, the
right-hand side of (23) can be modified to the follow-
ing equation:∑

τ1,τ2,τ3∈Z

Cum{yl(t), yl(t − τ2), yl(t − τ1)∗, xi3(t − j1 − τ3)∗}

=
n∑

j=1

∑
k

h
(k−j1)∗
i3j

∑
τ1,τ2,τ3∈Z

Cum{yl(t), yl(t − τ2),

yl(t − τ1)∗, sj(t − k − τ3)∗}, (45)

where∑
τ1,τ2,τ3∈Z

Cum{yl(t), yl(t − τ2), yl(t − τ1)∗, sj(t − k − τ3)∗}

=
n∑
j1

n∑
j2

n∑
j3

∑
m1

∑
m2

∑
m3

g
(m1)
lj1

g
(m2)
lj2

g
(m3)∗
lj3

×
∑

τ1,τ2,τ3∈Z

Cum{sj1(t − m1), sj2(t − m2 − τ2),

sj3(t − m3 − τ1)∗, sj(t − k − τ3)∗}

= γj(
M∑

m=0

glj
(m))2(

M∑
m=0

glj
(m)∗). (46)

Using (45) and (46) together with (40)-(42), we find∑
τ1,τ2,τ3∈Z

Cum{yl(t), yl(t − τ2), yl(t − τ1)∗, xi3(t − j1 − τ3)∗}

=
n∑

j=1

∑
k

h
(k−j1)∗
i3j σ2

j f
(k)
lj

=
n∑

j=1

(HT∗
ji3Σjj f̃ lj)j1 (47)

from which we obtain H̃T∗Σ̃f̃ l. Therefore, the two-
step iterative procedure (15) and (16) can be derived
from (14) and (11).
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