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Abstract

The histone H3-H4 chaperone Asf1 is involved in chromatin assembly (or disassembly), histone exchange, regulation of
transcription, and chromatin silencing in several organisms. To investigate the essential functions of Asf1 in
Schizosaccharomyces pombe, asf1-ts mutants were constructed by random mutagenesis using PCR. One mutant (asf1-
33(ts)) was mated with mutants in 77 different kinase genes to identify synthetic lethal combinations. The asf1-33 mutant
required the DNA damage checkpoint factors Chk1 and Rad3 for its survival at the restrictive temperature. Chk1, but not
Cds1, was phosphorylated in the asf1-33 mutant at the restrictive temperature, indicating that the DNA damage checkpoint
was activated in the asf1-33 mutant. DNA damage occured in the asf1-33 mutant, with degradation of the chromosomal
DNA observed through pulse-field gel electrophoresis and the formation of Rad22 foci. Sensitivity to micrococcal nuclease
in the asf1-33 mutant was increased compared to the asf1+ strain at the restrictive temperature, suggesting that asf1
mutations also caused a defect in overall chromatin structure. The Asf1-33 mutant protein was mislocalized and incapable
of binding histones. Furthermore, histone H3 levels at the centromeric outer repeat region were decreased in the asf1-33
mutant and heterochromatin structure was impaired. Finally, sim3, which encodes a CenH3 histone chaperone, was
identified as a strong suppressor of the asf1-33 mutant. Taken together, these results clearly indicate that Asf1 plays an
essential role in maintaining genomic stability in S. pombe.
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Introduction

The nucleosome is the basic unit of most eukaryotic chromatin.

It consists of four core histones (H2A, H2B, H3, and H4) with

DNA wrapped around them [1]. Chromatin is highly dynamic

and often changes its structure. For example, when a gene is

expressed in response to signaling, histones at the promoter

regions are evicted during transcription [2]. In addition, histones

at sites of DNA damage are removed and newly synthesized

histones are incorporated into repaired sites after completion of

DNA repair. These structural changes in chromatin are mediated

in part by histone chaperones.

Histone chaperones mediate chromatin assembly or disassembly

through binding to histone proteins [3,4]. Asf1 (anti-silencing

function1) is a histone H3/H4 chaperone that functions in DNA

replication-dependent and -independent chromatin assembly

together with other histone chaperones such as CAF1 (Chromatin

assembly factor1) and HIRA (Histone interacting protein A) [5].

asf1 was originally identified as a gene that derepressed the silent

mating type loci when overexpressed in Saccharomyces cerevisiae [6].

Asf1 was biochemically purified as a chromatin assembly factor

from Drosophilla melanogaster embryo extracts [7]. It is highly

conserved across many species from yeasts to metazoans. During

DNA replication in human cells, Asf1 binds to MCM (Mini

Chromosome Maintenance) helicase, and evicts old histones H3/

H4 from the front of the replication forks [8], and may transfer

them to CAF1. CAF1 then deposits histones H3/H4 onto newly

synthesized DNA strands. During transcription, Asf1 evicts

histones H3/H4 from the promoter regions of genes [9], enabling

transcription factors or RNA polymerases to function on DNA

strands.

Three-dimensional structures of Asf1 from S. cerevisiae, Schizo-

saccharomyces pombe and humans have been resolved, and the co-

crystal structure of S. cerevisiae Asf1p or human ASF1a (CIA-I) with

the histones H3/H4 dimer has also been resolved [10,11]. These

ASF1 structures were all similar and the primary binding site

between ASF1 and histones H3/H4 was located in the ASF1 ß1-

and ß10-strands and the a3- and a2-helix of H3. The histones

H3/H4 tetramer-disrupting activity found in ASF1a supports the

nucleosome assembly/disassembly role of Asf1 [10,11].

In S. cerevisiae, many histone chaperones including Asf1, CAF1

and HIRA are cooperatively involved in chromatin structure

change. S. cerevisiae Asf1 has been shown to be involved in DNA

replication-dependent or -independent nucleosome assembly,

histone acetylation, histone exchange, regulation of transcription,

and chromatin silencing [12,13,14,15,16,17]. Although Asf1 is

dispensable in S. cerevisiae, asf1 and its orthologs are essential for

survival in S. pombe, D. melanogaster and chicken DT-40 cells

[18,19,20,21]. This may reflect the capacity of histone chaperones

in S. cerevisiae to replace the function of Asf1. Extensive efforts have

been made to understand the role of Asf1 in S. cerevisiae but the

analysis of asf1 in other species including S. pombe is still limited

[21,22]. Analysis in S. pombe should provide important information

on the essential role of Asf1 in cells as a model organism.
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To better understand the role of asf1 in S. pombe, we created an

S. pombe asf1 temperature sensitive mutant (asf1-33) and showed

that the mutation caused double strand breaks in DNA, increased

the sensitivity of chromatin DNA to micrococcal nuclease

(MNase), and subsequently activated the DNA damage checkpoint

pathway. The defects in chromatin structure in the asf1-33 mutant

at the restrictive temperature caused DNA damage, which induced

the cell cycle checkpoint response mediated by Chk1, indicating

that asf1 is essential for the maintenance of genomic stability in

fission yeast. We also found genetic evidence suggesting functional

similarity between Asf1 and a Cen H3 histone chaperone, Sim3.

Materials and Methods

Yeast strains and general methods
The fission yeast strains examined in this study are listed in

Table 1. Each strain was cultured in YES medium (0.5% yeast

extract, 3% glucose, 225 mg/liter adenine, histidine, leucine,

uracil, and lysine hydrochloride) or EMM2 medium. Nitrogen-free

EMM2 medium was used to mate h2 and h+ strains. General

methods using S. pombe were performed as described previously

[23].

Construction of gene tagging strains
C-terminal tagging of chk1 and cds1 with 3HA and 13myc was

carried out using a PCR-based method [24]. The hphMX6 module

was amplified using pFA6a-3HA-hphMX6 and pFA6a-13myc-

hphMX6 [25] as templates together with pFA6a F and pFA6a R

primers, as described in Table 2. Fragments approximately 500 bp

in length were amplified using chk1t1, chk1t2, chk1t3, and chk1t4

or cds1t1, cds1t2, cds1t3, and cds1t4 primers with homology

sequences corresponding to the 59 and 39 regions of chk1 and cds1

and were attached to the ends of the hphMX6 module. The

resulting fragments were introduced into cells. Hygromycin

resistant colonies were selected on YES plates containing

hygromycin B (50 mg/ml). Colony PCR (using chkHR12-42,

chk1R, and cds1R primers) and western blotting were performed

to confirm the construction of tagging strains.

