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LONG RANGE SCATTERING FOR THE MAXWELL-SCHRODINGER
SYSTEM IN THE LORENZ GAUGE WITHOUT ANY RESTRICTION ON
THE SIZE OF DATA

YANG LIU AND TAKESHI WADA

ABSTRACT. This paper concerns the scattering theory for the Maxwell-Schrodinger (MS)
system in the Lorenz gauge, or more precisely, the existence of the modified wave operators
for this system in R3*! space-time. We construct solutions to the MS system which behave as
free Maxwell and Schrodinger waves with prescribed asymptotic states when ¢ — oo, without
any restriction on the size thereof. Since this system belongs to the borderline between the
short range case and the long range case, we need modification of phase for the Schrédinger

function.

1. INTRODUCTION

In this paper, we study the scattering theory for the Maxwell-Schrodinger (MS) system
under the Lorenz gauge condition in 3 4+ 1 dimensional space-time, and more precisely the
existence of modified wave operators for this system. This system describes the interaction
between a charged nonrelativistic quantum mechanical particle and the (classical) electromag-
netic field generated by the motion of the particle. Generally, considered Maxwell-Schrédinger

system is written as follows:

10w = —(1/2)Asu + Aeu,
OA+V(V-A+8A) = J = ImaV au, (1.1)
DA, — 8,(V - A+ QA = J. = [ul?,

where (A, A.) is an R¥*"'-valued function defined in space-time R3™ V4 = V — A and
A4 = V¥ are the covariant gradient and covariant Laplacian respectively, and O = 92 — A
is the d’Alembertian. By using the first equation of the system (1.1), we have the current
conservation V - J + 0;J. = 0, so that we can regard J and J, as current density and charge
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density, respectively. The system (1.1) is gauge invariant, namely (1.1) is invariant under the

transformation
(u, A, Ae) — (uexp(—if), A — V0, A, + 0,0),

where 6 is an arbitrary real-valued function defined in R*"!. Therefore, the system (1.1) is
underdetermined as an evolution system, so we should impose an additional equation called
a gauge condition. There are two gauge conditions which are commonly used, one is the
Coulomb gauge condition V - A = 0, and the other one is the Lorenz gauge condition V - A +
0 A. = 0. In this paper we will exclusively study the Lorenz gauge case. Then the system

(1.1) can be written as

0 = —(1/2)Aqu+ Acu,
OA = J, (1.2)
A, = J..

In three-dimensional case, the MS system (1.1) is known to be locally well-posed both in
Lorenz gauge and Coulomb gauge in sufficiently regular spaces (Nakamitsu—Tsutsumi [16],
Nakamura-Wada [17]). Guo-Nakamitsu-Strauss [14] proved that the MS system has weak
global solutions in the energy space. The MS system has been shown to be globally well-posed
in a space smaller than the energy space by Nakamura—Wada [18], and in the energy space
by Bejenaru-Tataru [1]. On the other hand, in two-dimensional case, Wada [29] extended
the Kato-type smoothing estimates for solutions to the MS system in the Lorenz gauge and
proved unique solvability in the energy space.

There is a large amount of research concerning the theory of long-range scattering, or
more precisely the existence of modified wave operators for nonlinear equations and systems
centering on the Schrédinger equation, especially for the nonlinear Schrédinger equation |2,
15,21], the Hartree equation [2-5,19,20], the Klein-Gordon—Schrédinger system [22-24], the
Wave—Schrodinger system [6-8,11,25] and the MS system [9,12,13,26,28]. In scattering theory,
we aim to know the interaction between more than one particles, waves etc., by comparing
scattering states (unperturbed system, without interaction) and interacting states (perturbed
system, with nonlinear interaction) as t — +o0o. In the case of the linear Schrodinger equation,
we need to distinguish the short range case from the long range case. In the short range case,
where the Schrodinger function behaves asymptotically like a solution of the free Schrédinger
equation, ordinary wave operators are expected. In the long range case, unlike the short

range case, ordinary wave operators are not expected and have to be replaced with modified
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wave operators, which include suitable phase corrections in their definition. From this point
of view, the MS system (1.1) in R3"! belongs to the borderline long range case, because of
the t~1 decay in L° norm of solutions of the wave equation. The two dimensional Klein—
Gordon—Schrodinger system and the three dimensional Wave-Schrodinger system also belong
to the same case. In the case of the MS system, the existence of modified wave operators was
first proved by Tsutsumi [28], and under weaker assumption by Shimomura [26], Ginibre-
Velo [12]. In these works, the smallness condition for the scattering data was assumed. Later,
Ginibre—Velo [9, 13] removed the smallness condition on the scattering data and proved the
existence of modified wave operators for large data. They mainly work under the Coulomb
gauge (Shimomura [26] also treated the Lorenz gauge case). So, in the present paper, we
consider scattering problem in the Lorenz gauge and prove the existence of modified wave
operators. Compared with the Coulomb gauge, the Lorenz gauge is more difficult to treat
because of the presence of the term V - A, so that we need higher order approximation in the
construction of asymptotic function for the Schrodinger part.
To state the main theorem in this paper, we introduce the Fourier transform
ile) = (Pu)(©) = (20) ™ [ e ula)da
-

and the free Schrodinger group U(t) = exp(itA/2) = F* exp(—it|¢|*/2)F. We also need the
free propagator for the Maxwell equations. Let w = (—A)Y2. For a couple (A,, A,) of

R3-valued functions and a couple (A.y, A.y) of real-valued functions, we set

Ap(t) = (coswt) A, +w M (sinwt) Ay, (1.3)

Ago(t) = (coswt)Agy +w  (sinwt) A,y . (1.4)
The main theorem in this paper is the following:

Theorem 1.1. Let uy, A., A, Ao, Aol be sufficiently smooth functions decaying at infinity.
We assume the support condition suppty C {§ : ||| — 1| > n} for some 0 < n < 1, and the
compatibility conditions V- Ay + Aey =V - Ay + AA = 0. We set J(t,z) =t~ x| (z/t)?
and Jo(t,x) = 3|ty (z/t)?, and we define

A(t) = — /too dt’ wtsin(w(t — ) J(t), Aa(t) = — /too dt’ wtsin(w(t — ) J.(t),

so that OA, = J with (1211,8,5211) — 0 ast — oo, and OA, = J, with (flel,ﬁtflel) — 0 as

t — oo respectively. We define S(t,x) = flt dt' {—z - Ay(t', t'x) + Aq(t',t'x)}. Then there
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exists a solution (u, A, A.) to (1.2) such that
lu(t) — e DT Eullo + | A(E) — Ag(t); H| + || Ae(t) — Aco(t); H'|| = 0 (1.5)
as t — o0.

We will state our result in precise, stronger but more complicated form as Proposition 4.3
in Section 4.

This paper is organized as follows. The construction of the modified wave operator is
performed by the use of the transform called pseudo-conformal inversion. In Section 2, we first
introduce this transform and replace the problem at t = oo with the problem at ¢ = 0. Next we
introduce a parametrization by phase and complex-amplitude for the Schrodinger part. With
these procedures, we change the variables from (u, A, A.) to new variables (e!®w, B, B.), and
derive the auxiliary problem for these variables. After summarizing fundamental estimates,
we prove the uniqueness of solutions to the auxiliary system. Section 3 is concentrated on
the analysis of Cauchy problem at time zero for the auxiliary system. We first assume a
desired asymptotic behaviour of dynamical variables (w,s, B, B,) for the auxiliary system,
where s = V¢, and solve the system by contraction mapping principle. After that, we
construct such an asymptotic function from the prescribed scattering state u. The existence
of modified wave operators for the original system is proved in Section 4.

We conclude this introduction by giving some notation which will be used throughout the

paper.

Notation. For any 1 <r < oo, L" = L"(R") denotes the Lebesgue space equipped with the
norm [[ull, = (fgn [u(z)[" dz)/" for r < oo, ||ullss = esssup,cpn |u(z)|. For any nonnegative
integer k and for 1 < r < oo, H* = H*(R") denotes the Sobolev space:

H ={ue ' ®R"): Ju HE| = Y 10%ull, ~ [[{w)" ull, < oo},

lof <k

where w = (—=A)Y2 and (-) = (1 + |- |?)"/2. The subscript 7 in H¥ will be omitted in the
case 7 = 2. We also use the homogeneous Sobolev space H* with norm ||u; H*|| = ||w*ul|,. In
particular it will be understood that H'(R?) ¢ L8(R?). In addition we shall use the notation
H*=H'NH* forVk>1.
For any Banach space X C ./(R"), we denote by (x)X the space defined by

(@)X = {ue .S (R") : (z)u € X}
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For any interval I and for any Banach space X we denote by € (I, X) (resp. €,(I, X)) the
space of strongly (resp. weakly) continuous functions from I to X. For a given interval I, we
denote by (X, f) the set

(X, f) ={u e €L, X) : flu®); X|| < f(t) Viel}, (1.6)
where X is a Banach space and f € €(I,R"). For real numbers a and b we use the notation
a Vb= Max(a,b) and a A b= Min(a,b).

2. PRELIMINARIES

2.1. Formulation of the problem. We will first perform a change of variables, which trans-
form the problem at ¢ = oo into the problem at ¢ = 0. This transform is called pseudo-
conformal inversion, and is well adapted to the study of the asymptotic behaviour in time of
solutions to (1.2).

Let U(t) = exp (i(t/2)A) be the free Schrodinger group. We use the decomposition

U(t) = M()D()FM(t),

where M (t) = ¢*°/?" is the operator of multiplication, F is the Fourier transform and D(t) is

the dilation operator

(D) f) () = (it)"**(Do(t) f) () = (it) >/ f /1), (2.1)

normalized to be unitary in L?. Taking this factorization into account, we change the variable
for the Schrodinger function from u to v, or its parametrization by a complex amplitude w

and a phase ¢, according to
u(t) = M()D()(1/t) = M(t)D(t) exp(id(1/t))w(1/t). (2.2)

Correspondingly, we change the variable for the electro-magnetic potentials from A and A,

to B and B, according to
Alt) =~ Dy(O)B(1/1),  Adlt) =~ Dolt) Bu(1/1). (2.3

Substituting (2.2) and (2.3) into the first equation of (1.2) and commuting the Schrédinger

operator with M D, we obtain

{30, + (1/2)An — A)u}(t)
=t *M(t)D(){(i0y + (1/2)Apwy — BEt') + /" B.(t))o(t') }o—q1 1)
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Here, for an R3-valued function f of space-time we define
ft,z) =t - f(t,x). (2.4)
Then the first equation of (1.2) becomes
(i0, + (1/2)Ap — B+1t"'B.)v = 0.

Next, we rewrite the Maxwell part. We write the second and the third equations of (1.2)

by the associated integral equation, namely
A=Ag+A = Ay — / dt' wtsin(w(t — ') J(t), (2.5)
t
A=A+ AL = Ay — / dt’ w™tsin(w(t — 1)) Jo(t). (2.6)
t

Here, we recall that Ay and A are solutions of the free wave equations given by (1.3) and
(1.4) respectively, and w = (—A)Y2. In order to ensure the condition V - A + 9,4, = 0, we

assume that
V- A, +A.,. =V -A +AA., =0. (2.7)

Furthermore, let P = 1 — VA~!div be the projector on divergence free vector fields. Then,

by the current conservation we have
(1—-P)J=VA'V-J=-VA 9.
Integrating by parts, we can rewrite the equation for A as
A=Ay — /00 dt' wtsin(w(t —t"))PJI(t') — /oo dt’ Vw2 cos(w(t —t'))Jo(t). (2.8)
t t
We put
M, = —zv]*, My =ImoVpv =ImwVgw, M,= v (2.9)
Then we have

J(t) =t Do(t){(x|u(t)[*) =t ImB(t')(V — iB(t'))vo(t') }o=1/:
= —t 73Dy (t)(My 4+t~ M) (1/t), (2.10)

and

J.(t) = 3 Do(Oe(L/D]? = £ Do(t) M. (L)1), (2.11)
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Substituting (2.10) and (2.11) into (2.8) and (2.6) respectively, and letting ¢ = tv we obtain
A'(t) = =t Dy(t) /100 dv v 3w sin(w(v — 1)) PDy(v) (M, + (tv) ™' My)(1/tv)
— 71Dy (t) /00 dv v *Vw 2 cos(w(v — 1)) Do(v) Mo(1/tv),
1
AL(t) = t71Dy(t) /100 dv v3w  sin(w(v — 1)) Do(v) M. (1/tv).
From these equalities, we change the variables from (A', A)) to (B', B,) by
A = —t7'Dy(t)B'(1/t), A, = —t"'Dy(t)B.(1/t), (2.12)

and similarly from (Ao, Aeo) to (By, Beo) for the homogeneous part, in accordance with (2.3).
Therefore
B' =By + By, By = F(PM)+ E\(M,),

By = tFy(PM,), B, = B;=—F(M,), (2.13)

with M, M, and M, defined by (2.9), and with F}, j = 1,2, and E; defined by

R A L)

E (M) = /1 b i—’;vcos Zg” = pow)M (/). (2.14)

Hence the system (1.2) becomes

i0w = —(1/2)Agv + (B — t'B,)v,
B = By + By + Bo, (2.15)
Be - BeO + Bg.

The first equation of (2.15) is also parametrized by (w, ¢) as (2.2). In terms of (w,¢), this

equation becomes
(10 + 046 + (1/2)A — B+t 'B)w = 0, (2.16)

where A = V% = (V —iK)?, K := B + s with s := V¢. Since we have only one equation
for two functions w and ¢, we impose an equation for the phase function ¢, which should be

specified later.
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In the Maxwell part, By = By(w) = By(w,w) and B3 = Bs(w) = Bs(w,w) are explicitly
defined quadratic form of w. Here,
Bi(wy,wy) = —Fy(Pz Rewjwsy) + Ey(Rewws), Bs(wy,ws) = —Fj(Rewjw,). (2.17)
On the other hand, B, is determined by

BQ = ﬁz(w,w, S + B) with %2(?1)1, Wa, K) = th(PImwviwg) (218)

Here, the right-hand side contains By through B, so that (2.18) is an equation for By, and
that we should regard By as a dynamical variable.

There is a large amount of freedom in the choice of ¢, and we choose ¢ so as to get rid
of the long range terms in (2.16) coming from the interaction. All the terms coming from
the covariant Laplacian are expected (and will turn out) to be short range, if we assume the
support condition for w, = Fu,. The contribution of By to B is also short range because of
the factor ¢ in (2.18). The terms B, in B and ¢! Bs are also of long range. Let y € €= (R? R),
0<x<1,x(&)=1for [£| <1, x(§) =0for || >2,and let 0 < § < 1. We define

X' =FX(F, T =1-x"
Then we can split B; and ¢! Bj into short range and long range parts as
Bi= BS 1+ BE, BS =SBy, B = "B,
or e oo ' (2.19)
Bs = By + BL, By = x°Bs, BY = x!B;.

BF and t~!BL are of long range, but smoother than B and ¢t~ B; themselves. Corresponding

to the fact that By — t 1 B.g and By are regarded as short range, we denote
B = B% —1+7'B?, (2.20)

where BS := By + BIS + B, Bf = B + Bg?. Note that By and ¢t 1B, may not be short

range separately. As the equation for ¢, we can impose
¢ = BE —t7'BL. (2.21)
Thus, we obtain a closed system of equations for (w, s, By), namely
i0w = Hw = —(1/2)Agw + BSw,
dys = VBL —t'VBE, (2.22)
By = By(w,w, K)
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with BF, BY and %, defined by (2.19) and (2.18). Here, in the first and the third equations
of (2.22), the phase ¢ appears only through its gradient s = V¢, so that we have replaced
the equation (2.21) for ¢ by that for s, by taking the gradient of the both-sides of (2.21).
The problem of constructing the wave operators is transformed into the problem of solving
(2.22) with suitable asymptotic forms of (w,s, By, By, B3) as t — 0. We will solve this
transformed problem in Section 3.
In order to solve the problem, apart from the system (2.22), it is useful to consider also a

partly linearized system for (w, Bs), namely

10w = Hw',
(2.23)
Bl = By(w,w, K)

for new variables (w’, BY), where K still corresponds to (w, Bz). We do not need to introduce
a new variable §', since s is explicitly determined by the second equation of (2.22) as an

explicit function of w.

