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Abstract
Purpose Mucinous ovarian carcinomas (MOCs) are relatively rare. It has been proposed that a subset of mucinous cys-
tadenomas (MCAs) may progress to mucinous borderline tumors (MBTs), and then to MOCs. KRAS is the predominantly 
mutated gene in MOC; however, other associated mutations and the mechanism underlying carcinogenesis in MOC remain 
unclear. Here, we assessed molecular genetic alterations in mucinous ovarian tumors and constructed mutation profiles.
Methods Using the Sanger sequencing method, we assessed genetic mutations (KRAS, BRAF, TP53, and PIK3CA) in 16 
cases of MOC, 10 cases of MBT, and 12 cases of MCA.
Results Among MOC cases, the prevalence of G12D and G13D KRAS mutations was 43.8% (7/16). No MOC cases showed 
V600E BRAF and TP53 mutations. Among MBT cases, the prevalence of G12D KRAS mutation was 20.0% (2/10), those of 
TP53 and PIK3CA mutations were nil, and that of V600E BRAF mutation was 40% (4/10). None of the genetic mutations 
assessed were detected among MCA cases.
Conclusion These results suggest that MBT with V600E BRAF mutation may rarely progress to MOC, while MBT with 
G12D or G13D KRAS mutation may more commonly progress to MOC.

Keywords BRAF · KRAS · TP53 · Mucinous ovarian tumor

Abbreviations
MOC  Mucinous ovarian carcinoma
MBT  Mucinous ovarian tumor
MCA  Mucinous cystadenoma

Introduction

Ovarian cancer is the most lethal gynecological malig-
nancy worldwide [1]; recently, its incidence has increased. 
A dualistic model has been proposed for epithelial ovarian 
cancer: low-grade disease (type I) develops in a stepwise 
manner from a benign cystadenoma to a borderline tumor, 
and then to a carcinoma, whereas high-grade disease (type 

II) develops de novo from the distal fallopian tube epithe-
lium [2]. Mucinous ovarian tumors can be classified as type 
I tumors and mucinous ovarian carcinoma (MOC), which 
is a rare tumor that represents 2–4% of cases of epithelial 
ovarian carcinoma [3–6]. MOC has a good prognosis if diag-
nosed at an early stage; however, its prognosis is poor at 
advanced stages as it tends to be chemoresistant, particularly 
to platinum drugs [7].

Borderline tumors constitute approximately 10–20% of 
all epithelial ovarian masses [8]. The most common epithe-
lial borderline tumor in Japan is the mucinous type, while 
the serous type is the most common in Western countries 
[9–11]. Ovarian borderline tumors are non-invasive cancers, 
have a good prognosis, and rarely require systemic therapy.

The RAS-RAF-MEK-ERK-MAP kinase pathway is often 
implicated in carcinogenesis; particularly, RAS oncogenes 
are key factors in tumor development [12]. BRAF and KRAS 
mutations are components of the mitogen-activated protein 
kinase (MAPK) cascade and KRAS mutations are common 
in mucinous ovarian tumors and prevalent among 40–50% 
of MOC cases [7]. It has been reported that the rates of 
KRAS mutations in normal ovaries, benign mucinous ovarian 
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tumors, mucinous ovarian borderline tumors, and MOC are 
0%, 57%, 90%, and 76%, respectively, suggesting that it may 
play a major role in the progression from benign tumors 
to carcinomas [13]. KRAS mutation leads to constitutive 
activation of the protein by increasing guanosine diphos-
phate/guanosine-5′-triphosphate exchange or by decreasing 
the guanosine triphosphatase activity of the protein, and 
thereby associates with constitutive activation of the epi-
dermal growth factor receptor signaling pathway, and brings 
about increased cell proliferation [12, 14].