Screening of multi-copy suppressor in the asf1-33 mutant
SKP605-33 (asf1-33-13myc-kanMX6) was transformed with an

S. pombe genomic DNA library, pTN-L1 [26], and incubated on

EMM-Leu plates at 26uC. Colonies were replica-plated to YES

plates containing phloxine B and cultured at 26, 34, and 36uC for

24 h. The color and morphology of cells were observed

microscopically. Transformants that grew at 34 or 36uC were

selected and the plasmids were extracted from them. SKP605-33

(asf1-33 mutant) was retransformed with the candidate plasmids.

The sequence of candidate plasmids was determined with a DNA

sequencer (Applied Biosystems, Foster city, CA, USA).

Cloning of sim3 gene into pREP41 vector
The sim3 gene was cloned into pREP41 using a gap-repair

cloning method [27]. The ORF region of sim3 containing the

Table 1. Searching for protein kinase required for survival and cell elongation of asf1-33 mutant.

gene phenotype gene phenotype gene phenotype gene phenotype

bub1 EV ppk10 EI hhp1 EV ppk21 EI

ssp2 EV ppk9 EV cmk1 EI ppk38 EV

ppk36 EV ppk8 EI cek1 EV ppk1 EV

ppk35 EV sck2 EI wee1 NV ppk6 EV

gad8 EV hri2 NV pit1 EI cki2 EI

oca2 EV hri1 EV mkh1 EV pef1 NV

gsk31 EV ppk15 EV mak2 NV rad3 NI

ppk31 NV lkh1 EV fin1 EV ppk26 NV

ppk30 EV ppk3 EI cki3 NI ppk34 EV

ppk29 EV ppk2 EV cds1 EV win1 EI

ppk27 EV ppk4 EI gsk3 NV ppk32 EV

ppk25 EV ppk33 EV mik1 EV

ppk24 EV srk1 EV mak1 EV

ppk23 EV wis4 EV dsk1 EI

ppk22 EV shk2 EV cki1 EV

ppk20 EI mde3 EV cdr2 EI

ppk19 NV hhp2 EV psk1 EV

ppk16 EV cmk2 EV mek1 EV

ppk14 EV chk1 NI kin1 EI

ppk13 EV pom1 NV csk1 EV

lsk1 EI mph1 EV cdr1 EV

ppk11 NI mak3 EV ppk5 EV

EI; elongated and inviable cells.
EV; elongated and viable cells.
NI; not elongated and inviable cells.
NV; not elongated and viable cells.
doi:10.1371/journal.pone.0030472.t001
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pREP41 recombination site homology sequence was amplified by

PCR. This fragment, together with BamHI digested pREP41, was

used to co-transform PR110 (h+ leu1-32 ura4-D18) and transfor-

mants were selected on EMM-Leu. The plasmids were extracted

from transformants and introduced into Escherichia coli DH5a to

amplify the plasmids. Correct construction of the plasmids was

confirmed by sequencing using Pnmt1 80 bp F and Tnmt1 80 bp R

primers.

Western blotting, immunofluorescence, and
immunoprecipitation

Western blotting, indirect immunofluorescence and immuno-

precipitation were performed essentially as described previously

[28,29]. For immunoprecipitation, 3 ml of the anti-myc antibody

(9E11, Santa Cruz Biotechnology Inc., CA, USA) was added to

100 ml of Protein G sepharose solution. Two milligrams of total

protein was mixed with 100 ml bead suspension and incubated at

4uC for 1 h. Supernatants were removed after centrifugation

(7,000 rpm at 4uC). Beads were washed three times with HB

buffer (25 mM MOPS pH 7.2, 60 mM ß-glycerophosphate,

15 mM MgCl2, 15 mM EGTA, 1 mM DTT, 1% Triton X-100,

and 100 mM NaCl). 6 ml 56SDS-sample buffer was added to

pellets. All samples were boiled at 100uC for 5 min. Histone H3

proteins co-immunoprecipitated with Asf1-13myc proteins were

detected by western blotting using a C-terminal histone H3

antibody (Abcam Inc., Cambridge, UK).

Detection of phosphorylation of Cds1 and Chk1
Extraction of Cds1-3HA and Chk1-13myc proteins from fission

yeast strains was performed by rapid protein extraction using

NaOH, as described previously [30]. For the detection of Cds1

phosphorylation, SDS-PAGE was performed using a polyacryl-

amide gel containing 25 mM Phos-tagTM [31] and 50 mM MnCl2.

After electrophoresis, the gel was soaked in Transfer buffer

containing 1 mM EDTA and incubated for 10 min with gentle

shaking. The gel was then soaked in Transfer buffer without

EDTA and incubated for 10 min with gentle shaking. After

transfer of the gel to PVDF membrane, the membrane was

incubated in blocking solution (0.1% TBST+5% BSA) at 4uC over

night. Anti-HA monoclonal antibody (Santa Cruz Biotechnology

Inc., Santa Cruz, CA, USA) was diluted with blocking solution

(1:2,000) and incubated with the membrane at room temperature

for 1 h. The membrane was rinsed with 0.1% PBST three times.

Anti-mouse horseradish peroxidase-conjugated antibody (Santa

Cruz Biotechnology Inc., Santa Cruz, CA, USA) was diluted with

blocking solution (1:2,000) and incubated with the membrane at

room temperature for 1 h. Protein bands on the membrane were

detected with the ECL system (GE Healthcare). For the detection

of Chk1 phosphorylation, polyacrylamide gel containing 4%

acrylamide-N,N9-methylene-bis-acrylamide (acrylamide-bis)

(200:1), 70 mM Tris (pH 6.7), 4 mM EDTA and 0.4% SDS was

prepared.