2.2. Estimates for the Maxwell part. We summarize properties of the homogeneous term
(Ao, Aeo) of the Maxwell part (A, A.), defined by (1.3) and (1.4). From the Lorenz gauge
condition V - Ay 4+ 0; Ao = 0, we easily see that x - Ay — t A satisfies the homogeneous wave

equation as well as Ag and A.g, that is,
D(,CE . AD — tAeo) =0

with initial data (z - Ag — tA)|imo = = - A and Oy(x - Ag — tAe)|s—o = 2 - Ay — Acy. We

shall need the dilation operator
Q=t0+z-V+1. (2.24)

Since we have the relation Q9/V* = &/ V*(Q — j — k), QA and QA also satisfy the homo-

geneous wave equations, so that QAg and QQ A,y can be written as

(QAY)(t) = (coswt)(1+ - V)A, +w  (sinwt) (24 z - V)AL, (2.25)
(QAu)(t) = (coswt)(1 + - V)Aey + w H(sinwt)(2 4 z - V) A,y (2.26)

If we change variables from Ay and Ay to By and By according to (2.3), we obtain

(@ - Ag — tAu)(t) = —t~" Do (t)(Bo — t ' Beo)(1/1), (2.27)
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and
VEQI Ag(t) = (— L)1 Dy (8) (V(40,)1 Bo)(1/1), (2.28)
VEQI Ao (t) = (=171 Do (1) (VF(t0,) Beo) (1/1). (2.29)
We introduce some decay estimates of Ay and A.y. For that purpose, we need assumptions
for initial data. We shall say that a pair of functions (<7, .a7) defined on R? satisfies the
condition (D) if
o €l? Vo el', w'ldel® Vel
Moreover, we shall say that (.7, .¢7) satisfies the condition (D), if (z- V)’ V(o7 o7 ) satisfies
(D) for 0 < j" <.

Lemma 2.1. Let j, k be nonnegative integers. Let (Ao, Aeg) be a pair of solutions of the
homogeneous wave equations defined by (1.3) and (1.4) satisfying the compatibility conditions
(2.7). Let (A4, AL), (Aer, Aey), and (z- Ay, x- A, — A.y) satisfy the condition (D)ji,. Then
(Ao, Aeo) satisfies the following estimates:

Q" V*A) (D)l V Q7 VF Aco) ()l V I(QF V* (& - Ao — tA0)) (D)l < bt (2.30)

for 0 <j <j, for2<r <oo and for all t > 0.
Let By, By and By be defined by (2.3) and (2.4). Then By, By and By satisfy the following

estimates:
1075  Bo(#)l» V107 V* Beo(8) - V 107 V" (Bo — £ Beo) (t)| < bt~/ (2.31)
for 2 <r < oo and for all t > 0.

Proof. For the proof of (2.30), see [27]. If j > 0, we also use the relation Q9] V* = &/ V*(Q —
j — k). The estimate (2.31) follows from (2.27), (2.28), (2.29) and (2.30). O

We next give some estimates for various components of B; and Bz expressed by (2.19). It

follows immediately therefrom that

lw™ BY[l2 < 707 |wP BY (|2 < 707 |wP By s, (2.32)
lo™ (71 B3 [l2 < 77 |wP B ||y < 7077 [wP Byl (2.33)

for m < p, and similarly
o BElly < (2678 Pl BE |, < (26P)0% P P By 1, (2.34)

lo™ (¢ B2 < (2t~ )" PP (71 By )|z < (2677) P [P (£ Bs) (2.35)
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for m > p.
We now estimate F;(M) and E;(M) defined by (2.14). From (2.14) it follows that
wFi(M) = Fji(wM),  wE;(M) = Ej1(wM), (2.36)
OpF;(M) = Fi1 (O M), O E;(M) = Ej11(0: M), (2.37)
and from the identity [z, f(w)] = f'(w)w™'V together with VP = 0, it follows that
v Fy(PM) = Fyy(z - PM),

v-E;(M)=E; 1(v-M)—w?V . E(M)+F;_(M)— F;(M). (2.38)

In order to estimate F; and E;, we define

L0 = [ dv v ey (2.39)

for any j € R and for any nonnegative function f in R*. Note that I;(f) is decreasing for
j and increasing for f, namely, if j > k and f(t) < g(¢) a.e. in I, then [;(f) < I;(g). Let
a € R with a+ 5 +1/2 > 0. If f(t) = t~*f(t) satisfies f(f dt' = f(t') < cf(t), then we have
Li(f)(t) < cf(t). Indeed, by the change of the variable, we have

L(f)() =717 / ey ) < /0 it () < cf (1)

0

Lemma 2.2. For any m,j € R the following estimates hold:
(1) About ||w™F;(M)||2 and ||w™E;(M)||2, we obtain

lw™ Fy(M)|l2 < eLjim—a([|w™ ™ M]lg A Jlw™ M),
lw™ B (M) |2 < eljrm—a(l|lw™ ™ M|l2). (2.40)
(2) About ||w™x - F;(PM)||2 and |w™z - E;(M)]2, we obtain
&z - Fy(PM)l < e sl ()™ M),
lw™z - B;(M)|ly < e(Ljym-s([{z)0™  M|l2) + Lipm-s(|w™ 2 M]2)). (2.41)
or any r, r. wit <r<4an ri =24 1/r, we obtain
(3) For any ith 2 4and3fr =2+1/ btai

IE5 (M) v [ E; (M) < C/1 dv (v = 1) 2 Mt 0]y (2.42)

Proof. The proof of the estimates for Fj(M), see Lemma 3.6 in [13]. We can prove the
estimates for E;(M) in the same way, taking account of the estimate | cos|{|(r —1)| < 1 and

the monotonicity of ;(f). O
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Hereafter, in all of the estimates in this paper, we denote by C a positive constant whose
specific value is not required but depends on the asymptotic functions (w,, K,) through the
available norms. Absolute constants will be in general omitted, except in special arguments

where they are explicitly needed, in which case they are denoted by c.

2.3. Uniqueness of Solutions for the Auxiliary System. We shall derive a uniqueness
result for the solutions of (2.22) under suitable assumptions on their behaviour at time zero.
We begin with some estimates of the difference of two solutions of the system (2.23). For two
functions or operators f;,i = 1,2, we define fy = (1/2)(f1 £ f2), so that f1 = f + f_, fo =
fi—f-and (fg)+ = fr9++f-g+. Let (w}, B),),i = 1,2, be a pair of solutions of the linearized
system (2.23) associated with a pair (w;, s;, B;),7 = 1,2. Then, taking the difference for the

equations for (w}, BS;), we see that (w’_, B ) satisfies the equations

0w’ = Hyw' + H_w',

(2.43)
By =2Bs(wy,wo, Ky ) = thy(PK_(Jwi|* + [w_]?)),
where
Hy =—(1/2) Ak, + (1/2)K2 + B3 ., (2.44)
H_ =iK_ -V, +(i/2)(V-K_)+Bj_. (2.45)
By definition, B;_ and Bs_ satisfy
Bi_ =2By(wy,w_), B =2B"(w, w_), (2.46)
Bs_ = 2Bs(w,,w_), B =2BY"(w, w.). (2.47)
If s;,i = 1,2, satisfy the second equation of (2.22), then
Os_ =VBFE —t7'VBL . (2.48)

By the following lemma, we can estimate the difference of two solutions of the linearized
system (2.23). The estimates of w’ are stated in differential form for brevity, but should
be understood in integral form, in the same way as the conservation laws of Proposition 4.1

in [13].
Lemma 2.3. Let 0 < S < 1. Let I = (0,7]) with 0 < 7 < 1. Let hy € €(I,R") satisfy

/ dt t73/%h,y (t) < o0. (2.49)
0
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Let wy,i = 1,2 satisfy w; € L°°(I, H?), xw; € L>°(I, H*) and
[{z)w-(t)]2 < Cha(2) (2.50)

forallt e l.

(1) Let By(w;), Bs(w;), i = 1,2, be defined by (2.17). Then By(w;), Bs(w;) € (€NL>)(I, HY),
tV By (w;) € (€ N L>®)(I,H?) and By_, Bs_ satisfy the estimates

VBl < Clo([[{z)w_|l2), (2.51)
IVV - By_|l2 < CL(|[Vw_][]2) + CLi(Jlw-]|2), (2.52)
IVBs_[|2 < Clo([[w-]]2), (2.53)
IVBi-[la < Ot ([ (2)w-]2). (2.54)

(2) Let s; satisfy the second equation of (2.22) with w = w;,i = 1,2, with s;(ty) € H? for
some to € I. Then s; € €(I, H?),s_ € €(I, H*) and s_ satisfies the estimates

[V 0rs_|la < Ct=H 1 ([[{z)w_]]5) (2.55)

for k=0,1,2. Furthermore, s_(t) has an L?* limit as t — 0.

(3) Let By and By satisfy (2.31) for 0 < j k0 +k < 1 and r = oo. Let in addition
tOw; € L°(I, H"),i=1,2. Let By satisfy By; € L®°(I, H?),t0;By; € L®(I, H'),tV By; €
L=(I,HY),i = 1,2. Let (w},BY), i = 1,2 be solutions of the linearized system (2.23)

satisfying the same conditions as (w;, By;), i = 1,2. Then the following estimates hold:

Ol w” l2] < C([V - s—|l2+ (1 = Int)([[s—|ls + [[VB-||2)

+ 17 (IVB1_l2 + ¢V Bs_[|2) + [V Bz 1), (2.56)

Ocl|zw’[lo] < (Vi wl]ls + C(IV - s-|l2 4+ (1 = Int)([|s—|ls + [VB-||2)
+ (VB |ls + [ VBs_l2) + [VBa|2), (2.57)
0V i, w[lo] < CEH(lwlllz + [wllls) + s l2 + (1 = Int) [ Vs |2

+VV - B_|ls +[|[VV - s_[2 + [ VB_||2

FVBi_[ls + ¢ Y|VBs_[l2 + (1 = nt)[[VBa|ls), (2.58)
IVB;_[l2 < CtLi((1 — Int)|lw_|l2 + [|s_[l2 + [VB-|]2), (2.59)
IVB;_[l2 < Clo((1 = W) |[(z)w |2 + [[s—ls + [V B-|l2). (2.60)
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Proof. Part (1). From (2.13), (2.14), (2.39) and (2.40), and from Lemma 3.2 in [13], we

obtain the estimates
l™ By (wi)ll2 < T (lw™ zlwil*]|2) + Ln(l|e™ Jwil2) < C, (2.61)
l™ B (wi)ll2 < L ([lw™wil*]|2) < C (2.62)
for 0 < m < 3. Similarly from (2.41), we obtain
o™ Bu sl < 7 s (M)l Ple) + Fa (e )
+ L ([|lo™ [wil 1))
<cot! (2.63)
for 1 < m < 2. These estimates show that Bj(w;), Bs(w;) and VB(w;) belong to the
class stated in part (1) of the lemma. The estimates (2.51)—(2.54) for the differences follow
immediately from (2.40), (2.41), (2.46) and (2.47). From (2.49), (2.50) and the change of
variable, it follows that I_(||(z)w_|]s) < Ct'/2, and that the right-hand side of (2.54) is

finite.

We note that we can similarly obtain the estimates
™10 Byw)la < a2k, 2) + Lo (o Duluwi ) < G, (2.64)
lw™ 10, Ba(wi)[l2 < Lar (o™ O hwi*[|l2) < Ot~ (2.65)

for 0 < m <1, to be used in the proof of part (3).
Part (2). From (2.62) and (2.63), we obtain

lw™ 1 Oysilly = W™ (VB (w;) — t7 'V By (w;)) || < Ct! (2.66)
for 0 < m < 1. Integrating (2.66) over time, we obtain
|w™ sl < C(1 —1Int) (2.67)

for 0 < m < 1 and for all ¢ € I. These estimates show the property s; € ‘K(I,f—p). The
estimate (2.55) follows from (2.34), (2.35) and (2.54). Since ||0;5_(t)||s < Ct~/2, the limit
s_(0) = limy_,0 s_(t) exists in L2
Part (3). We note that from (2.61)—(2.67) we obtain
1Bitlloo VIV Brlloe V tIV B [loo V 10 B [loo

V{[Bsilloo V [IVBsi oo V E|0: B3y [0 < C (2.68)

tOrsilloe < C,  lstlloe VI[Vsille < C(1 = Int). (2.69)
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We first estimate ||w’ ||3. From (2.43), by using (2.32) and (2.33), we obtain

Ocl|w”lo| < [H-w|l2 = || —i(s— + B-) - Vi, w!, + (i/2)(V - (s- + B-))w',
+ (B —t7'BE )|l
< l[s-1ls Vs wlillo + 1 B=ll6l| Ve, w13
+(IV - s—[la + |V - B-[|2) [ [[oo

+t2([VBi_|l2 + t Y[ VBs_||l2) W, [l + | Bo|l6]|w ||,

which implies (2.56) from the assumptions on w;, By, Beo, B2; and the estimate (2.68).
We next estimate [|zw’ ||. From (2.32), (2.33), (2.43) and the commutation relation

[z, Hy] = Vi, we similarly obtain

|0 |zw’_||2] < [V, w2+ ||[eH-_w' |2
< Vsl + s lalle Ve, ! + 1B ol Ve,
+ (V- s_ll2 IV - B_|l2)law) [

+ (VB2 + t |V Bs-|l2)||aw || o + || Bo—[ls]|lzw’, |5,

which implies (2.57).
We next estimate ||V, w’ [|o. We take the covariant gradient of (2.43) to obtain

iV, w_ = —(1/2) Vg, A, w_ + ((1/2)K2 + B )V, wl
+ (0K + VB, + K VK )u"
+iK_ - Vi w, +i(VK_) - Vi w, + (i/2)(V - K_)Vi, w,

+(i/2)(VV - K )w', + (VB )w!, + By, Vi, w,
so that we have

101V s, w_ o] < 0Ky + VB )l ||z + | K- - Vie w |2
+HIVE 21V i, 0 [loo + K- o)
+IVV - E_|la]w [lso + IV Bac |2 (I Vi, w'y |5 + [y [l oo)

+ (IVBi-l2 + M IVBs-[l2) (¢ IV re, ! oo + [ [loc). (2.70)
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We next estimate the first two terms in the right-hand side of (2.70).

10K+ + VB )l ||z < 10:(sy + Bo + Biy) + V(Bo + Bie =t Beg — 7' By )[|oc [ w2
+10Bas + V Bay [lol[ w5

< Ot ([l lz + flwlls), (2.71)

Vi, wll2 < ls-lls(1V*w lls + IV (s+ + Bas) ]|, [loo)
+ sl (oo V! lloo + (1V(Bo + Big)lloo + 1 K4 ll26) [0 o)
+IB-lls(IV*w' s + K llocl V', s + [V (Bo + Bis)lloo [0 [l
+ [V (st + Bai)llellw,lle + 1151wy [1s)
< C((1=mt)[ls_[ls + " (Is-ll2 + [VB-[12))- (2.72)
We substitute (2.71) and (2.72) into (2.70), and estimate the other terms similarly. Then we
obtain (2.58).
We finally estimate Bj_. From (2.40), (2.41) and (2.43), we obtain
IVBy_l2 < th(llw-[12[IV i, welloo + 5= llllwe 15 + 1 B=llsllwe ).
IVB; 12 < To({ehw-[l2ll Vi, wslloo + lls—llallw llooll () floo

+ 1B llsll(z)w[l[[wl6),
which implies (2.59) and (2.60). O

We apply Lemma 2.3 to obtain a uniqueness result for the nonlinear system (2.22) with

initial condition at time zero.