The three RAF genes (ARAF, BRAF, and CRAF) encode 
cytoplasmic serine/threonine kinases and are modulated by 
binding to RAS. BRAF mutations brings about ERK activa-
tion, which promotes the regulation of the G1/S transition of 
the cell cycle [12]. BRAF mutations were reported in a large 
proportion of cases of malignant melanoma [15], papillary 
thyroid cancer [16, 17], colon cancer [17, 18], and hairy cell 
leukemia [19] with poor outcomes. In contrast, they were 
reportedly associated with early-stage disease and improved 
outcomes in patients with low-grade serous ovarian cancer 
[20, 21]. Thus far, the role of BRAF mutations in mucinous 
ovarian carcinogenesis remains unclear. Additional muta-
tions in mucinous tumors have been observed in TP53 and 
PIK3CA; however, all these cases emanated from Europe, 
Australia, or the United States [22–28]. Thus, the carcino-
genesis of mucinous ovarian tumor among Japanese patients 
is still poorly understood. In the present study, we retrospec-
tively investigated the mutation patterns of BRAF, KRAS, 
PIK3CA, and TP53 in mucinous cystadenomas (MCAs), 
mucinous borderline tumors (MBTs), and MOC to clarify 
the role of each gene in mucinous ovarian carcinogenesis.

Materials and methods

Tumor samples

Formalin-fixed, paraffin-embedded tissue samples of 16 
MOC, 10 MBT, and 12 MCA patients were used in this 
study. The samples were retrieved from the Department of 
Obstetrics and Gynecology, Shimane University Hospital 
(Izumo, Japan), which have collected from 2008 to 2017. 
The diagnoses were made based on conventional histopatho-
logic examination of sections stained with hematoxylin and 
eosin. The tumors were categorized according to the World 
Health Organization subtype criteria by several pathologists 
in the Department of Pathology in Shimane University Hos-
pital (Izumo, Japan). The tumors were staged according to 
the International Federation of Gynecology and Obstetrics 
classification system. All patients were primarily treated 
via surgery (i.e., total abdominal hysterectomy, bilateral 
salpingo-oophorectomy, and omentectomy) with or without 
pelvic and para-aortic lymph node dissection and adjuvant 

taxane/platinum combination chemotherapy. The resected 
specimens of each case were reviewed by a gynecological 
pathologist (N.I.) and a gynecologic oncologist (K.N.). The 
protocol for the acquisition of tissue specimens and clinical 
information was approved by the institutional review board 
of Shimane University Hospital (Approval No. 2004–0381). 
All participants provided written informed consent. The 
study was conducted in accordance with the tenets of the 
Declaration of Helsinki and Title 45 (United States Code of 
Federal Regulations), Part 46 (Protection of Human Sub-
jects), effective December 13, 2001.

Microdissection and DNA extraction

Sixteen MOC, 10 MBT, and 12 MCA cases had sufficient 
tumor tissue for DNA extraction and sequence analysis. Tis-
sue sections which were reviewed and marked with lines by 
a skillful gynecological pathologist were placed on mem-
brane slides and counterstained with hematoxylin. Selected 
tumor tissues on 10-mm sections were dissected under a 
microscope using a 24-gauge needle to obtain a high per-
centage of tumor cells. After 48 h of digestion with a pro-
teinase, DNA was extracted from the microdissected sam-
ples using a QIAmp DNA Micro Kit (Qiagen, Valencia, CA, 
USA) according to the manufacturer’s instructions. We have 
confirmed carcinoma/stroma ratio is more than 50% of each 
sample.

Direct sequence analysis

Polymerase chain reaction amplification was performed 
on exon two of KRAS, exon 15 of BRAF, exons 4–9 of 
TP53, and exons 9 and 20 of PIK3CA, using genomic 
DNA obtained from microdissected formalin-fixed, paraf-
fin-embedded tissue using the following primers: forward 
5′-TTA ACC TTA TGT GTG ACA TGT TCT AA-3′, reverse 
5′-AGA ATG GTC CTG CAC CAG TAA-3′ for exon two of 
KRAS; forward 5′-TGC TTG CTC TGA TAG GAA AATG-3′, 
reverse 5′-AGC ATC TCA GGG CCA AAA AT-3′ for exon 15 
of BRAF; forward 5′-CCT GGT CCT CTG ACT GCT CT-3′, 
reverse 5′-GCC AGG CAT TGA AGT CTC AT-3′ for exon 4 
of TP53; forward 5′-TCA GAT AGC GAT GGT GAG CA-3′, 
reverse 5′-CTT AAC CCC TCC TCC CAG AG-3′ for exon five 
of TP53; forward 5′-TCT GTC TCC TTC CTC TTC CTACA-
3′, reverse 5′-AAC CAG CCC TGT CGT CTC T-3′ for exon 6 
of TP53; forward 5′-CTT GGG CCT GTG TTA TCT CC-3′, 
reverse 5′-GGG TCA GAG GCA AGC AGA -3′ for exon seven 
of TP53; forward 5′-GGG AGT AGA TGG AGC CTG GT-3′, 
reverse 5′-GCT TCT TGT CCT GCT TGC TT-3′ for exon 8 
of TP53; forward 5′-GGA GAC CAA GGG TGC AGT TA-3′, 
reverse 5′-CCC CAA TTG CAG GTA AAA CA-3′ for exon nine 
of TP53; forward 5′-GGA AAA ATA TGA CAA AGA AAGC-
3′, reverse 5′-CTG AGA TCA GCC AAA TTC AGTT-3′ for 
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exon nine of PIK3CA; and forward 5′-CTC AAT GAT GCT 
TGG CTC TG-3′, reverse 5′-TGG AAT CCA GAG TGA GCT 
TTC-3′ for exon 20 of PIK3CA. All polymerase chain reac-
tion-amplified products were sequenced at Beckman Coul-
ter (Danvers, MA, USA) and analyzed with the Mutation 
Surveyor DNA Variant Analysis Software (Tokyo, Japan).