Pulse Field Gel Electrophoresis
Pulse field gel electrophoresis was performed as previously

described [32]. Logarithmically growing cells were incubated in

YES medium at 26uC or 36uC for 6 h. Cells were collected by

centrifugation and washed twice with CSE (20 mM citrate/

phosphate pH 5.6, 40 mM EDTA, and 1.2 M Sorbitol). Ten

milliliters of CSE (containing 15 mg Zymolyase 20T) was added to

the cell pellets, followed by incubation at 37uC for 1 h. After cell

permeabilization and treatment with Proteinase K, pulse field gel

electrophoresis was carried out on a 0.6% chromosomal grade

agarose gel (Bio Rad) with a Bio Rad CHEF-DR apparatus. The

gel was run for 48 h at 50 V with a switch time of 30 min in

Table 2. S. pombe strains used in this study.

strain genotype source

L972 h2 lab stock

SKP605-33 h+ leu1-32 ura4-D18 asf1-33-13myc-kanr this study

SKP593-33P h2 asf1-33-13myc-kanr this study

SKP593-30 h2 leu1-32 ura4-D18 asf1-30-13myc-kanr lab stock

SKP561-15 h2 leu1-32 ura4-D18 asf1-13myc-kanr lab stock

TH1 h2asf1-33-13myc-kanr cds1-3HA-hphr leu1-32 ura4-D18 this study

TH9 h2 asf1-33-13myc-kanr chk1-13myc-hphr this study

TH18 h2asf1-33-13myc-kanr rad3::ura4+ ura4-D18 leu1-32 his2 this study

TH19 h2asf1-33-13myc-kanr chk1::ura4+ ura4-D18 this study

TH20 h? asf1-33-13myc-kanr cds1::ura4+ ura4-D18 this study

SKP551-6 h+ leu1-32 ura4-D18 otr1::ura4+ this study

SKP593-34 h+ leu1-32 ura4-D18 otr1::ura4+ asf1-33-13myc-kanr this study

AL2768 h2 leu1-32 ura4-D18 ade6-704 chk1-S345A:9myc:2HA:6His:ura4+ Paul Russell

TH34 h+ asf1-33-13myc-kanr chk1-S345A:9myc2HA6His ade6-704 this study

SKP558-7 h+ leu1-32 ura4-D18 his2 rad22-GFP-kanr this study

KT166 h2 rad22-GFP-kanr asf1-33-13myc-kanr leu1-32 this study

HM664 h2 ura4::ura4+ nmt1-TK+ Hisao Masukata

KT68 h2 ura4::ura4+ nmt1-TK+ asf1-33-13myc-kanr this study

FY14069 h+ ade6-M210 leu1-32 ura4-D18 tel1::ura4+ Fuyuki Ishikawa

MBY1747–MBY1844 h2 leu1-32 ura4-D18 ppk**::ura4+ Mohan Balasubramanian

doi:10.1371/journal.pone.0030472.t002
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0.56TAE at 14uC. The electrophoresis buffer was refreshed after

24 h. After electrophoresis, the gel was stained with ethidium

bromide.

Micrococcal nuclease digestion of chromatin
Micrococcal nuclease assay was performed as described

previously [33]. Cells were incubated at 26uC or 36uC for 6 h.

Chromatin was digested using micrococcal nuclease, separated by

1.2% agarose gel electrophoresis, and stained with ethidium

bromide.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed as previously

described [34], with some modifications. Immunoprecipitation

was performed using an anti-H3 antibody (Abcam Inc., Cam-

bridge, UK). Immunoprecipitated DNA was extracted and

subjected to Real Time PCR analysis with centromere region-

specific primers (cnt1F, cnt1R, imr1F, imr1R, dgF, dgR, dhF, and

dhR) as described in Table 2.

The percentage of immunoprecipitated DNA (IP %) in ChIP

samples was calculated relative to the initial amount of DNA.

Synchronization of cell cycle and FACS analysis
Cells were incubated at 26uC in EMM2 medium containing

20 mM hydroxyurea (HU) (Sigma) for 4 h to block the progression

of the cell cycle at the G1/S phase. Synchronized cells were

washed with sterile water three times. Subsequently, samples were

inoculated to EMM2 without HU and incubated at 26uC or 36uC
for 90 min. To synchronize cell cycle progression at G1 phase,

logarithmically growing cells incubated in EMM2 with nitrogen at

26uC for 12 h were washed with sterile water three times. The cells

were then inoculated to nitrogen-free EMM2 medium and

incubated at 26uC for 12 h to arrest cell cycle progression at G1

phase. G1 arrested cells were transferred to YES medium and

cultured at 26uC or 36uC for 6 h. Samples were collected every

15 min (HU block) or 1 h (nitrogen starvation) by centrifugation.

Ethanol was added to cell pellets, with vigorous vortexing. Cells

were collected by centrifugation and washed once with 50 mM

sodium citrate buffer (pH 7.0). RNase A was added to the samples

and incubated at 37uC for 1 h. RNase A-treated samples were

transferred to BD FACS flow (Becton-Dickinson) containing

20 mg/ml propidium iodide (Sigma). Cellular DNA was detected

by a FACSCalibur with CELL Quest software (Becton Dickinson).

Monitoring DNA replication by BrdU incorporation
The BrdU incorporation assay was performed as described

previously [35], with some modification. Cells expressing thymi-

dine kinase under the control of the nmt1 promoter were incubated

in EMM2 (without thiamine) for more than 12 h to induce

thymidine kinase gene expression. BrdU (Sigma, B-9285) was

added to the media (200 mg/ml) and the cells were incubated at

26uC or 36uC for 4 h. Cells were collected by centrifugation and

fixed with ethanol for 10 min. Cells were resuspended in 1 ml of

3.5 M HCl and incubated for 10 min to denature the DNA and

were then washed with PBS. The cells were then suspended in PBS

containing 5% BSA and incubated at room temperature for

several hours. Anti-BrdU antibody (Becton Dickinson, Lincoln

Park, NJ, USA 1:50 in PEMBAL) was added to each sample and

followed by incubation at room temperature for 12 h. Cells were

washed three times with PBS containing 5% BSA, and Alexa fluor

488-conjugated anti-rabbit antibody (Invitrogen, 1:250) was

added. After incubation at room temperature for several hours,

cells were washed three times with PBS containing 5% BSA.

Fluorescence images were taken using an Olympus BX51

fluorescence microscope system.

Extraction of histone proteins
Extraction and analysis of histone proteins by SDS-PAGE was

performed as described previously [33]. Logarithmically growing

cells were incubated in YES medium at 36uC for 6 h. Cells were

collected by centrifugation and histone proteins were extracted

from those cells. After electrophoresis, histone proteins were

visualized with Coomassie blue.

RNA extraction and RT-qPCR analysis
Cells were cultured in YES medium at 26 or 36uC for 6 h. Cells

were collected by centrifugation and pellets were suspended in

400 ml of AE buffer (50 mM sodium acetate pH 5.3, 10 mM

EDTA). Then, 40 ml of 10% SDS was added to each sample, and

the suspension was vortexed. 440 ml of TE-saturated phenol was

added, and vortexed. The mixture was freezed at 280uC and

freezed samples were incubated at 65uC for 4 min. The mixture

was dipped into liquid N2, and freezed completely. This freeze-

thaw cycle was repeated 3 times. After centrifugation at

14,000 rpm (16,000 g) for 5 min, supernatant was transferred to

a new tube. Equal volume of phenol:chloroform:isoamylalchol was

added, and centrifuged at 14,000 rpm for 5 min. Supernatant was

transferred to a new tube, and 1/10 volume of 3M sodium acetate

and 62.5 volume of EtOH was added. After centrifugation at

14,000 rpm, 4uC, for 15 min, supernatant was removed. The

precipitated RNAs were rinsed with 70% EtOH. Pellets were

suspended in 50 ml of DEPC water. 3 mg of total RNAs were used

for RT-qPCR analysis. RT-qPCR was performed with Takara

one-step SYBR Prime Script RT-PCR kit (Perfect Real Time)

according to the manufacturer’s instruction. Quantified DNA was

normalized against act1. Primers (act1 RT F, act1 RT R, ura4 RT

F, and ura4 RT R) used are listed in Table 3.