Proposition 2.4. Let 0 < 8 < 1. Let I = (0,7] with 0 <7 < 1. Let hy € €(I,R") be such
that hi(t) = (t72° Vt=Y2)hy(t) be non decreasing and satisfy

/ Cat () < o (1) (2.73)

for some ¢ > 0 and for allt € I. Let By and By satisfy (2.31) forr =00 and 0 < j, k,j+k <
1. Let (wj, s;, Boi),i = 1,2, be two solutions of the system (2.22) such that

w; € L®(I, H?), axw; € L>®(I,H?), tomw; € L>=(I,H"),
Bs; € LOO(I, HQ), 10;By; € LOO(I, Hl), tVBQi S LOO(], Hl)
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Assume in addition that s_(0) = 0 and that
[{z)w- ()]l < Cha(t) (2.74)
for allt € I. Then (wq, $1, Ba1) = (we, $2, Bas).

Proof. Since (2.73) implies (2.49), we can apply Lemma 2.3. Especially, we see that s_(t) is
convergent in L? as t — 0, and more strongly, the limit exists in H2. Indeed, from (2.55),
(2.73) and (2.74), we obtain ||[V20;s_|s < Ct71728hy(t), which ensures the existence of H2-
limit.

We first prove the proposition for 7 small enough. Once we have proved the uniqueness for

small 7, we can prove the uniqueness for general 7 by similar but more standard arguments.
We set

vo = [(m)w_|l2, vi=|Vg,w |2, Vo= sup ha ()~ oo (2).
te

From Lemma 2.3, especially (2.51)—(2.55) and from (2.73) with (w}, BY;) = (w;, By;), we

obtain
IVBi_|l2 V [[VBs_[]2 < CVoha, (2.75)
|IVV - By_|ls < C /O t dt’ Loy (t') + CVihy, (2.76)
IVBy_[ls < CVot ™ by, (2.77)
VEs_|la < CVyt ™ hy (2.78)

for all t € I and for k = 0,1,2. In the proof of (2.76), we have used the estimate

t t
L([[Vw-l2) = / di' ¢t ()| V- ()2 < / dt' ¢ V- ()|
0 0
The time integral in the right-hand side converges because of the estimate
IVw-la < (Jw-|l2l| Aw-][2)"/? < C(Voha)'2.

We obtain (2.76) if we replace the ordinary derivative by the covariant derivative in that
integral, by adding a harmless term Vph;. On the other hand, from (2.59), (2.75) and (2.78),

we obtain

IV Bo_|la < CVot(1 — Int)hy + C+1,(||V Ba_|f2).
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From the assumptions on By, it follows that B, € L>°(I, H'). Therefore, if 7 is sufficiently
small, the last term in the right-hand side of can be absorbed in the left-hand side, so that

we can derive

|V Ba_|la < CVt(1 —Int)h,. (2.79)
Substituting (2.75) and (2.79) into (2.60), we obtain

VBy_||2 < CVy(1 —Int)hy. (2.80)
Substituting (2.75)—(2.80) into (2.58), we obtain

t
|Ovon| < © (‘/o(t‘l + )y +/ dt' oy () + t‘l(%hlvl)l/z) .
0

Setting v; = Vv, g = C(t~1 +¢28)hy and | = Ct~*h}’?, we find that this inequality becomes
t

O] < g+ / dt' - Lo(t') + 0V2, (2.81)
0

Integrating (2.81) in ¢ and applying the Schwarz inequality for the last term, we obtain

v(t) < G(t) + C/t dt’ 71t — to(t') + /t dt’ (lw'/?)(t)

0 0
t 1/2
< G(t) 4 Ctz(t) + 2(t)/? (/ dt’ t’l2(t’))
0
< G(t) + Ctz(t) + C=()*m* (1),
where G(t) := fot dt’ g(t"), z(t) := fot dt’ ("), so that v = t0;z. Therefore we have
Oz <t7'G+ Cz + 1212 (2.82)

Applying Lemma 2.3 in [10] to (2.82), we obtain

t t 1/2) 2
z < e / dt’ 1(t') + (/ dt’ t’_lG(t’))
0 0
< C(1+ 72 hy (1),
Substituting this result into (2.82), we obtain
v1 < CVo(1+ 72y (1). (2.83)
Substituting (2.75), (2.77)—(2.80) and (2.83) into (2.56) and (2.57), we obtain

vy < CVo(tP + 71 hy(1).
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Integrating this inequality in time, we obtain
Vo < CV(7' 77 4 77).

From this inequality, we see that V[, = 0 for 7 small enough. By definition of 1} together with
(2.79), we can conclude |[{(x)w_(t)||2 = [|[VBa_(t)|2 =0 for 0 <t < 7. O

3. CAUCHY PROBLEM AT TIME ZERO FOR THE AUXILIARY SYSTEM

In this section, we aim to solve the Cauchy problem at time zero for auxiliary system (2.22).
We choose a set of asymptotic functions w, = (wq, Sa, Bia, B2a, B3a) Which are expected to
be suitable asymptotic forms of (w, s, By, By, B3) at t = 0, and we try to construct solutions
of (2.22) that are asymptotic to w, in a suitable sense at t = 0. Note that although B
and Bs are explicit functions of w, we do not assume that By, = Bi(w,), B3, = Bs(w,) and
Sq = S(wy); we only assume that the difference of both sides decay sufficiently fast (see (3.14)
and the assumption (A3), especially (3.31), (3.32) and (3.34)). We also define

Ba - BO + Bla + B2aa Bea - BeO + BSaa Ka = Sq + Ba7 Bma = Ba - t_lBea- (31)

In order to solve the auxiliary system (2.22) with the previous asymptotic behaviour at

t = 0, we define the difference variables
(Q7 g, Gla G27 G3) = (w — Wq, S — Sa, Bl - B1a7 B2 - B2a7 B3 - BSa)- (32)

We also define

G=G1+Gy, L=o0c+(, (3.3)
so that
B=B,+G, B.=B.,+G3, K=K,+ L. (3.4)
We define in addition
Qr, (K2,-) = Ky - Vi, + (1/2)(V - K3), (3.5)

so that

AK1-i-K2 = AKI - 2iQK1 (K27 ) - l(22 (36)
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The separation of B,, B., and of GG, GG3 into short range and long range parts follows the same

pattern as that of B and B,., namely

Biga = XSBIaa BILQ = XLBlaa
B(f - BO+Blsa+B2a7
Bga = XSB?)UH B?%a = XLBSaa

Gig = Xséb G1L = XLGIJ
G:?? = XSG3> Gél = XLG37
G% = GY + Gy

(3.8)

with x° and x© defined by (2.19). By the relation [x(t’w), 2] = —t?x'(tPw)w=1V, we have

GY =t (Pw)w™ 'V - Gyt - (XOGY),

Gl = 7P (Pw)w™ IV - G+t - (XFGY).

(3.9)
(3.10)

Using the definitions (3.2)—(3.6), we rewrite the auxiliary system (2.22) in terms of the

difference variables. We take (q,0,G1,Gs,G3) as independent dynamical variables and we

consider G, G5 and o with initial condition o(0) = 0 as functions of ¢. The auxiliary system

for (¢,0,G1, Gy, G3) then becomes

where

(i(‘?tq = Hq— Ely
o0 = VGF —t7'VG% — Ry,
G1 = Bi(q, 2w, + q) — R,
Gy = Ba(q, 2w, + q, K) — tFy(PL|w,|*) — R,

|G = Bs(q,2w, + q) — Rs,

§1 =R, — Hyw,,
H = (-1/2)Ax + BY,

Hy =iQg, (L,-) + (1/2)L* + G° —t7'G3,

(3.11)

(3.12)

(3.13)
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and the remainders R;, 1 < j <5 are defined by

Ry = i0w, + (1/2)Ag, w, — BS w,,

Ry = 0ys, — VBE +t7'VBL,

Rz = By — Bi(w,), (3.14)
Ry = Bay — Bo(wa, Ka),

\R5 = B3, — Bs(w,),
where BS, = BY —t"'B5 . In the equation for G in (3.11), we have used the identity
Bo(w,K) = Bo(wa, Ko) + Ba(q,2wa + q, K) — tFy(PL|w,|?). (3.15)

The remainders R;, 1 < j < 5, express the accuracy of the set of asymptotic solutions
(Wa, Say Bia, Baa, Bsa) to the original system (2.22).

The resolution of the new auxiliary system (3.11) proceeds in two steps.

Firstly, we solve the system (3.11) for (q,o,G1,Gs, G3) tending to zero as t — 0 with
general boundedness properties of w,, Sq, B1a, Boa, B3, and general decay assumptions on the
remainders R;,1 < j < 5, as ¢ — 0. For that purpose, we shall need a partly linearized

version of the system (3.11) for the independent dynamical variables (¢, G3). With
w' =w, +¢q, Bj= By + G, (3.16)
the linearized version of (3.11) corresponding to (2.23) becomes

0 = He — R, (3.17)
GYy = PBa(q, 2w, + q, K) — tFy(PL|w,|*) — Ra.
Again we do not need new variables G|, G4 and o, since G1,G5 and o (with the initial
condition ¢(0) = 0) are explicit functions of ¢q. We solve the linearized system (3.17) for
(¢, G%) with given (g, G2), thereby defining a mapping I": (¢, G2) — (¢’, G,). We then prove
that the mapping I' is a contraction in a suitable function space X (I) for I = (0,7] and 7
sufficiently small.

Secondly, we construct asymptotic functions (we, Sq, B1a, Baa, Bsa) satisfying the assump-
tion needed for the previous step. For that purpose, one solves the auxiliary system (3.11)
approximately by an iteration procedure. Unlike the Coulomb gauge case, in the Lorenz
gauge, the term V - By appears in H. This term loses one power of ¢ for both one time or

space derivatives (see Lemma 2.1), which makes our analysis more difficult. To overcome this
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difficulty, we need higher order approximation for w. It turns out that the third approxima-
tion for w and the second approximation for (s, By, By, Bs) are sufficient. (In the Coulomb
gauge, the second approximation for w is sufficient.)

We now define the spaces where to look for solutions of the auxiliary system. For any

interval I C (0, 1], we denote by X(I) the Banach space

Xo(I) = {(w, By) :w € €I, H*) NE (I, HY),
zw € C(I,H)NE (I,L%), By, By € €(I, H' N H)) N € (I, H')}, (3.18)

where B, is defined by (2.4). In order to take into account the time decay of the norms of the
variables ¢ and G (see (3.2)) as ¢ tends to zero, we introduce a function h € € (I, R*) where
I = (0,7] with 0 < 7 < 1, such that the function h(t) = t~*2h(t) be non decreasing in I and
satisfy
t

/0 dt' '7'h(t') < ¢ h(t) (3.19)
for some ¢ > 0 and for all t € I. A typical example of such an h is h(t) = t3/2*} with A > 0,
which satisfies (3.19) with ¢ = A™!. The function h(t) will characterize the time decay of
llg(t)|l2 as t — 0. We then define the Banach space

X(1) ={(g,G2) € Xo(I) : [[(g,G2); X(I)|| < oo} (3.20)
with
1(g, G2); X(1)|| = Sup h(t) " 2 a2 v e a@)ll2 v t([(2)dg(B)ll2 V [[{x) Aq(t) ]2)

VE2([VOg(t)ll2 VIV Aq(t)]l2) V 2|V Ga(t) |2
VER([VEGa ()]l V [V OGa(t)]l2 V [V Ga(t)]l2)
VER(([VEGa(t)l2 V IV G (t)]|2)}-

In Subsection 3.2, it turns out that the choice h(t) = t*(1 — Int)® will suffice. This type of
space has previously been used in the Coulomb gauge case in [13], but in the Lorenz gauge
case, we need more subtle argument, so that we characterize that [|q(t)||2 decays faster than
[{z)q(t)]|2 as t — 0.

In some stages of the first step, we need smallness conditions on 7 which depend on
(Wa, Sa, Ba; Bea). Such conditions are called asymptotic region conditions. They are essen-

tially imposed in order to prove I' to be a contraction mapping, but they are also used to
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eliminate higher order terms with respect to the dynamical variables and make the estimates

simpler.

3.1. Existence of Solutions of the auxiliary system. We now turn to the first step. We

need the general assumptions made on (wq, Sq, By, Beq), listed as (A1), (A2) and (A3) below.

The final result will need all the assumptions (Al), (A2) and (A3), but some intermediate

ones will need only part of them. In these assumptions, let Iy = (0, 7] with 0 < 75 < 1.
(A1) (boundedness properties of w,)

w, satisfies the following properties:

w, € (€ N L>) (I, H?), zw, € (€ N L) (Iy, H?), (3.21)
tl/zatwa € ((g N LOO)([(), HQ), t1/2$atwa € ((g N LOO>(I(), H1> (322)

In order to state (A2), we recall that B, = By + B1a + Baa, Bea = Beo + B3a, Ko = o+ By,
and that BY = By + B, + By, BS, = Bey + By, (see (3.7)).

(A2) (boundedness properties of (s,, By, Bea))

Sa; Ba, Bea € € (I, HL) with sufficient additional regularity, and the following estimates
hold for all ¢t € Ij:

1K, |leo < C(1—1nt), (3.23)
[0:Kalloo V IV Koo V EHIVV K|
V| VO Koo V 12| VOV E,||o < Ot (3.24)
[VSalloo VIVV + salls V [[V(Bia + Baa)l|oo
V[VBsalloo VEH(||[VOiSalloo V [[VOV - 84]|3

V ||V, (Bia + Baa)|lso V [[VOyBsal|os) < Ct™Y2, (3.25)
IV Boallso V VO Bialloo < Ct71, (3.26)
IBalloe VE2IV B olloo V 0By llee < CEY2, (3.27)

Note that by Lemma 2.1, By and B, satisfy the assumptions made on B, and B, under
suitable assumptions on (A, A, ) and (A, Ay ).

(A3) (decay properties of the remainders R;)
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The remainders R;, 1 < j <5, satisfy the following estimates for all ¢ € Ij:

1B [l2 < it 20(),
([{x) Ralla <)[I(2)0Ru; LH(0, ], L?)|] < rit ™ h(2),
(VR [l2 )IVO:Ry; LM((0,8], L*)|| < rit™*/2h(t),
IVERy||o < 7ot " h(t) for k =0,1,2,
IV Rsl2 v /2| V2 Rl V ([ VO, R3]l V ||V Rs]|2)
V2| V20,Rs|o V 13|V Ry||o v | VO, Rs |2 < r3h(t),
IV Ralla V([ V2 Rall2 V [ VO, Rall2 V ||V Rall2)
VE(IV2Ryll2 V VO Rall2) < rat'/Ph(2),
IV Rs||> V 12|V Rs |2 V ]| VO, Rs |2 < rsh(t)

(3.32)

(3.33)
(3.34)

for some positive constants r;,1 < j < 5, where h € €(ly, R") satisfies the condition intro-

duced above.