Statistical analysis

All results are expressed as means ± standard deviations. 
In some cases, the three groups were compared using the 
chi-square test and the Tukey–Kramer test, as appropriate. 
All statistical analyses were performed using EZR (Saitama 
Medical Center, Jichi Medical University, Japan). All dif-
ferences in analysis items were considered significant at 
p < 0.05.

Results

To assess the mutation profiles of mucinous tumors of the 
ovary, we performed direct sequence analysis on 38 tumor 
specimens, including 16 MOCs, 10 MBTs, and 12 MCAs. 
The clinical characteristics of the patients are summarized 

in (Table 1). The mean ages of the patients at diagnosis 
were 59.6 ± 16.3 years for MOC, 56.5 ± 20.0 years for 
MBT, and 58.0 ± 18.2 years for MCA. There were no sig-
nificant differences in the characteristics of the partici-
pants, cancer antigen (CA) 125 level, and CA19-9 level. 
A majority of the patients (81.3%) with MOC were found 
to have early stage I or II disease at diagnosis, and only 
18.8% presented with advanced stage III or IV disease. 
Figure 1 shows representative examples of the histological 
appearance of mucinous ovarian tumors. Figure 2 shows 
typical point mutations in KRAS and BRAF.

All 38 cases were assessed for mutations in the KRAS, 
BRAF, TP53, and PIK3CA genes. KRAS mutations were 
detected in 7 of the 16 (43.8%) MOC cases and in 2 of the 
10 (20%) MBT cases (Table 2). However, no KRAS muta-
tions were detected in MCA cases. KRAS mutations tended 
to occur more frequently in MBT than in MCA (p = 0.066, 
Chi square test). BRAF mutations in exon 15 were only 
detected in four of the MBT cases, but not in the MOC 
or MCA cases. None of the mucinous tumor specimens 
showed TP53 mutations. BRAF mutations occurred signifi-
cantly more frequently in MBT cases than in MOC cases 
(*p = 0.042, Chi square test) (Table 3). PIK3CA mutation 
was detected in only one case of MCA.  

Table 1  The number of each mucinous tumors

*Carcinoma vs. borderline tumor
† Carcinoma vs. cystadenoma,
‡ Borderline tumor vs. cystadenoma (Tukey–Kramer test)

Histological diagnosis Carcinoma Borderline tumor Cystadenoma P   value

Total No. of cases 16 10 12
Age 59.6 ± 16.3 (25–81) 56.5 ± 20.0 (18–84) 58.0 ± 18.2 (26–80)
Stage
 I 11 10
 II 2 0
 II 2 0
 IV 1 0
 Early stage (stage I, II) 81.3%
 Advanced stage (stage III, IV) 18.8%

Grade
 I 8
 II 6
 III 2

CA125 (U/ml) 121.2 ± 140.2 (8–458) 28.0 ± 20.0 (7–62) 81.9 ± 211.9 (6–749) 0.285*
0.773†

0.681‡

CA19-9 (U/ml) 1913.7 ± 6337.8 (1–24,780) 44.0 ± 56.5 (6–200) 70.2 ± 159.0 (8.3–546) 0.514*
0.504†

0.999‡
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Discussion

In the present study, we performed direct sequence analysis 
on 38 tumors, including 16 MOC, 10 MBT, and 12 MCA 
specimens to elucidate the genetic profile of mucinous 

tumors of the ovary. Interestingly, BRAF mutations were 
more common in MBT than in MOC. However, KRAS muta-
tions occurred with high frequency in MOC but with low 
frequency in MBT. No mutations were detected in the ana-
lyzed genes of MCA. These findings indicated that, in the 
disease continuum from MBT to MOC, the BRAF mutation 
in MBT may not result in progression to MOC, while KRAS 
mutations in MBT may be associated with progression to 
MOC (Fig. 3).