Results

Isolation of a temperature sensitive asf1 mutant that
showed elongated cell shape

To investigate the functions of asf1, we constructed asf1

temperature sensitive mutants because asf1 is essential for growth

in S. pombe [21]. Mutations were randomly introduced into the asf1

gene by an error-prone PCR method, and PCR products linked to

a kan marker gene were inserted into the chromosomal locus of

asf1. We then selected temperature sensitive mutants that could

hardly grow at 36uC [29]. Some asf1-ts mutants showed elongated

cell shape, which suggested their cell cycle is delayed or arrested.

The asf1-33 mutant, which had the longest cell shape at the

restrictive temperature (Fig. 1A), was selected for further analysis.

Sequencing of the asf1-33 allele revealed that it contained six

missense mutations that resulted in amino acid substitutions A16T,

L61P, E119K, L121P, N155S, and E180G.

The phenotype of the asf1-33 mutant led us to test the

phosphorylation of Cdc2 because Cdc2 is phosphorylated at Y15

when the cell cycle is arrested [36,37]. Phosphorylation decreases

the activity of Cdc2, which is followed by cell cycle arrest at G2/M

phase. Cdc2 phosphorylation was detected with a specific

antibody, Cdc2Y15P. Increased Cdc2 phosphorylation was

detected in the asf1-33 mutant compared to the asf1+ strain

(Fig. 1B), which suggests that the cell cycle is delayed or arrested

and that the checkpoint might be activated in the asf1-33 mutant

at 36uC.

Role of Asf1 in Genome Stability
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The asf1-33 mutant required Rad3 and Chk1 kinases for
cell cycle arrest and survival

The cell elongation phenotype and phosphorylation of Cdc2 led

us to test checkpoint activation in the asf1-33 mutant. As cell cycle

checkpoint pathways frequently consist of a set of protein kinases

[36], we considered the possible involvement of novel protein

kinases. To that end, we used a deletion set of protein kinases

constructed by M. Balasubramanian [38] to generate double

mutants with asf1-33 mutant by mating (Fig. 1C). Some deletion

strains that were deficient in MAP kinases were excluded from this

experiment because MAP kinases are unlikely to be involved in the

mitotic cell cycle checkpoint [39]. Strains lacking 77 different

kinases were mated with the asf1-33 mutant on nitrogen-free

EMM2 to construct double mutants. Random spore analysis was

performed, and double mutants lacking a specific kinase gene and

possessing the asf1-33 mutation were selected by G418 resistance

and uracil auxotrophy. Cell morphology and viability of the 77

strains was examined after incubation at 36uC for 24 h on YES

medium (Table 3). The phenotypes of each double mutant were

categorized into four types: (1) not elongated and enhanced

lethality, (2) not elongated and retained viability, (3) elongated and

enhanced lethality, and (4) elongated and retained viability. Since

the asf1-33 mutant was still able to grow slowly at the restrictive

temperature, we sought to identify the protein kinase deletion

mutants that lost their viability at 36uC. Double mutants that lost

the cell elongation phenotype of the asf1-33 mutant were also

selected. We considered that the viability and morphology were

Figure 1. Failure to grow at 366C and elongated cell shape in
an S. pombe asf1 mutant. (A) L972 (asf1+) and SKP605-33 (h2 leu1-32
ura4-D18 asf1-33-13myc-kanr) were grown on YES plates containing
phloxine B at 26uC or 36uC for 24 h. Cell morphology was observed by a
microscope. (B) Cdc2 (Y15) was highly phosphorylated in SKP605-33
(asf1-33-13myc-kanr) at the restrictive temperature. L972 (asf1+) and
SKP605-33 (asf1-33-13myc-kanr) were incubated at 26uC or 36uC for 6 h.
Cells were collected by centrifugation and washed once with STOP
buffer. Protein extraction was performed by the glass-beads method.
Samples were suspended into SDS-sample buffer. Ten micrograms of
total proteins was used for western blotting. The relative intensity of
each band (Cdc2Y15P) relative to the control (Cdc2) was measured
using ImageJ (http://rsb.info.nih.gov/ij/). (C) Schematic representation
of the strategy to identify protein kinases responsible for activation of
the cell cycle checkpoint in the asf1-33 mutant.
doi:10.1371/journal.pone.0030472.g001

Table 3. Oligonucleotides used in this study.

Name Sequence

chk1 t1 Cttatcccagccagtacaac

chk1 t2 cgtcgacctgcagcgtacgaatttgtgaaacatctgtaagaac

chk1t cgagctcgaattcatgatgtgcacatcttttgaaaggtcg

chk1 t4 gaagacatgttaatgtctgcag

cds1 t1 ttattcatgggacgggaacc

cds1 t2 cgtcgacctgcagcgtacgaactcgaagaattgacgtgttc

cds1 t3 cgagctcgaattcatcgatgtaaccactctgtccacgtac

cds1 t4 tttcagcgataggtttggcg

cds1-check atcgtaagcaaagttattattgg

chk1-check aatgaaaaggtgagtttaggag

pFA6a-F tcgtacgctgcaggtcgacg

pFA6a-R catcgatgaattcgagctcg

chk HR 42-14 gctaggatacagttctctcaca

cnt1 F gtaaagtaacagatatgtttcgc

cnt1 R gcgtttcttcggcgaaatgc

imr1 F tcgatattactaggtgagtag

imr1 R gctgaggctaagtatctgtt

dg F atatccaactgacggcatcg

dg R tcataaagcaacatgggtg

dh F gtcgtagatgtgacgtcaac

dh R ggaacaaatcaggaaaccgag

act1 RT F ggtcaagattgttgctcctc

act1 RT R cgctctcatcatactcttgc

ura4 RT F agcaatatcgtactcctgaag

ura4 RT R atgctgagaaagtctttgctg

doi:10.1371/journal.pone.0030472.t003
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critical to identify checkpoint kinases operative in the asf1-33

mutant.