Now we derive preliminary estimates of Gy, Gs, o, G5, H; and ¢/, which are functions defined

by (q7 GQ)

Lemma 3.1. Let 0 < < 1 and I = (0,7] with 0 < 7 < 79. Let w, satisfy (A1) and let

(q,0) € Xo(I) with
lgs L=(1, H)|| < flwa; L2(L HA)|, - Nlwgs L(1, HP)|| < [lawa; LI, H?)||.
Then the following estimates hold for allt € I:

IVGill2 < Clo(llqll2) + [V Rs]l2,

IVGillz < CtH I ([{x)gll2) + To(llgll2)) + IV s,

IV2Gills < CL(|[Vdll2) + [IV?Rs]l2,

IV2Ghl2 < CtH(Lo([[{x) Vall2 + llall2) + L([[Vall2)) + [IV*Rs |2,
IVOGill2 < CL(0wgll +tlqlls) + VO Rs|l2,
IV20,Ghll2 < CL([Vaiglla + 72 Valls) + [ V?0,Rs|l,
IVa,Gill2 < Ct (I ([(2)gll2) + To(llgll2)) + Ct~H (Lo(|1{x)Brgll2

+ 72 (2)qlls) + L ([Oglla + 2 lqlls) + IV O Rsla,

IVGsll2 < Clo(|lqll2) + |V Rs]|2,

(3.35)
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IV2Gsl2 < CL([|Vqll2) + [[V?Rs|, (3.44
IV9,Gsll2 < CLi(|0sqll2 + t?(|qlls) + [[ VO Rs]|2, (3.45
VR, o ||y < Ct*P(|VGL||2 + 7| VGs|l2) + |[VFRy|lz for k£ =0,1,2, (3.46
(z) V0o |ls < Ot (| VG2 + [|[VGsll2) + [|VFRy|la - for k=0,1,2. (3.47

Proof. From the definitions of B; and Bs, we obtain
G1 = Fi(PNy) + E1(N2) — R3, G3= —F|(Ny) — Rs,
where N; = —x Req(2w, + q), Na = Req(2w, + ¢), so that

3tG1 — Fg(P@tNl) —|— Eg(atNQ) - ath,

Gy =t (Fo(z - PNy) + Eo(x - No) + %El(NQ) + Fy(Nz) — Fi(N2)) — Ry,
0,G1 = —t2(Fy(z - PNy) + Eo(z - No) + %El(]\fg) + Fo(Ns) — F1(N3))
+t Y Fy(x - PO.Ny) + Ey(z - 0,Ny) + %Eg((?t]\fg) + F1(9,Ny) — Fy(9,Ny)) — 0, Rs.
By Lemma 2.2, especially by the estimates (2.40) and (2.41), we obtain the following:

IVGill2 < Io([[Nill2) + Lo([[Nal2) + [V Rs|[2
< Io([lgll2llz(2wa + q)l0) + Lo([|gll2]|2wa + gllcc) + [V B2,
IVGills <t H{I1([[{x) Nill2) + L1 ([(x) Nall2) + T ([l No o)
+ Ly (| Nall2) + Lo([[ Nall2)} + 1V Rl
<t HI 1 (|lzglloll{x) (2wa + @)lloo) + L1 (llgll2[[{) (2wa + ¢)[|0)
+ Ia(llgll2]2wa + qlls) + 1-1(llall2]|2wa + gl )
+ Io(llgll2l12wa + qllse)} + |V Rs]|2,
IV2Gilla < L[V N l2) + L([[V N2|l2) + [V Rs]l2,
IVNL2 < 2[[Vall2llz(wa + @)l + lalle(l2wa + qlls + 2[|aVwal[s),
[V Nala < 2([[Vall2llwa + qlloo + llgll6l| Vwalls),
IV2Glla < ¢ H{Io(|[{2) VN [l2) + Lo([| () V Nal2) + Lo(|| Na|l2)
+ Io([[VN2]l2) + LIV Naol2)} + ([ V2R3,

{2}V N l2 < 2([[2V gl || {x) (wa + @)oo + [lzglls]|{2) Vevalls) + [lalla]|(x) (2wa + )|,
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{2} VN2l < 2([[Vall2ll(2) Cwa + @)l + llalls]l(z) Vewalls),
IVO,Gillz < Li([|0:N1]|2) + L (|0:N22) + ([ VO, Rs |2
< 2L(|10qll2 |2 (wa + @)oo + llallsl|z0walls)
+ 20 (|10gl2llwa + qlloe + llallsllOrwalle) + VO Rs2,
IV20,Gil2 < L([VONi2) + L([VONs|2) + [[ V20, Ry 2
< 2L([IVOu|l2|lz(wa + 9)llo + 10eall6llwa + alls + 10eall6l|[2Vwalls
+ [IVallsl|[z0walle + llalls||Owalle + llalls[[VOrwalls)
+2L([Val2l[wa + all + [|0edll6]| Vwalls
+ VallsllOnwalls + llgllsl Vrwalls) + V20, R,
IVO,Gilla < t2(La([(2) Nilla) + T ([(2) Nall2) + Ta (|l Na|l2)
+ L ([[Nafl2) + To([[Nall2)) + ¢~ (To([[{x)9:N1ll2) + To([[(x)D;Na||2)
+ Lo([|0w™ Nall2) + Lo([|0:Nall2) + L ([10:N22)) + [[VE: Rs 2,
[{2)0eN1ll2 < 2([[x0eq ||| (z) (wa + @)oo + [lzg]l3]|{2)Drwalls),
[{2)0eNa[2 < 2(][0cq|l2[[(2) (wa + oo + gl (z) Dewalls),
10s0™" Nallo < [|0:Nallo/s < 2([|0sqll2]lwa + qlls + [lalls|rwall2),

10:N2l2 < 2([|9gll2llwa + glloe + [lallsl[Orwalls)-

From these estimates together with (A1) and (3.35), we obtain (3.36)—(3.42). In the same

way we can obtain (3.43)—(3.45).

Finally, we obtain (3.46) and (3.47) from (2.34), (2.35), (3.11), (A1) and (3.35). In the

proof of (3.47), we also use (3.10) and Hardy’s inequality.

Lemma 3.2. Let 0 < f <1 and I = (0,7] with 0 < 7 < 79. Let w, satisfy (A1). Let K,

satisfy (3.23) and
HVBaHoo v HVBeaHoo N HatKaHoo < Ct™1.
Let (q,G3) € Xo(I) satisfy (3.35) and

L]l < C(1 — Int).
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Then the following estimates hold for allt € I:

IVGll2 < Cth(llgll2(1 = Int) + o2 + [IVGI2) + [V Rz, (3.50)
IVGllz < Cho([{)all2(1 = Int) + [lollz + IVGll2) + [ VRull2, (3.51)
IV2Gollz < CtI([Vikqll2(1 = Int) + ¢ lgllz + [[VLl2) + |V Rz, (3.52)
IV2Gall: < CL(IK2) Vieall2(1 = Int) + 7 lgllz + [VL2) + IV Rall2, (3.53)
IVO.G5ll2 < Ch(llgll2(1 = Int) + [lofl2 + [VG]]2)
+ Cth([|9yglla(1 = ) + | Vicqllat ™/ + ¢ lq]l2
+[100ll2 + IVOG 2 + (ol + [[VG|2)t™2) + [V Rall2, (3.54)
IVO.Chll2 < CL(|[{x)Dralla(L — Int) + [ (&) Vieallat ™ + 7 lgl2
+ 0o llz + IVOGIlz + (lollz + VG2t %) + VO, Ra 2. (3.55)
Proof. The proof is the same as that of Lemma 5.2 in [13]. O

Lemma 3.3. Let 0 < < 1 and I = (0,7] with 0 < 7 < 79. Let w, satisfy (A1). Let K,
satisfy (3.23) and (3.24). Let (q,G2) € Xo(I) satisfy (3.35) and

[Llloo VIVL]s < C(1 = Int) (3.56)
for allt € I. Then the following estimates hold for allt € I:

[Hiwall2 < C(([{z) " olls + [[VGl2) (1 = Int) + [[{x) "'V - o]

+E(VG |2 + [VGslla) + IV Galla), (3.57)
{2} Hiwall2 < C((lofls + [[VG2)(1 = Int) + |V - o2

+(IVC |l + [V Gsll2) + [VGalla), (3.58)

[{z) H10pwall2 < C(||[ L]l + ILll6(1 = Int) + [V - ofls + [[V - Glls
+ P (VG2 + M IVGsll2) + [[VGall2)t ™2, (3.59)
(@) (O H1)wall2 < C(([|0 |3 + [VOG[2)(1 = Int) + |0,V - o2

+([VOGills + V(1 Gs)lla) + VO Ghalls

+t7H([lollz + [ VGll2)), (3.60)
IV Hiwa|ls < C(IVL[2(1 = Int)* + ||V - of|3(1 = Int) + [VV - L]

+ 7 ([loll + IVG2) + IVGilla + [ VGs]ls
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+[[VGa|l2(1 = Int)),
IV i Hi8swalls < C((|[L]loo + [[VL[[3) (1 = Int) + [[VL][o(1 — Int)?
+t7H ([lollz + [ VGlo) + |V - olls(1 = Int) + [[VV - L]}
+ VG2 + 7 H[VGs|l2 + IVGalla(1 = )2,
IV i (OcHy)walls < C([VO,L|2(1 — Int)® + VO,V - Lllz + t =" ([|0so[|2

+[VOGll2 + [VL[2(1 = nt)) + (o]l + [VG]2)
+ [[VO.GL |2 + VOt 72Gs) |2 + [V, Gall2(1 — Int)).

Proof. We rewrite H; defined by (3.13) as

Hy =iQg,(L,-) + (1/2)L* + G° —t7'G3.

Using (2.32) and (2.33) together with (3.9), we obtain

[Hywallz < [(z) " ollsll{x) Vi, walls + [ Gll6 IV i, walls
+1{2) 'V ozl {@)walles + IV - Gllzllwall
+tT VG a(llwalls + [[(x)wallo) + 77V Gs|l2 ]| walloo
+|Gallsllwalls + [ LIl (I1{2) "o llsll@)walls + 1Gll6llwalls),
[z} Hywalla < [lols]|(2) Vi, walls + |G lle[1(2) V i, walls

+(IV ol + [V - Gllz + 7 (IVGill2 + t7HIVGs]l2)) [{2)wall

+IGallsll(z)walls + 1Ll llsll @) walls + 1Gll6ll (z)walls),
() H10ywall2 < ([ Llloo || (2) VOrwall2 + [ L6 Kalloo | () Orwalls

+(IV-olls + [V - Glls + t72(IVGilz + ¢V Gsll2) [{2) dewalls

+[1Gall6 ]| (x) Orwalls + 1Ll ool L ]I () Oprwall5-

Hence we obtain (3.57), (3.58) and (3.59) by (A1), (3.23) and (3.56).
Taking the time derivative of (3.64), we obtain

OH, =i(0,L) -V, + (i/2)(0,V - L) + L - (0,K) + (3,G°) — 0,(t ' G3).

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)
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Using (2.32) and (2.33), we obtain

[{2) (O Hy)wall2 < (|00 ls][{2)V ke, walls + (101G l6][(2)V k. walls
+ 10V - oll2 + 10,V - Gllz + [ VAG 2 + 7 V(¢ Gs)l|2) (@) wal oo
+110:Galls | (z)walls + 10Kl (loll2 ]| (2)walloo + 1Gl6ll {z)walls)
+ [ Ll ([0 lsll(z)walle + 10:G 6] (2)walls)-

Hence we obtain (3.60) by (A1), (3.23), (3.24) and (3.56).
Taking the covariant gradient of Hyv, using (3.64) and the identity

VkVk, =V V—iKVg, —i(VK,), (3.66)
we obtain

VKHlv =1L VKGVU + (Z(VL) + KL) . VKaU
+((i/2)(V - L) + (1/2)L* 4+ (G® —t7'G5))Vkv
+((i/2)(VV - L)+ L - (VK)+ V(G° = t71G9))v. (3.67)

Using (2.32) and (2.33), we obtain

IV Hyolly < [[VLI(IVE,Volls + [V vlleo + 1K ooV, v]s)
+ IV LlsIVkvlls + IVV - Lll2]|v]lo
+ VL2l Lo (V& v]ls + [[v]oc)
+ IV Ealloo(llollzlvfloe + G l6llv]ls)
+ (IVGill2 + [V Gsll2) (72 [V icvlls + 0]l o)
+IVGala(IVkvlls + [[0]l00)- (3.68)

Applying (3.68) with v = w, and using (A1), (3.23), (3.24) and (3.56), we obtain (3.61).
On the other hand, (3.62) follows from (3.67) with v = Jyw,, except for a slightly different
estimate of the contribution of the first two terms in the right-hand side of (3.67), namely

IL - Vi, VOrwall2 + (VL) Vi, Orwall2 < || Lllool| Vi, VOswall2 + VL3]IV &, Ostwa|s-
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Taking the covariant gradient of (0,H;)v, using (3.65) and (3.66), we obtain

Vi (0 H v =i(0,L) - Vi, Vo + (i(VO,L) + K(8,L)) - Vi, v
+ ((i/2)(0,V - L) + L - (O,K) + 0,(G° —t7'G3)) Vv
+ ((i/2)(VO,V - L) + (8,L) - (VK,) + (VL) (8, K)
+ L(VO,K) + (VO,(G° — t71G9)))v.

Using (2.32) and (2.33), we obtain

IV (OeH1)v|[2 < [VOL|2([|VE, Vo3 + [[Vi,vlloo + [ K loo[ Vi, v]]3)
+10:V - L2 Vi vlos + VOV - Li|2]|v][
+ VK[ (|0 |l2][v]lc + 10:G 6] v]l5)
+ [0 Kall oo | VL2 (Vv + [[0]loc)
+ VO Kol (llol2llv]lso + [|Gll6llv]l5)
+ VO L2 (I Lo IVrvls + (IV L3 + | Llloo) [[0]loo)
+ (IV0Ghlla + VOt Ga)ll2) ([ Vil 0 + [[0]]00)
+ [VOGalla (I V i vlls + [|v]]s0)-

Substituting w, for v and using (A1), (3.23), (3.24) and (3.56), we obtain (3.63). O

We next estimate the solutions ¢’ of the Schrodinger equation in (3.17). The estimates are
given in differential form, but should be understood in integral form. The derivation in the

proof is formal, but the estimates in integral form are justified by Proposition 4.1 in [13].

Lemma 3.4. Let 0 < f <1 and I = (0,7] with 0 <7 < 19. Let (wy, K,) satisfy (A1), (A2)
and let By, Beo satisfy (2.31) for 0 < j < 1,0 <k <2 andr = oco. Let (q,G2) € Xo(I) satisfy
(3.35), (3.56) and in addition

IVGl2 VT IVGE]2 < O, (3.69)
IVOLll2 vV VG le v ¢V G3le < CE2, (3.70)
IVOV - Lils V [ VOGS, V [V, GS) |2 < Ct/4 (3.71)
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for allt € I. Let ¢ with (¢',0) € Xo(I) be a solution of the Schrédinger equation in (3.17).
Then the following estimates hold for allt € I:

Ol 2] < [1Ba o, (3.72)
0ul|q ll2] < IVid ll2 + 2Ry 2, (3.73)
1010 ll2] < CE MV ll2+ IV lls + (10 |0) + 14 [12)

+bot 2 N\¢'ll2 + [[0:Ra 2, (3.74)
Oul20,q 12| < IVEOG N2+ CE M aVied ll2 + (Vi |13
+ [l2q'[loo) + 7222 |l2) + bot 2 (|2q |2 + |20 Ry, (3.75)
01V [l2] < CEHIVES |2 + 110:d'[|2)
+ 17 (IVkd |0 + 1101 |3 + V5 5)

+ VR |2+ ¢ oo + 72l 12)

+bot (Vi ll2 + bot ¢ |2 + IV kO Ra 2, (3.76)
(@) Axd'll2 < [[(2)0rd |2 + Ct2|[ (@) |2 + | (2) Ba o, (3.77)
IViAkd |2 < [Vidid |2+ CE2Vid 2 + ¢ I¢l2) + Vi Ba - (3.78)

Proof. Applying standard L? estimate for the first equation of (3.17), we immediately ob-
tain (3.72).