BRAF is a meaningful serine/threonine kinase that is an 
element of the RAS-RAF-MEK-ERK signaling pathway and 
plays a key role in cell proliferation and apoptosis. The com-
plexity of this pathway is increased due to the multiplicity 
of its components. There are three RAS (HRAS, NRAS, and 
KRAS), three RAF (ARAF, BRAF, and CRAF), two MEK 
(MEK1 and MEK2), and two ERK (ERK1 and ERK2) genes. 
They encode proteins and do not have redundant functions 
[29]. BRAF binds to CRAF and activates its transphospho-
rylation, thereby regulating the pathway subtly [29].

The V600E BRAF mutation constitutes over 90% of all 
BRAF mutations in melanoma [29]. It has been found to 
activate the MAPK pathway by activating mutations of 
either NRAS or BRAF in most melanomas [30]. The BRAF 
and CRAF protein kinases are the most critical mediators 
of activated RAS [31]. For mutated NRAS, CRAF seems to 
be important in the downstream activation of MAPKs [32, 
33]. RAF interacts with MEK and phosphorylates it, thereby 
activating ERK [31, 34, 35]. Activated ERK promotes the 
signal, through altered transcription of several genes [36]. 
BRAF mutations are observed in most melanocytic nevi 
(70–80%), metastatic melanomas (40–50%), and vertical 
growth phase melanomas (40–50%) [37–39], and might be 
an acquired event in early invasive melanoma that induces 
clonal expansion and tumor progression [36]. Consequently, 
BRAF mutation is associated with poor prognosis in not only 
melanoma but also papillary thyroid cancer and metastatic 
colon cancer [15–18]. In contrast, BRAF mutations were 
present in MBT but not in MOC in this study, suggest-
ing that BRAF mutations are associated with the indolent 
type of MBT. Wong et al. reported that BRAF mutations 
are infrequent in advanced-stage low-grade serous ovar-
ian carcinomas and could be improved prognostic markers 
[20]. Grisham et al. demonstrated that the presence of BRAF 
mutations in serous borderline ovarian tumor or low-grade 
serous ovarian carcinoma was relevant to early-stage disease 
and favorable prognoses [21]. Recently, it has been reported 
that lack of Cdkn2a in V600E BRAF mutated melanocytes 
in rodents is associated with rare progression to melanoma 
[40]. In MOC, Cdkn2a/b homozygous deletions/muta-
tions were detected at high frequencies [41]. From these 
reports, it appears that loss of Cdkn2a in mucinous ovarian 
tumors with V600E BRAF mutation impairs progression to 
carcinoma. Therefore, BRAF mutation is associated with 

Fig. 1  Histological appearance of the mucinous ovarian tumors. (a) 
Hematoxylin and eosin (H&E) staining showing mucinous cystade-
noma, (b) H&E staining showing mucinous borderline tumor, and (c) 
H&E staining showing mucinous ovarian carcinoma
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early-stage disease, such as MBT, and was not detected in 
MOC in the present study.

KRAS is the predominant mutated gene in MOC and 
may be related to the progression from benign to malig-
nant tumors [7]. It has been reported that CRAF is a best 
target for carcinoma with KRAS mutations and intensifies 
MAPK signaling [42, 43]. Our results are consistent with 
those of previous studies regarding KRAS; the prevalences 
of KRAS mutations were 0%, 20%, and 43% among MCA, 
MBT, and MOC specimens, respectively. We also found that 
some cases had both KRAS and BRAF mutations in MBT. 
These MBT cases with both KRAS and BRAF mutations 
might progress to MOC earlier than would those without 
these mutations.

Recently, it has been reported that TP53 mutations 
were key drivers of progression from MBT to MOC [44]. 