Of the 77 kinases tested, we found that the deletion of chk1 and

rad3, when combined with the asf1-33 mutation, caused severe

defects in cell elongation and resulted in enhanced cell death.

Because Chk1 is controlled by Rad3-mediated phosphorylation in

response to DNA damage [40], the results highlight the

significance of DNA damage checkpoint factors for the function

of asf1-33. We also examined whether the deletion of tel1, which

encodes a homologue of ATM checkpoint kinase and was not

included in the deletion set of protein kinases, affects the growth of

the asf1-33 mutant at 36uC. However, the growth of the asf1-33

Dtel1 double mutant was similar to the asf1-33 mutant, indicating

that tel1 did not confer a synthetic effect in the asf1-33 mutant at

36uC (data not shown).

Chk1 checkpoint pathway is activated in the asf1-33
mutant

The DNA damage checkpoint is activated in response to

exogenous or endogenous DNA damage and protects genomic

DNA [40]. The sensor kinase Rad3 detects DNA damage in

chromatin and transduces a signal to an effecter kinase, Chk1, by

phosphorylating it [41]. The requirement for rad3 and chk1 for the

survival of the asf1-33 mutant suggested that the Chk1 pathway

was activated in these cells. We therefore examined whether Chk1

is phosphorylated in the asf1-33 mutant at 36uC by testing for a

phosphorylation-induced mobility shift in Chk1 using phosphate-

binding tag (Phos-tagTM AAL-107) in a phosphate affinity SDS-

PAGE. In this assay, phosphorylated proteins are captured by

Phos-tagTM in the SDS-PAGE gel during electrophoresis and their

mobility is super-shifted. Using this method, phosphorylated-Cds1

protein was identified but there was no evidence for Chk1

phosphorylation. We then changed the acrylamide:bisacrylamide

ratio from 37.5:1 to 200:1 in order to more clearly separate

phosphorylated and non-phosphorylated Chk1. Using these

conditions, we were able to detect the mobility shift of

phosphorylated Chk1 in the asf1-33 mutant at 36uC by western

blotting (Fig. 2A). In contrast, Cds1, a DNA replication checkpoint

factor, was not phosphorylated in the asf1-33 mutant at 36uC
(Fig. 2B). Furthermore, we found that a phosphorylation-deficient

mutant of chk1 (chk1 S345A) [42] showed a similar phenotype to

the asf1-33 Dchk1 mutant (Fig. 2C). Taken together, these results

indicated that a DNA damage checkpoint, but not a DNA

replication checkpoint, was activated in the asf1-33 mutant at

36uC.

We next examined the drug sensitivity of the asf1-33 mutant at

different temperatures. At the semi-restrictive temperature (34uC),

the asf1-33 mutant was sensitive to the DNA damaging agent

methyl methanesulfonate (MMS) (Fig. 2D). This result is consistent

with the requirement of DNA damage checkpoint factors for

survival and cell cycle checkpoint activation in the asf1-33 mutant.

In contrast, the asf1-33 mutant was not sensitive to hydroxyurea

(HU) at 34uC (Fig. 2D). This result is consistent with the result that

the asf1-33 mutant did not require cds1, which encodes a DNA

replication checkpoint factor.

Asf1 was required for the maintenance of genomic
stability

The phosphorylation of Chk1 in the asf1-33 mutant (Fig. 2B)

suggested that DNA damage occurred in these cells. We therefore

tested for DNA double-strand breaks using pulse-field gel

electrophoresis. Partial but detectable DNA double-stranded

breaks occurred in the asf1-33 mutant at 36uC (Fig. 3A). Although

the amount of DNA damage in the asf1-33 mutant was not great,

it was sufficient to activate the DNA damage checkpoint, as shown

in Fig. 2. The result also suggested that the cell cycle is not arrested

during S phase in the asf1-33 mutant at 36uC because three

chromosomes entered the gel without any remaining DNAs in the

wells. We next tested whether Rad22-GFP foci are formed in the

asf1-33 mutant. Fission yeast Rad22 is a DNA repair protein

required for homologous recombination. In response to DNA

damage, Rad22 accumulates at the sites of damage and forms foci

[43]. A significantly higher level of Rad22-GFP foci was detected

in the asf1-33 mutant at 36uC than in the asf1+ strain (Fig. 3B,C).

This result further indicated that DNA damage occurred in the

asf1-33 mutant at 36uC.

S phase progression was not delayed in the asf1-33
mutant

Asf1 incorporates histones H3/H4 onto nascent DNA strands

during S phase in cooperation with CAF1 [44]. Therefore, we

considered the possibility that the loss of Asf1-33 function might

influence the progression of S phase in the asf1-33 mutant at 36uC.

Cell cycle progression in the asf1-33 mutant was monitored by

FACS analysis. However, following synchronization of the cell

cycle by either nitrogen starvation or HU block, cell cycle

progression from the G1 phase was not delayed in the asf1-33

mutant (Fig. 4A).

We next tested the progress of DNA replication by measuring

the incorporation of bromodeoxyuridine (BrdU) into replicating

DNA strands. To that end, we created a strain that expresses

thymidine kinase because this enzyme is absent in S. pombe but is

required for the incorporation of BrdU [45]. We constructed asf1-

33 nmt1-TK+; this strain was synchronized at G1/S phase with HU

and after removal of HU was incubated at 26uC or 36uC for

90 min in YES medium containing 200 mg/ml BrdU. Most cells

incorporated BrdU within 15 minutes after release from HU block

(Fig. 4B). These results showed that cell cycle progression during S

phase was not delayed in the asf1-33 mutant.

Binding of Asf1-33 with Histone H3 and Localization of
Asf1-33 protein

We next examined whether Asf1-33 binds to histone H3 at

36uC. Wild-type Asf1 (at 26uC or 36uC) and Asf1-33 (at 26uC)

were co-immunoprecipitated with histone H3, but Asf1-33 did not

co-immunoprecipitate with histone H3 at 36uC (Fig. 5A). The

level of histone proteins in the asf1-33 mutant and asf1+ cells was

indistinguishable, confirming the mutations of asf1 do not affect

histone levels in fission yeast but do lead to alterations in histone

H3 binding (Fig. 5B).

We next observed the cellular localization of Asf1-33.