We next estimate xq’. From the commutation relation [z, H] = Vg, we obtain

i0q = Vg + Hrqd — xRy, (3.79)

which implies (3.73).
We next estimate 0;¢'. We take the time derivative of the first equation of (3.17) to obtain

10,0, = HOwq + (0,H)q' — O R, (3.80)

with

OH = i(0,K) -V +(i/2)(0,V - K) + 0,B%. (3.81)
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Hence we obtain
10:100 || < (1B H)g' |2 + 10, Ba o,
10 H)d' |2 < 0 Kalloo IV d'll2 + [0 LN6 IV d'lls + 0.V - Lll2]l¢ [l
+([10:V - Kolloo + 10:Bialloo) 14 ll2
+ (10:G%ls + 1071 G3) l6)lld -

Using (A2), (3.70), (3.71) and a covariant Sobolev inequality, we obtain (3.74).
We next estimate xd;q’. Multiplying = by (3.80) and using the commutation relation
[z, H] = Vk, we obtain

i0yx0yq' = Vg + HxOpg' + x(0,H)¢ — 20, Ry, (3.82)
and hence we obtain
Oullx0id' 2 < V0 |2 + |2 (0 H ) |2 + |20 R |2

Estimating ||z(0;H)q'||2 as before with V¢ and ¢ replaced by =V ¢ and zq’ respectively,
we obtain (3.75).
We next estimate V0;q’. We take the covariant gradient of (3.80) to obtain

10,V 0yq = (0K +VB2)0id — (1/2)VAr0yq' + BEV 0,q’
+ Vi(0,H)¢ — VOR,. (3.83)

Hence we have

OV x0:d |2 < 10K + VBR)Ohd ll2 + [V i (0:H) |2 + IV kO R (3.84)
with

Vi(0:H)q =i(0,K) - Viq + (i(VO,K) + (i/2)(0,V - K) + (0,B2)) - Vi
+((i/2)(VOV - K) + (VO,B3))d -
We estimate each term of (3.84) as follows:
10K + VB)0:d ||z < 110:Ka + VBl 102
0L+ VG — 7'Vl 0 s
< CE o 2 +t7210d 1),

1@ E)VEcd ll2 < CEHIVEA |2 + ¢ Vi lIs),
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I(VOE)Vid |2 + 118V - K)Vicd |2 + 1(8:B) V|2
< (IVO Koo + 10:V - Kalloo + [0:Bpalloo) [V icd'lI2
+ (IVOL[l2 + |0,V - LI2) [V k¢ [l
+(10.G[ls + 10:(t7 G 16) IV icd' I3
< (bot 2+ Ct*)|Vid |2 + C¥ |V k||
(VoY - K)o+ [[(VO:BR)d |12
<|VOV - Kollsolld l2 + VOV - L|[2[l¢ [0
+ VOB lloolld |2 + VOGP |a]l¢ [l 0
+ Vot G3) 210 [l

< (bot >+ C2) gl + C |-
Here, we have used (A2), (3.41), (3.70) and (3.71). The constant by is the one which appears

in Lemma 2.1. Substituting these estimates into (3.81), we obtain (3.76).
We next estimate (2)Axq and VxAgq'. Using the first equation of (3.17), we have

{2) Axed'll2 < 11(2)0:dll2 + I Ballocll(2)d ll2 + [[ ) Rall2,
IVkAkd Nl < [IVx0:dll2 + | BollocIVid |2 + 1V BR)d |2 + |V i Rall2-

On the other hand, from (A2), (3.69) and (3.70), we have

I(VB)d 2 < IVBrallslld' 2 + (VG s + VG5 5)ll lle

<O Hlg' 2+t 2 Vid |-
From these inequalities, we obtain (3.77) and (3.78). O

Lemma 3.5. Let 2 < r < 3. We define

n =K%+ V- L5 + IV - Kalloo + | Kl + IV - L[5,

3

= [ K)1% + IVLIE + VAl

i =K% + IVLIS + [ Kl VEalloe + [VV - Kolloo + [IVV - L5,
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Then the following estimates hold:

@)V rcvlls < [[(@)Volly (@) Av]ls + [|Vo]l2) /2

+ 1 ol @)olly (1) Vollz + flo]lz) 2, (3.85)

{z) Aol < J[{z)Avll, + nllz)oll,, (3.86)
Vil < 1A, + 2], (3.87)
IVAv|y < [ViAgv]ls + |V EKallool[Vll2 + 7][v]]2. (3.88)

Proof. The proof is the same as that of Lemma 5.5 in [13]. We remark that in our case the

term (V - K)v appears in Agv, which disappears in the Coulomb gauge case. Il

Now we will show that I' maps a bounded set of X (I) into itself, where I = (0, 7] with 7
sufficiently small. In what follows we assume that (¢, G2) € X (1) satisfies

la(®)ll2 < Voot*h(t),  [{z)a(t)ll2 < Vorh(2), (3.89)
[(@)a()l2 V [[(z) Aq(t) [l < Vot~ h(t), (3.90)
IVOa(@)ll2 V IV Aq(t)]|2 < Vat~*h(t), (3.91)

IVG2(t)]l2 V IV Ga(B)l2 V [V OGa(t)l|2 V [ VGa()]]2)

VE(|V2Ga(t) |2 V | VO,Ga(t)|l2) < ZtV2h(t) (3.92)

for some constants Voo, Vo1, Va2, V3, Z and for all t € I, with A introduced in the definition of
X(I). Note that from the definition of V5, we have

I{z)q ()]s < /0 dt'|[(z) (1) [|l2 < Vah(?),

so that we may assume Vg < V5. From (3.89) and (3.90) together with the Sobolev inequality,

we have

K2)Va(®)ll2 < () Aq(t)llzll@)a(®)l]2)? < Vit~ /2h(t) (3.93)

for some constant V;. We may assume that V; < V; < V5.

Lemma 3.6. Let 1/4 < 8 < 3/4 and I = (0,7] with 0 < 7 < 79. Let w,, K, and the
remainders R;, 1 < j <5, satisfy the assumptions (A1), (A2) and (A3). Let (q,G2) € X(I)
satisfy the conditions (3.89)—(3.93), and let T be sufficiently small so that (3.35) holds and
that

(Vo +16)h < ¥4 At7VA28 0 7 < 43/ (3.94)
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for all t € I, where r¢ = ro + 13 + 15. Then the estimates (3.56), (3.69)—(3.71), and the
following estimates hold for allt € I:

IVGilla < C(Voy +r3)t ™', (3.95)
IVGill2 vV [VGslla < C((Vaot'?) A Viy + 76)h, (3.96)
IV2Gy |2 V ]| V2Gy |2 < C(Vi + r3)t 2N, (3.97)
IV2Gslls < C(Vi+rs)t 12, (3.98)
IVO,G1||2 V| VO,GL|2 < C(Va + rg)t_lh, (3.99)
IVO,Gslla V |V (t1Ga) ||l < C(Va + 75)t™ (3.100)
|V20,G1|2 < C(Vy + Vi + rg)t*”/Qh, (3.101)
IV oy V t||VFOo ||y < C(Voy 4+ 76)t *h  for k =0,1,2, (3.102)
(z) Vo |y < C(Voot? + 16)t™*h for k=0,1,2, (3.103)
VG2 V[V Ghle < {C((Vi + 1)t 2(1 — Int) + Zt) 4 ry}t*/?h, (3.104)
IV2Ghl2 V t V2 Ghlla < {C((Vi + re)t"? + Z8%) + 1y}t 2h, (3.105)
VO,Ghl2 V t|VOGhl2 < {C((Va + 16)t*(1 —Int) + Zt) + ry}t Y2, (3.106)
| Hywgl|z < C{(VootY? + 76) (t° + t~1H5) + 21712} h, (3.107)
1(z) Hyw,||s < C{(Viy + 16) (¢t~ + ¢ 140) 4 Z¢71/2}p, (3.108)
[() Hi0wallz < C{(Vor + re) (¢72°/2 4 ¢71912) 4 Ze7 217120, (3.100)
() (D, Hy )wg|la < C{(Va +16) (7 +t71) + Zt71/2}¢71h, (3.110)
IV ke Hywg||2 < C{(Vi +16) (% +t71) + Zt7V2(1 — Int) }A, (3.111)
|V x HyOpwglls < C{(Vi 4+ 1) (t 2 +t71) + Zt7V2(1 —Int)}t~Y2h, (3.112)

IV i (8:Hy)wal2 < C{(Va+16) (17 +¢71)
+ Vst 2 4 Zt7V2(1 —Int) } e A (3.113)

Proof. The estimates (3.95)—(3.103) are obtained by substituting the bounds (3.89)—(3.92)
on (q,Gs) into the estimates of Lemma 3.1. Then, these estimates together with (3.92) and
(3.94) yield the estimates (3.56), (3.69)—(3.71). Once we obtain (3.56), we can use Lemmas 3.2
and 3.3 to prove the estimates (3.104)—(3.113). O
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Lemma 3.7. Let the assumptions of Lemma 3.6 be satisfied and Rl = Ry — Hyw,. Then the
following estimates hold:

t
Nop = sup t_mh(t)_l/ d' | Ry(t) |2 < r1 + C{Voo (£ + r6) (71/27F 4 771240) 4 73,
0

te(0,7]

¢
Ng1 = sup h(t)_l/ dt'||[{z) Ry (t')]|2 < m1 + C{ (Vo1 + 7“6)(7'1_6 + TB) + ZTI/Q},
0

te(0,7]

¢
Ny = sup th(t)l/ dt'|[(z) 0 Ry () || < 71+ C{(Va + 16) (7P + 17) + Z71/2},
0

te(0,7]
t
N3 = s?p] BRIV RL(E) |2 \// dt'||V g O: Ry () |2}
te(0,7 0

<1+ 021 =1n7)) + C{(Va +16) (732722 4 7V2) - Var + Z7(1 —In7)}.

Proof. The estimates follow from (A3) and (3.107)—(3.113). In the proof of the last inequality,
we also need the estimate ||K,Ry; L*((0,t], L?)|| < Cr(1 —Int)t~'h(t). For the proof of this
estimate, see that of Lemma 5.7 in [13]. O

We now turn to the construction of solutions (¢’, G%) of the linearized system (3.17). We
consider (g, Gs) belonging to a bounded set of X ((0,7]), defined by (3.89)—(3.92) for some
7,0 < 7 < 79 . We shall deal with solutions (¢’, G) of the system (3.17) defined in an interval
I = [to, 7] N (0, 7] for some ty with 0 < ¢y < 7. We shall need to estimate (¢’, G%) in X (/) and

for that purpose we define the relevant norms

Voo = sup t 2R ld 02, Viy = sup ()" {@)d (1), (3.114)
tel tel

Vs = sup th(t) " (I{2)0:d (t)ll2 V [[{2) Ad (1)]|2), (3.115)

S

Vs = sup t*2h(t) " (VO (t)ll2 V [IVAG (2)]]2), (3.116)
te

2" =sup 20t HIVG()]l2 v HIV2Gy ()]l V IVOGS ()12
te
VIIVG(t)ll2) v E(IV2G )2 V [VOG:(#)]2)}- (3.117)

For technical reasons, we shall also need the following auxiliary norms:

Vi = sup t'2h(t) M| {z)Vd ()]|2, (3.118)
tel

f/l’ = sup tl/Qh(t)_lﬂ(:)3>VKq'(t)H2, (3.119)
tel

Vg = sup £ 0() ™" (@) Vicd (1), (3.120)
€
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Vijs = sup t4h(8) " (@) g (t) oo, (3.121)
Vi ==§g§>th(t)’1H(x>6%th)Hz, (3.122)
ﬁﬁx==igyth@>’WKx%ﬁKq%ﬂHz, (3.123)
= ViV Vi, (3.124)
V=V, v Sup th(t) [ Vid (t)]lo, (3.125)
ﬂégzigt“%UYJN&dﬁﬂbvHVKd@WmVHV%d@WQ, (3.126)
Vi = sup £¥2h(6) " [V icOig/ (1) (3.127)
ﬁg==i§t”%N®”HVKAK¢@Nh, (3.128)
V=V, VVi,. (3.129)

We can now state the existence result of solutions of the linearized system (3.17).

Proposition 3.8. Let 1/4 < § < 3/4 and [ = (0,7] with 0 < 7 < 715. Let w,, K, and the
remainders R;, 1 < j <5, satisfy the assumptions (A1), (A2), (A3) and let By, Beo satisfy
(2.31) for 0 < 57 < 1,0 < k <2 andr = oo. Let (q,Gy) € X(I), satisfying the bounds
(3.89)—(3.92). Then, for T sufficiently small, there ezists a unique solution (¢',G%) of the
system (3.17) in X (I), and that solution is estimated in the norms Vi, Vi, Vy, V3, Z' defined
by (3.114)~(3.117) by

Voo < Noo, (3.130)
Vi < boNoo"/? + Not + No7 + Ny7%/2, (3.131)
V) < boNoor? + byNoy + Ny + Ny7t/2, (3.132)
V! < bo(Noo + boNot + Na) + Na, (3.133)
Z' < C((Va+716)m2(1 = In7) + Z7) + 14 (3.134)

Proof. We first choose 7 sufficiently small to satisfy the asymptotic region conditions (3.35) of
Lemma 3.1 and (3.94) of Lemma 3.6, so that we have (3.56), (3.69)—(3.71) and all the estimates
in Lemma 3.6. Furthermore, from (3.94), (3.97) and (3.102), we obtain |[VV - L|, < Ct~1/4.
This estimate, together with (A2) and (3.56), we obtain

n,i < bt '+ CO(1 —Int)?, 7 <bpt 2 +Ct ' (1—Int), (3.135)
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where n,n and n are defined in Lemma 3.5.

Since GY is explicitly defined by the expression (3.17) and satisfies the estimates (3.104)—
(3.106), it is defined in the same interval as (¢, G2) and satisfies the estimate (3.134).

We proceed to the construction and estimates of ¢'. Let 0 <ty < 7 and let ¢;, be the
solution of the Schrédinger equation in (3.17) with initial condition ¢; (to) = 0. We shall
derive estimates of (g;,,0) in X([to,7]) that are uniform in ¢y, by the use of Lemmas 3.4
and 3.5. Once we obtain such estimates, we can construct ¢’ as the limit of ¢; as to — 0.
Indeed, let 0 <ty < t; < 7. Since ¢ = ¢, — q;, satisfies the equation i0,¢" = Hgq' , we have

the conservation of the L?-norm of ¢’ , that is,

la @)1l = llg" ()1l = llgs, (t)ll2 < Viots*h(tr),

where V{, is defined by (3.114). Since the right-hand side goes to zero as 0 < ty < t; — 0,
we see that ¢’ = limy,_,oq;, exists in L>((0, 7], L?). Furthermore, since (gj,,0) is uniformly
bounded in X ([to,7]) with respect to Z;, we can show that ¢; converges to ¢', strongly in
€((0,7], H®) for 0 < s < 3, star-weakly in 6, ((0,7], H*) and pointwise in H3. We can also
show that ¢ satisfies the Schrodinger equation in (3.17), and that (¢’,0) € X((0,7]) with the
same estimates in (0, 7] as (qj,,0) in [to, 7], uniformly with respect to £,. For the detail, see
the proof of Proposition 5.1 in [13].