Surprisingly, in the present study, this mutation was not 
detected in all mucinous ovarian tumors. This discrepancy 
may have occurred because we investigated only mucinous 
ovarian tumor specimens obtained from Japanese patients. 
The carcinogenesis of MOC may be affected by ethnic 
genetic background. On the other hand, PCR amplification 
was not performed on exon 2, 3, 10 and 11. There is a possi-
bility that TP53 mutations could be detected in these exons. 
Additionally, some MOC cases are high-grade features and 
they may have TP53 mutations without exon 4–9.

Our study indicates that BRAF and KRAS mutations are 
useful as prognostic biomarkers in MBT patients undergo-
ing surgery. Single BRAF mutations in MBT may predict a 
favorable outcome. However, the patients with KRAS muta-
tions might progress to MOC and require careful long-term 
follow-up.

Fig. 2  Chromatograms of KRAS 
and BRAF mutation statuses in 
representative ovarian tumors 
showing (a) a point mutation in 
the KRAS gene and (b) a point 
mutation in the BRAF gene



 Archives of Gynecology and Obstetrics

1 3

The present study has several limitations. First, the num-
ber of samples in this study is small. This study is ongoing 
and the number of samples will increase. This will enable 
us to investigate statistically the relationship between the 
mutations identified in the present study and patient out-
comes. Second, we did not search for loss or mutation of 
Cdkn2a in the present study. In addition, we also need to 
study CRAF mutations in mucinous ovarian tumors. Last, we 
assessed genetic mutations via Sanger sequencing; therefore, 
the kinds of gene mutations assessed were limited. Further 
experimentation with next generation sequencing is neces-
sary to determine details of the molecular mechanism under-
lying mucinous ovarian carcinogenesis.

In summary, V600E BRAF mutations were detected only 
in MBT, while G12D/G13D KRAS mutations were detected 
more commonly in MOC than in MBT. We posit that MBT 
with V600E BRAF mutation may not progress to MOC and 
predict a favorable outcome, while MBT with G12D/G13D 
KRAS mutation may progress to MOC in the future.

Table 2  Genetic alterations in mucinous ovarian tumors

No Hystotype KRAS BRAF TP53 PIK3CA

1 Carcinoma WT WT WT WT
2 Carcinoma G13D WT WT E545K
3 Carcinoma G13D WT WT WT
4 Carcinoma WT WT WT WT
5 Carcinoma WT WT WT WT
6 Carcinoma WT WT WT WT
7 Carcinoma WT WT WT WT
8 Carcinoma WT WT WT WT
9 Carcinoma G12D WT WT WT
10 Carcinoma WT WT WT WT
11 Carcinoma WT WT WT WT
12 Carcinoma G12D WT WT WT
13 Carcinoma WT WT WT WT
14 Carcinoma G12D WT WT WT
15 Carcinoma G13D WT WT WT
16 Carcinoma G12D WT WT WT
17 Borderline tumor WT V600E WT WT
18 Borderline tumor WT WT WT WT
19 Borderline tumor WT WT WT WT
20 Borderline tumor G12D V600E WT WT
21 Borderline tumor WT WT WT WT
22 Borderline tumor WT V600E WT WT
23 Borderline tumor WT WT WT WT
24 Borderline tumor G12D V600E WT WT
25 Borderline tumor WT WT WT WT
26 Borderline tumor WT WT WT WT
27 Cystadenoma WT WT WT WT
28 Cystadenoma WT WT WT WT
29 Cystadenoma WT WT WT WT
30 Cystadenoma WT WT WT WT
31 Cystadenoma WT WT WT WT
32 Cystadenoma WT WT WT WT
33 Cystadenoma WT WT WT WT
34 Cystadenoma WT WT WT WT
35 Cystadenoma WT WT WT WT
36 Cystadenoma WT WT WT WT
37 Cystadenoma WT WT WT WT
38 Cystadenoma WT WT WT WT

Table 3  Frequency of KRAS and BRAF mutations in mucinous 
tumors

* Carcinoma vs. Borderline tumor
† Carcinoma vs. Cystadenoma
‡ Borderline tumor vs. Cystadenoma (Chi square test)

KRAS (G12D or G13D) BRAF (V600E)

P  value P  value

PPCarcinoma 7/16 (43.8%)  > 0.05* 0/16 (0%) 0.042*

Borderline tumor 2/10 (20%) 0.066† 4/10 (40%)  > 0.05†

Cystadenoma 0/12 (0%)  > 0.05‡ 0/12 (0%)  > 0.05‡
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