Immunofluorescence using an anti-Myc antibody showed mis-

localization of Asf1-33-13myc at 36uC. Wild-type Asf1-13myc (at

26uC or 36uC) and Asf1-33-13myc at 26uC were in the nucleus,

but at 36uC Asf1-33 was seen throughout the cytoplasm (Fig. 5C).

asf1-33 mutations cause drastic defects in chromatin
structure

Asf1 is involved in chromatin assembly and disassembly through

binding to histones H3/H4. Since the binding of Asf1-33 to

histone H3 was impaired, we tested chromatin structure in the

asf1-33 mutant using MNase (Micrococcal Nuclease). MNase cuts

the linker regions of chromatin DNA, and the digested chromatin

DNAs are separated by agarose gel electrophoresis, with the

resulting ladder pattern reflecting the chromatin structure. When

we performed a MNase assay for the asf1-33 mutant, no significant
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changes in chromatin structure were observed in the asf1-33

mutant at 26uC, but the ladder pattern was different at 36uC, with

a strong accumulation of mono nucleosomes (Fig. 6). This result

suggested that lethality in the asf1-33 mutant may be related to

defects in chromatin structure [46].

Impaired transcriptional silencing due to the asf1-33
mutation

Heterochromatin is composed of condensed chromatin, which

is transcriptionally silent. The S. pombe centromere is divided into

two transcriptionally silent domains: the central core domain in

Figure 2. DNA damage checkpoint was activated in the asf1-33 mutant at 366C. (A&B) Chk1, but not Cds1, was phosphorylated in the asf1-
33 mutant at 36uC. Phosphorylation of Chk1 and Cds1 proteins was observed by the mobility shift of phosphorylated proteins during electrophoresis.
TH1 (asf1-33-13myc-kanr cds12-3HA) and TH9 (asf1-33-13myc-kanr chk12-13myc) were incubated in YES medium at 26uC and 36uC for 6 h. 30 mg and
15 mg of total proteins were used for detecting Chk1 and Cds1, respectively, by western blotting. HU is used as a DNA replication inhibitor which
arrests cell cycle progression at G1/S phase. MMS is used as a DNA damaging agent. Addition of HU and MMS induced mobility shift of
phosphorylated Cds1 and Chk1 proteins, respectively. (C) L972 (asf1+), SKP593-33P (asf1-33-13myc-kanr), TH19 (asf1-33-13myc-kanr Dchk1 mutant),
TH20 (asf1-33-13myc-kanr Dcds1 mutant), and TH34 (asf1-33-13myc-kanr chk1S345A mutant) were grown on YES plates containing phloxine B at 26uC
and 36uC for 24 h. Cell morphology was observed by a microscope. (D) Cultures of L972 (asf1+) and SKP605-33 (asf1-33-13myc-kanr) were serially
diluted with sterilized water. The cells were spotted on YES plates containing 10 mM HU (DNA replication inhibitor) and 0.0075% MMS (DNA
damaging agent) and cultured at respective temperature for 3 days.
doi:10.1371/journal.pone.0030472.g002

Role of Asf1 in Genome Stability

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e30472



which kinetochore chromatin is assembled and the heterochro-

matic outer centromeric domain [47]. Histone chaperones are

involved in the maintenance of heterochromatin structure and its

transcriptional silencing [48,49]. To determine whether asf1 is

required for transcriptional silencing at the centromeric outer

repeat region, we examined the expression of a reporter gene

inserted at the outer repeat domain of the centromere. Expression

of the ura4+ gene located in the outer repeat of the centromere is

normally repressed and wild-type cells do not show sensitivity to 5-

FOA. When heterochromatin structure is disrupted, the expres-

sion of the ura4+ gene is derepressed and the cells become sensitive

to 5-FOA. [50]. The asf1-33 mutation caused sensitivity to 5-FOA

in the strain with the ura4+ gene integrated at the outer

centromeric repeat (otr) (Fig. 7A). In addition, we measured the

transcription level of the ura4+ gene at the centromere in the asf1-

33 mutant by RT-qPCR and found that it was increased at 36uC
than at 26uC (Fig. 7B). These results suggested that asf1 is required

for the maintenance of heterochromatin structure in fission yeast.

These results led us to test the histone H3 levels at the centromere

region in the asf1-33 mutant by ChIP analysis. We found that

histone H3 levels at the outer repeat (dh) of the centromere

heterochromatic region were decreased in the asf1-33 mutant

(Fig. 7C). The chromatin assembly activity of Asf1 seems to be

necessary for the maintenance of the centromere heterochromatic

region in fission yeast. Interestingly, histone H3 levels at the

central centromeric region (imr1) were increased in the asf1-33

mutant.

The CenH3 histone chaperone Sim3 suppresses the
temperature sensitivity of the asf1-33 mutant

To further understand the function of Asf1, we screened for

multi-copy suppressors in the asf1-33 mutant using a plasmid-

borne genomic DNA library. The asf1-33 mutants harboring

genomic DNA libraries (pTN-L1) were replica-plated to YES

plates containing phloxine B and incubated at 36uC for 24 h.

Phloxine B stained dead cells a much darker red color than viable

cells. Based on colony color and cell morphology we selected

several strains that grew better at 36uC.

Plasmid(s) were once lost to examine whether the suppression of

temperature sensitivity was dependent on the plasmid. The

plasmids were then restored in E. coli and the asf1-33 mutant

was retransformed with candidate plasmids to confirm the reversal

of temperature sensitivity. Subsequently, the gene contained

within the plasmid was sequenced. In addition to asf1, we also

isolated sim3, which encodes a CENP-A histone chaperone [51].

Because the library contains other genes, we cloned sim3 into a

promoter-regulated plasmid, pREP41, to confirm suppression in

the asf1-33 mutant [52]. pREP41 contains nmt41 promoter, an

attenuated version of nmt1 promoter [53]. Promoter activity of

nmt41 is down regulated by the presence of thiamine. Overex-

pression of sim3 under thiamine-depleted conditions reversed the

temperature sensitivity of the asf1-33 mutant at 36uC (Fig. 8A). In

addition, the elongated cell phenotype in the asf1-33 mutant at the

restrictive temperature was reversed (Fig. 8B). This clear

suppression indicated that Sim3 can replace the function of Asf1

and suggests that Sim3 may have a general role as a histone H3

chaperone in fission yeast.