We shall now derive estimates for ¢;,. In the computation below, we omit the subscript #g
for brevity, and we use the definitions (3.114)—(3.129) with I = [to, 7].

Integrating (3.72) and (3.73) in [to, t] with ¢(to) = 0, we obtain

HQ’(t)Hzﬁ/ dt'|[ ) Ra ()

to

@@l <77 [ at e )+ [ e @) Rl

to to

so that
Voo < Noo, Vi < V{712 + Ny (3.136)
Integrating (3.74) and (3.75) in [to, t] with 0,¢'(to) = iR (t), we obtain

t
K)o ()2 <(Vs, + C(VI + Vi) + ‘/0/1))/ dt’ t72h(t')

to

t t
+m%/dmwmw+wwmmm+/wwwmmwm

to to
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so that
S _1/2 IRy 1/2
Vo, < boVoy + Viur Py oW+ V3o + Vg + Vo)™ 24 No.

Integrating (3.76) in [to, t] with Vx0,¢'(ty) = iV Ry (to), we obtain

t
IV x0d )ll2 < boV7 / at' 15t

to

t
+ C(Vy + Vi g+ V] + Vi + Vit'?) / dt' " 2h(t')

to
¢ t
bV, / dt' 52 + ||V i Ba(to)]|» + / |V O R (#) o,
to to
so that
Vi < bo(Voo + Vi) + C(V" 4 Vo o+ VI o Vi o Vg7 %) 712 4 N,
From (3.77), (3.78), we then obtain
‘72/@ < V2/,t + C‘/E)llTl/2 + No,
Vie < Viu + C(VIT2 4 Vigr) + N3,
so that VJ and V7 satisfy the same estimates as Vo ‘73”“ namely
Vi < boViy + V% 4 C(V] 4 Vg + Vi + Vo )72 4 N,

Vi < bo(Vig + Vi) + C(V3' + Vg + Vi + Vi + Vi) 7% + N

39

(3.137)
(3.138)

We will next replace the covariant derivatives in (3.136), (3.137), (3.138) with usual ones, by

the use of assumption (A2) and Lemma 3.5 together with the Sobolev inequality. From (A2),

we obtain
V< V{+CVyr /(1 —In),
Vi, <Vi+CVart?(1—Inr).
From Lemma 3.5, especially (3.85), and (3.86), (3.87) with r = 2, we have
Vijg < (VI(Vy + VTPV 4 (Ve (V) + Ve r'/2)) V27 2(1 = In )

< (V)24 COV + V7274 (1 = Inr),

(3.139)
(3.140)

(3.141)
(3.142)

(3.143)
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Here, we have used (3.135). From the Sobolev inequality, the estimate (3.87) with » = 3, and
(3.135), we obtain

10" ls < (VaV5) /2t~ n(t),
IVikd lloo < (VaV5)? + C(V V) 282 (1 — In )t h(t),
IV5d'lls < ((V3V)2 + C (Vg V) 20> h(t).
Combining these estimates, we obtain
V2y < (VY2 4+ C(Var(1 —In7)? + V{ + V3)). (3.144)
Using (3.88), (3.135) and (A2), and the Sobolev inequality, we estimate
sup 72h(6) | VAG (B2 < V3o + b (VigV3) V2 + (b0 + O7(1 = Inm)) Vi
< Vi bo(Vy'2 4 Vi) + CVgyr(1 = ),
which together with (3.140) implies
Vi < Vi + bV + C(Vy + Vgor/2)r'/2(1 —In 7). (3.145)

Now, we replace the covariant derivatives in (3.136), (3.137) and (3.138) with usual ones by
the use of (3.139)—(3.145). First, substituting (3.139) into the second inequality of (3.136),

we obtain
Vi, < ViTY2 4 CVYm(1 — InT) 4+ Ny (3.146)

Next, substituting (3.139), (3.140), (3.141) into (3.137) and substituting the result into
(3.142), we obtain

V) < bV + Vir 2+ C(Vir(1 —In7) + (VJV)Y2 4+ V] + Vg, T3) + Ny (3.147)
Substituting (3.139), (3.143), (3.144) into (3.138) and using Vy,, < (V{'V3)'/?, we obtain
Vs < bo(Voo + Vi) + C((VaV)Y2 + Vo + VI + Vi (L= Inm) + Vo) 7' /2 + Ny (3.148)
Substituting (3.148) into (3.145), we obtain
Vi < bo(Vig + Vi) + CUVEV)Y? + (V + Vo) (1= Inm) + V] 4 Vi) 72 4 Ny (3.149)

We next simplify the resulting inequalities (3.146), (3.147), (3.149) by using the inequality

Vi < (V§,Vi)Y? to eliminate V/, the obvious inequality V§, < V4 at some harmless places,
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smallness conditions of the type C7(1 —In7) < 1 to eliminate the diagonal terms in V{; and

V3 in (3.146), (3.147) and some elementary algebraic manipulations. We obtain

Voo < Noo, Vi < V372 + Ny, (3.150)
V) < bVi, + ViTt? + Ny, (3.151)
Vi < boViy + bo(Vi, VY2 + CVy7%(1 — In7) + Ns. (3.152)

Substituting (3.150), (3.152) into (3.151), we obtain
Vy < bo(Noo"? + Noy) + CVyr2(1 — In7) + Na7'/% 4 Ny,

which yields (3.132) under an additional smallness condition on 7. Substituting (3.132) into
(3.150), (3.152) yields (3.131), (3.133). O

We can now derive the main result of this section, namely the existence of solutions of the

nonlinear system (3.11).

Proposition 3.9. Let § = 1/2. Let w,, K, and the remainders R;, 1 < j <5, satisfy the
assumptions (A1), (A2), (A3) and let By, Beo satisfy (2.31) for 0 < j < 1,0 < k < 2 and
r = 00. Then there exists 7, 0 < T < 7y and there exists a unique solution (q,Gs) € X(I) of
the system (3.11), where I = (0,7]. In particular (q, G2) satisfies the estimates (3.89)—(3.92)
for some constants Vo, Vo1, Vo, Vs and Z depending on w,, K, and on the remainders through
the norms occurring in the assumptions (A1), (A2) and (A3). The solution (q, G2) is unique
under the assumption that (q,Gs) € Xo(I), and that (¢, G2) satisfies the following conditions:

g€ L¥(I,H?), xzqeL>(I,H?), tdqeL>(I,H"),
VGy € L¥(I,HY), tVO,Gy € L®(I, L), tV>Gy e L>(I,L%),

{2y @)z < Cha(2)

for allt € I, for some hy satisfying the conditions of Proposition 2.J.

Proof. Proposition 3.8 defines a mapping I' : (¢,G2) — (¢, GY) from X (I) into itself. For
given V' = (Vio, Vo1, Vo, V3) and Z, we define a subset Z of X (I) by (3.89)-(3.92). We show
that for sufficiently small 7 and for a suitable choice of (V', Z), the mapping I is a contraction

on # with respect to the norm

sup h(t) " [{z)q(t)ll2 + Sup t2h(t) [ Va(t)lz + sup 1 2h(t) (VG2 V IV Ga(t)2),
te te
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which we have used in Lemma 2.3.

We first show that I' maps Z into itself. If 5 = 1/2, then it follows from Lemma 3.7 that

Noo < Cr + C(Voor? + 2),
Nor < Cr +C(Voy + Z)7'2,
Ny < Cr+C(Vy + Z)7/2,
(

N3 < Cr+C(Va+ Vs + Z)r'/2,

where 7 = maxj<;<5 r;. Therefore, from Proposition 3.8, it follows that V' = (Vj,, Vi, V3, VY)
and Z' defined by (3.114)—(3.117) satisfy

V| < Cr+C|VIr'2 4 CZ,

Z'<er+C(IV|(1—InT) +7r) + Z)T1/2

as long as the conclusion of Proposition 3.8 is satisfied. Here, |V'| = max{Vqo, Vo1, V2, V3}, ¢ is
an absolute constant, and the various constants C' may depend on the asymptotic functions
(Wa, Sa, Ba, Bea) but are independent of (V', Z). We shall choose (V', Z) such that

Z=2cr, Vo=Va=Vo=V;=2C(r+2).

We shall take 7 sufficiently small, so that the assumption of Proposition 3.8 is satisfied, and

that
20|V |72 < |V, 20((|[V|(1 —In7)+7)+ Z)r'/? < Z.

Then, we find that I'(Z) C Z.

We next show that I' is a contraction mapping on %. We note that Z is closed with respect
to this metric. For i = 1,2, let (¢;, G2;) € Z and (¢, GYy;) = I'(¢;, Ga;). We define (g, Gax)
and (¢, G5.) by fr = (1/2)(f1 £ f2), so that in particular all those quantities belong to Z.
We set

Vo = sup h(t) " [[{z)a-()]l2,

tel

Vie = sup t20(t) 7| Vg (t) e,

tel

Z_ = sup t2(t) (IVGa-(t)]l2 V ¢ VCo (t)]|2),

tel
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and similarly for the primed quantities, and we estimate Vj_, V/_, Z" in terms of Vo, Vi, Z_.

From Lemma 2.3, we obtain

1G1-|[2 V |G3-[|]2 < C'Vo-h, (3.153)

1G1_|l2 V|G |l2 < CtWVy_h, (3.154)

|VFo_|l2 < CVot™*/2h for k=0,1,2, (3.155)

10| |l2] < C (Vo + Z_)t~V/2h, (3.156)

0:|2q||2] < (V]_ 4+ CV{_tY*(1 —Int) + CVy_ + CZ_)t"'/?h, (3.157)
01V ke, q"llo] < C(Vg_t ™ + (Voo V)25 1 Vot

+Vi_t™Y2 4+ Z_t7V2(1 —Int))h. (3.158)

Integrating (3.156)—(3.158) over time and estimating G_ by Lemma 2.3, especially (2.59),
(2.60), we obtain

Vo < Vi_r? 4 C(Vy_r(1—1In7) + Vo2 + Z_71/?),
Vi_<CWi_m' P —n7) + (Vi V)V 4 Vo r' P+ Vier + Z_7(1 — In 7)),
7' <C(Vorm?(1 —In1) + Z_7).
From these estimates, we obtain
Vi 4+ VI +Z <C((Vi_+V_+ Vo) ' 21 —In7) + Vi_T + Z_7Y?),
which implies
Voo +VI_+ 2 <(1)2)(Voo +Vio + Z_)

for 7 sufficiently small. This proves that I' is a contraction mapping, and hence I" has a fixed

point by the contraction mapping principle. O

3.2. Analysis of the Asymptotic Functions. We now turn to the second step, namely
the construction of (wg, Sq, By, Bea), which is an asymptotic solution of the auxiliary system
(2.22), satisfying the assumptions made in the previous step and in particular the remainder
estimates needed for the Cauchy problem at t = 0 for that system. We note that as regards

B, and B,,, we separately construct asymptotic forms Bj,, Bs, and Bs,, namely

BZL = Bi, + B2a7 B;a = Bs,
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in accordance with (2.13). We construct (wg, Sq, Ba, Bea) by solving the system (2.22) by
iteration in the form w, = 3= wa; etc., with w,; = O(#’) modulo logarithms. Then, we first

define the approximate solution of order 0 by

10pwao + (1/2)Awag =0,  weo(0) = wy,
Bigo = Bl(wao), Bogy =0, Bze = B3(wao), <3'159)
8t8a0 = VBlL(wao) — t’1VB3L(wa0), SaO(]-) = 0.

Here, the choice By,g = 0 reflects the fact that By itself is of order t. We next define the
terms of order ¢ by

(

Boar = $Bo(Wa0, Wao, Sa0 + Biao),
10wa1 = 1(Sa0 + Biao) - Vwao + (1/2)(V - (Sa0 + B1ao))Wao
4 (1/2)(840 + Biao)*wao + (Bg + Boar — t ' BS. ) )wao,  wa1(0) =0,  (3.160)
Bia1 = 2Bl<wa07 wal), B3a1 = 2B3(wa07 wa1)7
O18a1 = 2V BE(Wa0, Wa1) — 267V BE (wa0, wa1),  5a1(0) = 0.

For w, and Bsy,, we need the approximate solution of order 2 defined by

(

Bogy = 285 (Wag, Wa1, Sa0 + Biao) — tFo(P(5q1 + Bia1 + Baa1)|waol?),
i@twag = —(1/2)Awa1 -+ 7 Z {(Saj -+ Blaj —+ Bgaj) . Vwak
k=1
+ (1/2)(V - (84j + Braj + Baaj))war} (3.161)

+(1/2) Z (84 + Biaj + Baaj)(Sak + Biak + Baar)wal
j+k+l 1

+ Z lag + Bga (G+1) — lB??a])wak’ wal(o) =0.
\ Jj+k=1

We define

Wq = Wqo + We1 + Wa2, Sa = Sa0 + Sal (3 162)

Bia = Biao + Bia1, B2a = Baa1 + Bas2,  B3q = B3ao + Bsa1.
Then (w,, Sq, Ba, Bes) defined above turns out to be an adequate approximate solution. In
the construction of w,, we omit the contribution of By and B.g, so that they appear only in

R; and Ry. For any polynomial function f(wg, Sq, Bia, B2a, B3s.) and any nonnegative integer

p, we define

f(waysaaBlayBQaaB?)a)Zp = Z f(wajaSakaBlalaBQamaBSan)-
j+k+l4+m+n>p
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The remainders R;, 1 < j <5, defined by (3.14) then become

Ry = Ryo + Ry1,
where
Rig = —iBy - Vw, — (i/2)(V - By)w,
— (Bo(Sa + Bia + Baa) + (1/2) B3 + By — t* Beo)wa,
Riy = (1/2)Awaa — {i(Sa + Bia + Baa) - Vwa + (i/2)(V - (84 + Bia + Baa))w,
+(1/2)(8a + Bua + B2a)*we + Bi,wa — t7 By, we}>2 — (Baata) >3,
Ry = =V B (wa)s2 +t 'V B§ (w,)>2,
R3 = _Bl(wa)22a
Ry = Ryo + R,
Rs = _B3(wa>227
where

R40 = tFQ(PB()’U)a‘Z),

Ry = —PBo(Wa, Wa, Sq + Bia + Bag)>2
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(3.163)

(3.164)

w
—_
D
(S

R
—_
D
Nej

(3.165)
(3.166)
(3.167)
(3.168)
(3.169)

(3.170)
(3.171)

We now turn to estimate (w,, Sq, Ba, Beq). We use the spaces H* = H' N H* and the
notation v € (X, f) to mean that v € ¢(I,X) with ||v(¢); X|| < f(¢t) for all t € I, with

I = (0, 7] for some 7,0 < 7 <1, with 7 = 1 in the present case.

Lemma 3.10. Let 3 > 0. Let w, € H* zw, € H*Y with k, > 7V (5+ 871). Then the
components of W, Sq, By and Be, defined by (3.159)—(3.162) satisfy the following properties:

H" 1), zwe € (H™* 1) 1),
Owao € (H™721),  Oumwgo € (H™73,1),
Biao, Bsao € (H**1 1), By € ((x)H' 0 H* N H* ¢71),

atBlaOa&tBZSaO € Hk+ ! 1)

Sa0 € ]’ijL ! (1 — lnt)) 01Sq0 € (ﬁkJr_l,t_l),

(
(
(
(
& Brao € (()H' M H* N H* t72) + (H*2¢t7Y),

(

Boai € (H**1 t(1 —1nt)), Bag € (H**, (1 —1nt)),
(

9, Boay € (H**' (1 —Int)) + (H™ 7 t(1 — Int)),
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OBy € (H*1 t71) + (H*1 (1 —Int)). (3.180)

Let in addition ky > 2(1+ 871) and define ky = (ky —2) A (ky — B7Y), ko = (k1 —2) A (b +
1—B71Y). Then

wer € (H™ t(1 —1Int)?), zwge € (H™, (1 —1nt)?), (3.181)

Owar € (H™, (1 —Int)?), Owa € (H™, (1 —1Int)?), (3.182)
Bia1, Bsar € (HL (1 —Int)?), Bia € (HM (1 —1nt)?), (3.183)
Oy Bia1, 01 Bsq1 € (H 1 (1 —1Int)?), (3.184)
& Bra1 € (HM 1 71 (1 —Int)?) + (H* 72 (1 —Int)?), (3.185)
Sa1 € (H™ t(1 —1nt)?), 0Opsqy € (H™, (1 —Int)?), (3.186)

Bogy € (H* ™1 2(1 —1nt)?), Bgay € (H* ™ t(1 —Int)?), (3.187)

O Baas € (HF 1 #(1 — Int)®) + (H* 2 #*(1 — Int)?), (3.188)

O, Baas € (HM™! (1 —1nt)?) + (H* 72, t(1 — Int)?), (3.189)
Wao € (H*2 12(1 —Int)*), 2wee € (H* 2(1 —Int)*), (3.190)

Opwas € (H™ t(1 —Int)?), 0wy € (H* t(1 —Int)*), (3.191)

Proof. We note that k; > 5 and ky > 3 provided that k, > 2(1+37!). The properties (3.172)—
(3.189) are proved similarly as Lemma 6.1 in [13]. For the proof of (3.190) and (3.191), we

need the following estimates:

lo*2 Brgllz2 V | Biaglloe V ! (| Bigollz V | Biuolloc) < €, (3.192)

l®* Ball2 V | Braalloe V 7 (Jlw** By ll2 V || Baalloe) < CH(1 — Int)?. (3.193)

These estimates are derived by (3.174) and (3.183), together with the Sobolev inequal-
ity, (2.32) and (2.33). For example, we have

w2 B 2 < 08 | By, < CH(L — Int)?,

since 5(k; + 1 — ko) > 1. Using these estimates together with the Leibniz rule, we obtain

(@) Y (B, =t By, )wa € (H™ t(1 - Int)?).
jH+i=1

Indeed, we estimate for instance

lw*> Bywaoll2 < |lw* Bragll2lwaolloo + | Bia lloo lw*waollz < Ct(1 — Int)*.
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The other terms in J;w,o are estimated in H*? by (3.172)-(3.189) and the Leibniz rule. The
worst term is s2,w,; = O(t(1 — Int)*), so that we obtain (3.191). Integrating (3.191) in ¢, we
obtain (3.190). O

We summarize the information on (wg, Sq, Ba, Bea) which follows from Lemma 3.10 in the

following proposition.

Proposition 3.11. Let 3 > 0. Let wy € H* xw, € H*"Y with k. > 7V (5+B871)V2(1 +
7Y and let ky = (ky —2) A (ky —B7Y), ko= (k1 —2) A (k1 +1—87Y). Let (wa, 4, B,, B.,)
be defined by (3.159)—(3.162) and Bl = By + Baa, B., = Bsa. Then (wa, sq, B.,, B.,) satisfies
the following properties:

c (H™,1), zw, € (H* 1), (3.194)
dw, € (H*, (1 —1Int)?), Oaw, € (H™, (1 —1nt)?), (3.195)
Sq € (H* (1 —1nt)), s, € (HM t7Y), (3.196)

B/, B!, e (H"*' 1), ¢'B e (H" 7Y,

B e ((z)H' N H>N H 71, (3.197)

O,B.,0,B., € (H* (1 —1nt)?), (3.198)
atB/ (< >Hl m H’2 ﬂ H(k1+1)/\(k+—2) t_2>,

d,(t'B.,) € (HM*1 t72), (3.199)

Furthermore B'S, = B} + By, — t7' B3, satisfies the estimate
1Brralloo + 101 Bl < C(1 = Int). (3.200)

Proof. The estimate (3.200) is proved similarly as (3.192) and (3.193) in the proof of Lemma 3.10.
Unlike (3.193), it suffices to show || BS, [|eo VE ™[I BS,lee < C, and this is indeed proved by the
Sobolev inequality as before under the condition k; — 1/2 > 0. The properties and estimates

(3.194)-(3.199) follow from Lemma 3.10. O

We now turn to the estimates of the remainders. The final result will be that the remainders

satisfy the assumption (A3) of above with
h(t) = t*(1 — Int)".

We first consider the part not containing By and B, namely Rii, Ro, R3, R4y and Rs. The
estimates for that part follow from or extend Lemma 3.10. The part containing By and B.g

require different arguments and additional assumptions.
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Proposition 3.12. Let 3 > 0. Let wy € H* xw, € H*"Y with k., > 7V (5+871)Vv2(1 +

B7Y) and let ky = (ky —2) A (ky — 87, ke = (k1 —2) A (k1 +1— 871). Then the remainders
Ry, R3, Ry1, Ry and Ry satisfy the following properties:

Ry € (H" t(1 —Int)*),

Rg, R5, th Hk2+1 t2( —In t)4),

O,R3,t0,R3, 0, Rs € (H"™ t(1 — Int)*),

O R, tatR41 S

(

€ (

€ (

Ryi, tRy € (HM% #3(1 — Int)%),

(H* T #2(1 — Int)®),

Ry, xRy € (H*72 #2(1 — Int)"),
€ (

OtRn,xatRn I{k2 2 t( hlt) )

Proof. We can prove the properties (3.201), (3.202) and (3.203) of Ry, R3 and Rj follow from
the properties of w,g, wa1 and wgye in Lemma 3.10.

We next show the properties (3.204) and (3.205) of R4;. Expanding the right-hand side
of (3.171) and estimating each term by Lemma 3.10, we see that the worst term is ¢ F ( Psa0|wa1|?) =
O(t3(1 —Int)?), so that we obtain the estimate of Ry. We can obtain the estimates of tRy1,
O, Ry41 and td, Ry similarly.

We proceed to the estimate of Ri;. We first consider

53 55 S 55
(Brawa)>2 = Bi,gWas + By War + By Was.

We obtain BY jwes € (H*?,t*(1—1nt)%) by (3.183) and (3.190) together with the Leibniz rule,
without using the cut-off by x°. On the other hand, the estimates of B jw,s and By 1w,
need the cut-off by x°. Indeed, we obtain BY jwas, BY wa € (H*2,t2(1 — Int)*) by the use
of the estimates (3.192) and (3.193). The other terms in Ry; are estimated in H*2~2. The
term of the lowest regularity is Aw,s € (H*272¢*(1 —Int)*), and the term of the worst decay
is 82,wea € (H* t2(1 — Int)®). Thus we obtain Ry; € (H*72t?(1 — Int)®). We can estimate
xRy, 0;R11 and x0, Ry, analogously. O

To obtain the estimates of Ry and Ry, we shall need the following estimate:

Lemma 3.13. Let s € R and let m be a nonnegative integer. Then, for any ¢ € H® with
xp € H57L, the following estimate holds for j,1 = 0,1 :

m—1
A)k .
<l’> { w Z2tk } : Hs—2m—2j—l

k=0

< Ct™, (3.208)
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Proof. We first consider the case j = 0,/ = 0. By the Plancherel theorem together with the
Taylor expansion, the square of the left-hand side is bounded by

{eitm?/z B m} q;@‘ <o [ag e gryIsEP”

2k
k=0

/ de (1 + [¢[2)2m

so that (3.208) follows. If (4, k) # (0,0), we use the relations
[z, U(t)] = —itV, [z, A*] = —2kA*'V and Q,U(t) = (itA/2)U(t). O

We now turn to the estimates of the parts Riq and R4y of the remainders containing By

and B.y. For that purpose, we set

P, (v) = —iBy - Vv — (i/2)(V - Bo)v — (Bo(sa + B.) + (1/2) B + By — t ' Beo)v,
Zi(f) =t (PBof),
so that Ryg = Z1(w,), Ry = Z4(Jw.|*). We also set
%, (v) = —i(9,By) - Vv — (i/2)(0,V - Bo)v

—{(9:Bo)(sa + Ba) + Bo(0i(sa + By,)) + (8:(By — ™' Bu))},
(V%) (v) = —i(VDBy) - Vo — (i/2)(VV - By)v

—{(VBo) (54 + Ba) + Bo(V(sa + By)) + (V(By — t ' Beo)) }v,
(V%,)(v) = —i(VO;By) - Vo — (i/2)(VO,V - By)v

—{(V3:By)(sa + Ba) + (0:Bo)(V(sq + By,))

+ (VBo)(9y(84 + B.)) + Bo(Vi(s4 + B.)) + (VOi(By — t 7' B)) }o,

so that 9,2, (v) = %1 (v) + %, (dyw),
Vo7, (v) = (V%) (v) + (V%) (90) + %1 (Vv) + R, (Vo).

To obtain desired estimates for Ryg and R4, we need additional assumptions for w, , which will
be clearly understood in terms of an approximation w;, of w,. Let w, satisfy the assumption

of Lemma 3.10. We set wy, = wyg + wp; with
1.
Wyo 1= W4 + §ztAw+,
. . 1 1
z@twbl = Z(Sao + BaO) . VU)Jr + —(V : (SaO + Blao))er + §<3a0 + Bla0>2UJ+

2
S S —11S _
+ (BlaO + Bag1 — 1 Bsao)w+a wbl(o) =0.
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Then, it follows that
(), € (H*711), (@2)'0w, € (H™!, (1 —1Int)?) (3.209)
for [ = 0,1. On the other hand, from Lemma 3.13, we see
1) 0 (wao — w)s | < O, |[{2)!8] (wao — wpo): H*'|| < C1*7.

Using the first estimate together with Lemma 3.10, we can show

1(2) 0y (way — w1 ); H*7Y| < Ct(1 — Int)?
From these estimates together with (3.190)—(3.191), for j,I = 0, 1, we obtain

()0 (we — w.); HY| < 77 (1 — Int)?, (3.210)

() (wa — wp); H¥!|| < C+277(1 — Int)*. (3.211)

Now we shall prove the following estimate of Ryg.

Lemma 3.14. Let w, satisfy the assumption of Proposition 3.11. Let By and By satisfy
(2.31) for2 <r <oo and 0 < j, k < 1. Let wy, By and By satisfy in addition

1) ((£0:)"V 2 Bo) (t0)"V*wy |2 V [[{x)' ((t0:)"V*(Bo — ™" Beo) w |2
< OtV (1 — Int) (3.212)
forl,p,r,s=0,1,¢q=0,1,2 withl +q+s <2, p+r <1. Then
1{2) 0 Riol|2 V | VO Rl < C+/2(1 — Int)®. (3.213)
Proof. We first let v be an arbitrary function defined on the space-time, and derive estimates
of Z,(v), %1 (v), (V%) (v) and (VZ,)(v). From Proposition 3.11 and (2.31), we estimate
()" %1 (v)ll2 < [I(x)' By - Vvl + (@) (V - Bo)vll
+{lIBoll2(llsa + Bille + 1 Bolloe) + [1Bo = ¢ Beoll2}I(x) ]|
< [[{x)' By - Voll2 + [[{@)!(V - Bo)vlls + Ct/2(1 = Int)[|(z) 0|
< Ct23)|(2)!Vol|g + Ct Y2 (2) 0] 0o (3.214)
for I = 0,1. If I = 0, we may replace the first term with Ct'/2||Vv||y. Similarly we have
{z)! Z1(v)ll2 < [[(2)!(8:Bo) - Volla + [[{x) (9 - Bo)vlle + C(L —nt)|[{x)' (9, Bo)v|l3
+ Ct™[[{@)' Bovlla + [[(2)" (9(Bo — ¢ Beo))vl2

< Ct23)(x) Vol + C3[(2) 0] oo (3.215)
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for | = 0,1. If | = 0, we may replace the first term with Ct~'/2||Vv||. Furthermore, we have
1(V221) ()l < [I(VBo) - Vulla + [[(VV - Bo)vlla + Ct~*(1 — Int)]|v]|
< Ot V2| Vo|ao + Ct32]|0]| oo (3.216)
1(VZ1)(0)ll2 < (VO:Bo) - Volla + VOV - Bo)vlle + (1 — nt)[|(VO;Bo)o|5
+tH|(0eBo)vll2 + | (VBo)vll2
+ 7 [ Bovllz + [[(VO(By = 7" Beo))o2
< Ct 32| V]|oo + Ot [[0] . (3.217)
It follows from (3.211) and (3.214)—(3.217) that

()0, %, (wa — wy)||2 V |V Z: (wa — wy)||2 < CH/2(1 — nt). (3.218)

For example, applying (3.214) with v = 0;(w, — wp) and (3.215) with v = w, — w,, we obtain
the estimate of ||(x)0:%1(w, — wyp)||2. We can obtain the estimate of [|VO.%Z1(w, — wy)||2
analogously.

On the other hand, using the estimates (3.214)—(3.217) together with the additional as-
sumption (3.212) and the property (3.209) of wy, we see

1(2)8,28, (wy) |2 V |V 0,21 (wy) |2 < CHY2(1 — ). O

Lemma 3.15. Let w. satisfy the assumption of Proposition 3.11. Let By and By satisfy
(2.31) forr =2 and 0 < j,k < 1. Let By satisfy in addition

(VR0 By)w, ||, < Ct3/273F (3.219)
for 0 < j,k,j+k < 1. Then the following estimate holds for 0 < 7.k, 7+ k < 1:
IVEL0! Ryglla V ]| VR0 Ragl2 < CH2777F(1 — Int)*, (3.220)

Proof. We define vy = w, +w,, so that Z,(|wa|*> — |w, |*) = Z4(Rev,v_). From Lemma 3.10
and (3.210), we have the estimates

[(z) Dl v, H3Y < C(1—nt),  |(2)dlv_; H¥Y| < Ct77(1 — Int)? (3.221)
with 7,1 =0,1. Using (2.40) and (2.41), we estimate

IV 2y (ReTov_ )2 < t]j+k+1(||vk8§Boﬂ+v_||2) + 6111 (|| Bovv-|l2),
V100 %0 (Re 0 ) 2 < Tyn(I1() V*0] Bovisv- o).
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Using these estimates, (2.31) with r = 2 and (3.221), we have
IV 0 Za(Jwal® — [ws )2 V 4] V*10] Ba(lwal* = o)
< Otk (1 —Int)h. (3.222)
We next estimate %, (Jw.|?). Using again (2.40), (2.41), we have
IV B[ P)l2 < 1411 (V0] Bolwo[*l2) + 651 1a (|| Bolws ),
IV 0] (w2 < L ([I{2) V0] Bolwy l2)
for the relevant values of j and k. From (3.219) and (2.31), we have
(2)! (V"] Bo)lw ll2 < (V*0} Bo)ws 1ol (2w [|loe < CE2I7F,
() BoV[ws [l < 2] Bol2l Vs | ool () wo || < C72
for [ = 0, 1. Substituting the last two estimates into the previous ones, we obtain
IV Za(fws )2 v V10 () 2
< ORIk, (3.223)
The estimate (3.220) follows from (3.222) and (3.223). O

In Lemmas 3.14 and 3.15, we have assumed the estimates (3.212) and (3.219). These
estimates are stronger than those we can expect from Lemma 2.1, or more precisely the
estimates for solutions to the free wave equations (2.31), so that we impose an additional
assumption for the support of w. Let w, satisty the assumption of Proposition 3.11, and let

Xo be the characteristic function of the support of w,. Then a sufficient condition to ensure
(3.212) and (3.219) is that

IX0V*0] Boll2 V [Ix0V*0] (By — t " Beg)l2 < C7/2737F (3.224)

for j = 0,1,k = 0,1,2. We note that we can only obtain the bound Ct'/2~7=* unless y, is

multiplied. To obtain (3.224), we assume in addition
suppwy C{z :||z| — 1| > n} (3.225)

for some 17,0 < n < 1, which is the same condition that occurs in [6,28]. Under this condition,
it is easy to see that (3.224) holds for compactly supported (A, A,) and (A, A..). In fact,
if

sSupp (A+7A+)7 supp (Ae—‘raAe-i—) C {[E : |.ZU| S R}7



LONG RANGE SCATTERING FOR THE MAXWELL-SCHRODINGER SYSTEM 53
then by the Huygens principle
supp Ao Usupp (= - Ag — tAe) C {(2,1) : |Jz] — [ < R},
so that
supp By Usupp (By — ' Bey) C {(,1t) : |Jz| — 1] < tR},

and the left-hand side of (3.224) vanishes for ¢ < n/R. More general assumptions on (A, A.)

and (A.,, A.,) are given in the following Lemma.