Discussion

In this study, we show that the histone chaperone Asf1 is

required for the maintenance of genome stability in S. pombe. The

asf1-33 (ts) mutation caused a defect in chromatin structure and

led to DNA damage, including double-strand breaks at a restricted

Figure 3. DNA double-stranded breaks occurred in the asf1-33
mutant. (A) Pulse-field gel electrophoresis analysis of the asf1-33
mutant. L972 (asf1+) and SKP605-33 (asf1-33-13myc-kanr) were incubat-
ed in YES medium at 26uC and 36uC for 6 h, and 5.06108 cells were
collected by centrifugation. Pulse field gel electrophoresis was
performed as described in the Materials and Methods. The intensity
of DSB bands was measured using ImageJ. (B) Rad22-GFP foci in
SKP558-7 (asf12) and KT166 (asf1-33-13myc-kanr) were observed after
incubation at 26uC or 36uC for 6 h. Fluorescence of Rad22-GFP foci was
observed with a Leica TCS-SP5 confocal laser scanning microscope
(Leica Microsystems, Japan). Arrows indicate the Rad22-GFP foci. (C) The
number of Rad22-GFP foci was counted.
doi:10.1371/journal.pone.0030472.g003
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temperature (Figs. 3, 5 and 6), which result in the activation of the

DNA damage checkpoint (Fig. 2). By screening 77 protein kinase

genes, we identified DNA damage checkpoint kinases (Chk1 and

Rad3) as necessary for the survival of the asf1-33 mutant at the

restrictive temperature. The temperature-sensitive growth of the

asf1-33 mutant was further reduced and cell elongation was

abolished by the deletion of chk1 or rad3 in the asf1-33 mutant. We

also observed that Chk1, but not Cds1, was phosphorylated in the

S. pombe asf1-33 mutant, indicating that Chk1 activation is required

for the survival of the asf1-33 mutant. In S. cerevisiae, the deletion of

asf1 causes DNA damage and induces phosphorylation of Rad53,

which is a homolog of S. pombe Cds1 [54] and functions as a DNA

damage checkpoint regulator. Since the DNA damage checkpoint

is largely controlled by Rad53 in S. cerevisiae, this suggests a

common role for Asf1 in protecting against DNA damage in both

S. pombe and S. cerevisiae. However, while the deletion of ASF1

causes sensitivity to the DNA replication inhibitor HU in S.

cerevisiae [55], we did not observe this in S. pombe and also did not

detect the phosphorylation of Cds1 in the asf1-33 mutant at 36uC
(Fig. 2). These results suggest that either Asf1 does not contribute

to S phase progression or that the asf1-33 mutant does not cause a

severe defect in S phase due to a property of the specific mutation.

The recent report by Yamane et al. [22] showed that the asf1-1

mutant is sensitive to reagents that cause DNA damage but not to

HU. Therefore, no requirement for Asf1 in DNA replication was

observed in two independently isolated S. pombe asf1 mutants,

suggesting that Asf1 does not have a major role in S phase in S.

pombe. In contrast to these observations in S. pombe, the knock-

down of asf1 in human cells [8] and in chicken DT40 cells [56]

caused delayed progression of cell cycle during S phase, and

similar results have been reported in Drosophila melanogaster [19].

Based on these reports, Asf1 is generally considered to function to

incorporate histones H3/H4 into newly replicated DNA during S

phase. Since Asf1 is essential for growth and our analyses were

based on asf1-ts mutants, it is also possible that a null mutation of

Asf1 might be necessary to detect its role in S-phase in S. pombe.

Micrococcal nuclease assay revealed that bulk chromatin

structure was altered in the asf1-33 mutant at 36uC (Fig. 6). Large

changes in bulk chromatin structure by the depletion of histone

H4 are lethal in S. cerevisiae [57], and the low viability of the S.

pombe asf1-33 mutant at 36uC might be attributed to large changes

in bulk chromatin structure. In contrast to disassembled chromatin

structure in the S. pombe asf1-33 mutant, the deletion of ASF1 in S.

cerevisiae over-assembles its chromatin but did not cause lethality

[46]. Asf1 seems to play an opposite role on chromatin structure

change in fission yeast and budding yeast. Although chromatin

structure change was extensive in asf1-33 mutant, that was small in

the S. cerevisiae asf1 mutant.. This difference might reflect the

specific roles of Asf1 in chromatin assembly (or disassembly) in S.

pombe. In S. cerevisiae, many histone chaperones, including Asf1,

CAF1, and HIRA, are cooperatively involved in changes in

chromatin structure. Therefore, the deletion of ASF1 alone may

not result in severe defects in chromatin structure in S. cerevisiae. In

contrast, in S. pombe, Asf1 seems to play an essential role in

chromatin structure change as a histone chaperone, and roles for

CAF1 and HIRA in overall chromatin structure must be limited as

judged from the phenotypic analyses in these deletion mutants

[22].. These differences could explain why asf1 mutations caused

severe defects in chromatin structure in S. pombe.

Asf1-33-13myc was mislocalized and Asf1-33-13myc could not

bind histone H3 at 36uC (Fig. 5). The mutations identified in Asf1-

33, which are thought to affect interactions with H3, are located

within the H3 recognition region of the protein [10,11].

Therefore, it is conceivable that an inability to bind histone H3

causes mislocalization of Asf1-33, and that the impaired histone

H3 chaperone activity of Asf1 resulted in altered chromatin

structure in the asf1-33 mutant.

A silencing defect at the outer centromeric repeat was observed

in the asf1-33 mutant (Fig. 7), which is consistent with the results of

Yamane et a. [22]. ChIP analysis revealed that histone H3 levels

were decreased at the outer centromeric repeat (dh) in the asf1-33

mutant compared to the asf1+ strain (Fig. 7). However, histone H3

levels were increased at the center region of the centromere (imr1)

in this mutant. This suggests that, in fission yeast, Asf1 functions as

a chromatin assembly factor at the outer centromeric repeat (dh)

but as a disassembly factor at the center region of the centromere

(imr1). Disassembly of histone H3 at the center region may be

required for the exchange of histone H3 and centromere-specific

histone H3 variant CENP-A in S. pombe. Dunleavy et al. reported

that histone H3 levels were increased at the center region of the

centromere in sim3 (coding a CENP-A histone chaperone) mutants

[51]. This suggests that Asf1 might remove histone H3 from the

center region cooperatively with Sim3.

Yamane et al. [22] showed that S. pombe asf1-1 mutation, which

abolished the binding of ASF1 to histones H3/H4, caused a defect

in heterochromatic silencing and genomic instability. Although the

asf1 mutants were created independently by us and by Yamane et

al, there are essentially no discrepancies between the two studies.

As both Asf1 mutant proteins failed to interact with histone H3, it

is reasonable that similar phenotypes were observed. In addition to

their findings on heterochromatic silencing, we extended the

analysis in more detail. We showed that asf1 mutations caused a

defect in chromatin structure by showing an altered micrococcal

nuclease digestion pattern and we also showed the activation of the

DNA damage checkpoint pathway in the asf1-33 mutant.

Activation of the DNA damage checkpoint (Fig. 2) strongly

supports the idea that Asf1 plays an essential role in the

maintenance of genomic stability in S. pombe. We also found that

Asf1-33 mutant proteins were mislocalized at 36uC (Fig. 5), and

proper localization of Asf1 may be important for its function.