Lemma 3.16. Let w, satisfy the support condition (3.225) for some n with 0 < n < 1. Let
Xr be the characteristic function of the set {x : |z| > R}. Let (AL, Ay) and (Aey, Acy)
satisfy (2.7) together with the estimates

IXrVE (2 VY A2 VIIXeVE (- V) (z- ALl < CR7,

_ (3.226)
Ixr(z - VYA L2 LP| V [xr(z - VY Ay LN L < CR™?

for 0 < j < 1,0 < k <2 and for all R > Ry for some Ry > 0. Then (3.224) holds for
0<75<1,0<k<2and forallte(0,1].
Proof. For the proof, see Lemma 5.2, part (2) of [6] and Lemma 6.6 of [13]. O

We finally collect the results of this part to show that the asymptotic functions constructed
here satisfy the assumptions (A1), (A2) and (A3) of Section 3.

Proposition 3.17. Let 8 > 0. Let w, € H* xw, € H*"1 with ky > 7V (5+ 571 v2(1+

B7Y). Let By, By satisfy the condition (2.31) for 2 <r < oo and 0 < j, k < 3. Then

(1) The asymptotic functions (Wy, Sq; Ba, Bea) defined by (3.159)~(3.162) satisfy the assump-
tions (A1) and (A2).

(2) Let in addition By, Bey and wy satisfy the condition (3.224) for 0 < 7,1 < 1,0 < k,m <2
and k + 1+ m < 2. Then the remainders R;, 1 < j <5, defined by (3.14) satisfy the
assumption (A3) with

h(t) = t*(1 — Int)".
(8) The same result as in Part (2) holds under the assumptions of Lemma 3.16.

Proof. Part (1) follows from Proposition 3.11 and from (2.31). Part (2) follows from Propo-
sition 3.12 and Lemmas 3.14 and 3.15. Part (3) follows from Part (2), from (3.224) and from
Lemma 3.16. O
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4. MODIFIED WAVE OPERATORS FOR THE ORIGINAL SYSTEM

In this section we construct the wave operators for the original system (1.2). For that
purpose we first state the main result on the Cauchy problem at ¢ = 0 for the auxiliary

system (2.22).

Proposition 4.1. Let 3 = 1/2. Let X(-) be defined by (3.20) with h(t) = t>(1 — Int)®. Let
uy be such that wy = Fuy € H,zw, € H®. Let By and Bey satisfy the conditions (2.31)
with 2 < r < 0o and (3.224), for 0 < j < 1 and 0 < k < 2. Define (wq, Sa, Ba, Bea) by
(3.1) and (3.159)—(3.162). Then there exists 7, 0 < 7 < 1 such that the auziliary system
(2.22) has a unique solution (w, s, By) such that 0 = s — s, satisfies o(0) = 0 and such that
(q,G2) = (W — wg, By — Ba,) € X((0,7]). In particular the following estimates hold for all
t e (0,7]:

|V*07 (z) g, < Ct2777/2(1 — 1nt)S (4.1)
for0<j,l<1and0<2j+1+ k<3,
VAL G |lo V t]|[VEFEOI Gyl < CY2777F(1 — Int)® (4.2)

for0<jk,j+k<1.
In addition, the following estimates hold for all t € (0, 7] :

18] Galla v 1|8} Goll2 < CE27(1 — nt)®, (4.3)

VA Gy |o V| VEH Gy lo V | VELOI Gl < CH277R/2(1 — Int)® (4.4)
for0<j,k,j+k<1,

187Gl V #0]Ghll2 V (|07 Gl < CE#T (1 —Tnt)®, (4.5)

|VFd o, < Ct297F2(1 — Int)S (4.6)

for 7=0,1and 0 <k < 2.

The solution is actually unique under the conditions on (q,Gs) stated in Proposition 3.9.

Proof. The existence of (¢, G2) and the estimates (4.1), (4.2) thereof follow from Proposi-
tions 3.9 and 3.17. The estimates (4.4) and (4.6) follow from Lemma 3.6, especially the
estimates (3.95)-(3.102). The estimates (4.3) and (4.5) are derived by (2.40) and (2.41),

similarly as in the proof of Lemma 3.1. U
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The result for the original system (1.2) for (u, A, A.) is obtained by translating Proposi-
tion 4.1 for the auxiliary system (2.22). For that purpose, we need to reconstruct the phase ¢
satisfying Vo = s. Let w, = W + Wa1 +We2 and s, = Sq0 + Sq1 be defined by (3.159)—(3.162),
and let (w, s, B2) be the solution to (2.22) obtained by Proposition 4.1. We define

t
6o = [ dt (BEwa®) ~ ¢ BHwu(t))
1
t
w2 [t (B walt)walt)) ~ ¢ B wa(®), war (1), (47)
0
so that s, = V¢,. We shall also need a special term of ¢,, namely
t t
by = / dt' By(w.) — / gt - By(w,) = (nt)z - Bu(w,) — (n)Ba(ws).  (4.8)
1 1
Furthermore, we define
t ~ ~
v = / dt' {BY (¢, 2wa + q) + By (wa)>2 — 7 (B3 (¢, 2wa + q) + By (wa)>2) }(t'),  (4.9)
0

so that V¢ = o by (3.8), (3.11) and (3.166). Finally we define ¢ = ¢, + 1, so that Vo = s
and ¢ satisfy (2.21). The phases ¢, ¢, and ¢ satisfy the following properties. We use again

the notation (1.6) as in Lemma 3.10.

Lemma 4.2. Let 3 = 1/2 and wy € H',xw, € HS. We define ¢, ¢y by (4.7) and (4.8)
respectively. Then the following properties hold for ¢, and ¢p:

(@) oy € (H 17, (4.10)
Ovy, € ((:;:>H1 NH>NH t71), (4.11)

() "'y € (H®, (1 — Int)), (4.12)
dp€ ((VH' NH>NH, (1 —1nt)), (4.13)

di(da — ) € (H®, (1 —Int)?), (4.14)
— ¢ € (H° t(1 = Int)?), (4.15)

Furthermore, we define ¢ by (4.9) with w, defined by (3.159)—(3.162) and q obtained by Propo-
sition 4.1. Then, we have ¥ € €((0,7], H?) with the estimate

|V, < Ct*77%2(1 — Int)® (4.16)

for j=0,1and 0 <k <2.
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Proof. We can estimate B (w,) and Bs(w.,) in the same way as in the proof of Lemma 2.3,

especially the inequalities (2.61)—(2.63). Then we obtain
1Bi(wy); H2OHT|| < Ctt, || Buws ); HY| V|| By (wy); HY) < C.

These estimates yield (4.10)—(4.13). We proceed to the estimate of ¢, — ¢,. From Lemma
3.10, especially from the property (3.183), the contributions of By, and t71 By, are estimated
by C(1 —Int)% On the other hand, by the estimates (2.32) and (2.33), we obtain

1B (wao); HP|| v 4| B (wao); H°|| < C.
Finally, by the estimate ||(z)!(w.0 — w, ); H>7Y|| < Ct with [ = 0, 1, we have
1B1(wao) — Bi(ws); H|| V ¢4 Bs(wao) — Bs(wy); HP|| < C.

Collecting these estimates, we obtain (4.14) and (4.15). Finally, we can obtain (4.16) from
Proposition 4.1, especially from the estimate (4.6). O

We can now define the modified wave operator for the MS system in the form (1.2). We
start from the asymptotic data (uy, A, A, Aey, Aey) for (u, A, A.). We define wy = Fu,
we define By and B,y by (2.3), (1.3) and (1.4), namely

Ag(t) = (coswt) Ay +w Hsinwt) Ay = —t71Dy(t)By(1/), (4.17)

Aco(t) = (coswt)Aey +w ™ (sinwt) Aoy = —t 71Dy (t) Beo(1/1). (4.18)

We define (wg, Sq, Ba, Bea) by (3.1) and (3.159)—(3.162). We solve the auxiliary system (2.22)
by Proposition 4.1. We reconstruct the phase ¢ = ¢, + 1 as explained above. We set
B = By + By + By and B, = By + B3, where By = Bj(w,w) and By = Bs(w,w) are
defined by (2.17). We finally substitute (w, ¢, B) into (2.2), (2.3) and obtain a solution
(u, A, A.) of the system (1.2) defined for large time. The modified wave operator is the
mapping Q : (us, Ay, Ay, Ae, Acy) — (u, A, A.) thereby obtained.

We now turn to the study of the asymptotic properties of (u, A, A.) and in particular of its
convergence to its asymptotic form (ug, Aq, Aeq) defined in analogy with (2.2) and (2.3) by

wa(t) = M(£)D(t) explica(1/t))Ta(1/1), (4.19)
Aa(t) = _t_lDO(t)Ba(l/t) = AO - t_lDO(t)(Bla + BQa)(l/t)7 (420)
Aca(t) = =t 7" Do(t) Bea(1/t) = Ao =t Do(t) Bsa(1/1). (4.21)
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The properties of u are best expressed in terms of u and u, defined by

a(t) = U(=t)u(t), Ua(t) =U(=t)u,(t), (4.22)

so that
a(t) = M(t)" F*exp(iop(1/t))w(1/t), (4.23)
(t) = M(t) F* explion(1/t)Ta(1/%). (4.24)

In order to translate the properties of B and B, into properties of A and A., we need the

following commutation relations
VEQIA(t) = (— Ly E Dy () (T (0, B) (1), (4.25)
VEQIAo(t) = (=177 Dy (8)(VF(0,)7 B.) (1/1), (4.26)

where Q =t0; +x - V + 1 (see Section 2, especially (2.28) and (2.29)).

We can now state the main result for the original system (1.2).

Proposition 4.3. Let 8 = 1/2. Let uy be such that w, = Fu, € H",xw, € H® and such
that wy satisfies the support condition (3.225). Let A, , AL, Aoy, Aoy satisfy the assumptions
in Lemmas 2.1 and 3.16 for 0 < j < 1, 0 < k < 2. Define (W, Sa, Ba, Bea) by (3.1) and
(3.159)—(3.162), and (pg, g, Ag, Aca) by (4.7) and (4.19)—(4.21). Let (w, s, By) be the solution
of the auziliary system (2.22) obtained in Proposition 4.1, let ¢ = ¢, + ¥ with ¥ defined by
(4.9), let B = By + By + B, B. = Bey + Bs, let (u, A, Ae) be defined by (2.2), (2.3) and let
be defined by (4.22). Let T =7"' and I = [T,00). Then
(1) (u, A, A.) satisfies the system (1.2) in I, 250!V'4 € €(I,L?) for 0 < j,1,j+1 <1 and
0<27+k+1 <3, and u satisfies the following estimates for the same values of j, k,l
and for allt € I:

280! V! (i — 11,2 < Ct279FF/2(1 4+ Int)S. (4.27)

Furthermore 0;VU (—t) exp(—igp(1/t,x/t))u(t) € €(I,L?*) and the following estimate
holds for all t € I:

10, VU (—t) exp(—igy(1/t, 2/))(u(t) — uqa(t))]]2 < Ct (1 + Int)°. (4.28)
Finally the following estimate holds
|zt (1 — ug)||, < Ct72H=90/2(1 4 1nt)® (4.29)

forl=0,1, for2 <r < oo and for allt € I, with 6(r) =3/2 —3/r.
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(2) AJA, € €(I, H'NH?),z-A—tA, € €(I,H?),QA,QA. € €(I,H") and Q(z-A—tA,) €
C(I, (x)H") where Q = td;+x-V+1. Furthermore A— Ay, Ae— Aea, - (A— Ag) —t(A. —
Ae) € C(I,H?) and Q(A — Au), Q(Ae — Aca), Q(z - (A — Ay) — t(A. — Apo)) € €(1, HY)
and the following estimates hold for allt € I:
1Q7(A = Ad)ll2 V [[Q7(Ae — Aca)[l2 VETH|Q7 (2 - (A = Au) — t(Ae — Aco)) |2
< Ct732(1 +1Int)S, (4.30)

IVEQI (A = Ag)[|2 V[V Q7 (A — Aca) l2
VEHIVRIQI (2 (A — Ag) — H(Ae — A))|l2 < CEP292(1 + Int)S (4.31)

for0<jk,j+k<1.

Proof. Once we obtain Proposition 4.1 and Lemma 4.2, we can prove the proposition similarly

as Proposition 7.2 in [13]. O

Proof of Theorem 1.1. We prove the theorem under the same assumptions on the scattering
state (uq, Ay, A Ao, Ae+) as those in Proposition 4.3. We first note that J and J, satisfy
the identity V - J + 9,J. = 0. Hence, integrating by parts, we obtain

At = — / dt WV sin(w(t — ) PI() — / 4t V2 cos(w(t — ) Ju(¢).
t t
By definition, it follows that Dfll = J and Dflel = je. Moreover, we have
1A HY| + 100 A flo + [ Aers HY| + 0:Act [l — 0
as t — oo. Like the translation from (A’, A)) to (B’, B.) by (2.9)—(2.12), we obtain
Al (t) = —t_lDo(t)Bl(w+), Ael (t) = —t_lDo(t)B3(w_|_>.
These relations show that S(t) = —¢,(1/t). We define
up(t) = M(t)D(t) exp(idn(1/t))Wao(1/1),
Up(t) = U(—t)up(t) = M ()" F* exp(idp(1/t))Wa0(1/1),
in accordance with (4.19) and (4.22)—(4.24). We note that wu,(t) = exp(—iS(t,z/t))U(t)u..
Then we have
Ua(t) — Up(t) = M(t)"F" exp(iga(1/t))(Wa(1/t) — Wao(1/))
+ M(t)" F* (exp(i¢a(1/t)) — exp(id(1/t)))Wao (1/1).
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From Lemma 3.10, we have
[wa(1/t) = wao(1/t)ll2 < [lwar (1/8)]|2 + lwae(1/)[l2 < C+7H(1 + Int)?

On the other hand, from Lemma 4.2, we have ||¢,(1/t) — ¢(1/t)]|oc < Ct71(1+1nt)%. Hence,

we obtain
6 (t) = (t)]l2 < lJwa(1/t) = wao(1/)ll2 + |¢a(1/t) = ¢p(1/t)]le < CtH(1 +Int)*.

This estimate and (4.27) yield ||a(t) — ay(¢)]|2 < Ct7 (1 + Int)%. On the other hand, from

Propositions 3.11 and 4.1, we have
1B(t) = Bo(t); H'|| < | By H'|| + [|Gos H'| + (|G HY|| < C,

so that ||A(t) — Ao(t); HY|| < Ct~/2. Similarly we have ||A.(t) — Aeo(t); H'|| < Ct~'/2. Thus
we have proved (1.5). d
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