Moreover, the asf1-33 mutant did not require S phase checkpoint

factor for its survival (Fig. 2), and progression of DNA replication

Figure 4. Cell cycle progression was not delayed in asf1-33 mutant. (A) Cell cycle progression of L972 (asf1+) and SKP593-33P (asf1-33-13myc-
kanr) was blocked at G1/S phase by incubation in EMM2 medium containing 20 mM hyroxyurea at 26uC for 4 h. To synchronize cell cycle progression,
cells were incubated in EMM (-Nitrogen) at 26uC for 12 h to induce G1 arrest. The cells were washed three times with sterilized water and then
incubated in EMM2 medium at 26uC or 36uC for 90 min (HU block & release) or in YES medium for 6 h (G1 arrest & release). Samples for FACS analysis
were obtained every 15 min (for HU block and release) or 2 h (for G1 arrest and release). Cells were fixed with ethanol and stained with propidium
iodide after RNase A treatment. (B) BrdU incorporation at S phase was not decreased in the asf1-33 mutant at 36uC. HM664 (nmt1-TK2) and KT68
(asf1-33-13myc-kanr nmt1-TK2) were incubated in EMM (without thiamine) at 26uC for more than 12 h to induce thymidine kinase gene expression.
The cells were transferred to EMM containing 200 mg/ml BrdU and incubated for 90 min at 26uC or 36uC. Samples were collected by centrifugation
every 15 min and fixed with ethanol. The cells were treated with Zymolyase to make spheroplasts. After washing with PBS, 3.5 M HCl was added to
samples to denature the DNA. Anti-BrdU antibody was added and the samples were incubated at 26uC for 24 h followed by incubation with anti-
mouse IgG Alexa 488-conjugated antibody. Fluorescence images were taken with a fluorescence microscope.
doi:10.1371/journal.pone.0030472.g004
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was not affected by the asf1-33 mutation (Fig. 4). Unlike the results

for other species, Asf1 is not essential during DNA replication in S.

pombe. Finally, we found that high copy sim3 suppressed the

temperature sensitivity of the asf1-33 mutant. Sim3 is an H3-like

CENP-A chaperone that mainly functions to deposit CENP-A at

centromeres [51]. Our results showing that Sim3 can replace the

function of Asf1 provides genetic evidence that Sim3 has general

roles as a histone H3 chaperone in fission yeast, which is consistent

with a previous report that Sim3 binds to histone H3 [51]. It is

interesting to note that the three-dimensional structure of Asf1 and

the predicted structure of Sim3 do not resemble each other [51,58]

and that functional similarity between Asf1 and centromere

chromatin assembly factors has not been reported in other species.

Analysis of the interrelationship between these two histone H3

chaperones is an interesting subject.

Histone H3 K56 is acetylated by histone acetyl-transferase

Rtt109 by forming a complex with Asf1 (or Vps75) and

deacetylated by Hst3/Hst4 deacetylase in S. cerevisiae [59,60].

An in vitro experiment showed that S. pombe Rtt109 homolog

displays an Asf1-dependent H3 K56 histone acetyl-transferase

activity [61]. An S. pombe hst4 deletion strain showed sensitivity to

DNA damaging agent [62]. These results indicated proper

regulation of H3 K56 acetylation is important for maintenance of

genomic stability in both S. cerevisiae and S. pombe. But an in vivo

role of Asf1 on histone acetyl-transferase in S. pombe remains to be

elucidated.

Figure 5. Interaction between Asf1 and histone H3 was lost and Asf1-33 proteins were mislocalized at 366C in the asf1-33 mutant.
(A) Immunoprecipitation assay to investigate the interaction between Asf1 and histone H3. L972 (asf1+), SKP561-15 (asf12-13myc-kanr) and SKP605-33
(asf1-33-13myc-kanr) strains were incubated at 26uC and 36uC for 6 h. The cells were collected by centrifugation and washed once with STOP buffer.
Two milligrams of total proteins were used. After incubation with Protein G sepharose at 4uC for 1 h, the samples were washed five times with HB
buffer. The samples were suspended in SDS-sample buffer and boiled at 100uC. Proteins were detected by western blotting as described in Materials
and Methods. (B) Extraction of histone proteins from asf1 mutants. L972 (asf1+) and SKP593-33P (asf1-33-13myc-kanr) strains were incubated at 26uC
for 24 h. The temperature was increased to 36uC and cells were incubated for a further 6 h. Extraction of histone proteins was performed as described
in the Materials and Methods. Extracted histone proteins were separated by SDS-PAGE and stained with Coomassie Blue. (C) Immunofluorescence
images showing the localization of Asf1-13myc in the asf1+ strain and asf1-33 mutant. SKP561-15 (asf1+-13myc-kanr) and SKP605-33 (asf1-33-13myc-
kanr) were incubated at 26uC or 36uC for 6 h and immunofluorescence analysis was performed as described in Materials and Methods.
doi:10.1371/journal.pone.0030472.g005

Figure 6. asf1 mutations caused defects in chromatin structure at 366C. L972 (asf1+) and SKP593-33P (asf1-33-13myc-kanr) were treated with
Zymolyase to make spheroplasts. MNase was added to the spheroplasts and incubated at 37uC for 5 min. Digested chromatin DNA was resolved by
agarose gel electrophoresis and detected with ethidium bromide staining.
doi:10.1371/journal.pone.0030472.g006
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Figure 7. Histone loading in the asf1-33 mutant and heterochromatic silencing at the outer centromeric repeat. (A) Cultures of SKP551-
6 (otr1::ura42) and SKP593-33 (asf1-33-13myc-kanr otr1::ura4+) were subjected to serial dilution with sterilized water and spotted on YES plates
containing 5-FOA. Each strain was incubated at 26, 34, and 36uC for several days. (B) RT-qPCR analysis of the asf1-33 mutant. L972 (asf1+) and SKP605-
33 (asf1-33-13myc-kanr) were cultured in YES medium at 26uC or 36uC for 6 h. After incubation, cellular RNA was extracted as described in Materials
and Methods. RT-qPCR was performed by using primer sets amplifying ura4 and act1. (C) ChIP analysis of the asf1-33 mutant. L972 (asf1+) and
SKP605-33 (asf1-33-13myc-kanr) were incubated in YES medium at 36uC for 6 h and the cells were collected by centrifugation. Immunoprecipitation
was performed using an anti-C terminal H3 antibody. After immunoprecipitation, DNA was extracted and amplified by PCR with specific primers for
quantitative analysis.
doi:10.1371/journal.pone.0030472.g007
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