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LONG RANGE SCATTERING FOR THE MAXWELL–SCHRÖDINGER
SYSTEM IN THE LORENZ GAUGE WITHOUT ANY RESTRICTION ON

THE SIZE OF DATA

YANG LIU AND TAKESHI WADA

Abstract. This paper concerns the scattering theory for the Maxwell–Schrödinger (MS)

system in the Lorenz gauge, or more precisely, the existence of the modified wave operators

for this system in R3+1 space-time. We construct solutions to the MS system which behave as

free Maxwell and Schrödinger waves with prescribed asymptotic states when t → ∞, without

any restriction on the size thereof. Since this system belongs to the borderline between the

short range case and the long range case, we need modification of phase for the Schrödinger

function.

1. Introduction

In this paper, we study the scattering theory for the Maxwell–Schrödinger (MS) system

under the Lorenz gauge condition in 3 + 1 dimensional space-time, and more precisely the

existence of modified wave operators for this system. This system describes the interaction

between a charged nonrelativistic quantum mechanical particle and the (classical) electromag-

netic field generated by the motion of the particle. Generally, considered Maxwell–Schrödinger

system is written as follows:
i∂tu = −(1/2)∆Au+ Aeu,

□A+∇(∇ · A+ ∂tAe) = J ≡ Imu∇Au,

□Ae − ∂t(∇ · A+ ∂tAe) = Je ≡ |u|2,

(1.1)

where (A,Ae) is an R3+1-valued function defined in space-time R3+1,∇A = ∇ − iA and

∆A = ∇2
A are the covariant gradient and covariant Laplacian respectively, and □ = ∂2t − ∆

is the d’Alembertian. By using the first equation of the system (1.1), we have the current

conservation ∇ · J + ∂tJe = 0, so that we can regard J and Je as current density and charge
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density, respectively. The system (1.1) is gauge invariant, namely (1.1) is invariant under the

transformation

(u,A,Ae) → (u exp(−iθ), A−∇θ, Ae + ∂tθ),

where θ is an arbitrary real-valued function defined in R3+1. Therefore, the system (1.1) is

underdetermined as an evolution system, so we should impose an additional equation called

a gauge condition. There are two gauge conditions which are commonly used, one is the

Coulomb gauge condition ∇ ·A = 0, and the other one is the Lorenz gauge condition ∇ ·A+

∂tAe = 0. In this paper we will exclusively study the Lorenz gauge case. Then the system

(1.1) can be written as 
i∂tu = −(1/2)∆Au+ Aeu,

□A = J,

□Ae = Je.

(1.2)

In three-dimensional case, the MS system (1.1) is known to be locally well-posed both in

Lorenz gauge and Coulomb gauge in sufficiently regular spaces (Nakamitsu–Tsutsumi [16],

Nakamura–Wada [17]). Guo–Nakamitsu–Strauss [14] proved that the MS system has weak

global solutions in the energy space. The MS system has been shown to be globally well-posed

in a space smaller than the energy space by Nakamura–Wada [18], and in the energy space

by Bejenaru–Tataru [1]. On the other hand, in two-dimensional case, Wada [29] extended

the Kato-type smoothing estimates for solutions to the MS system in the Lorenz gauge and

proved unique solvability in the energy space.

There is a large amount of research concerning the theory of long-range scattering, or

more precisely the existence of modified wave operators for nonlinear equations and systems

centering on the Schrödinger equation, especially for the nonlinear Schrödinger equation [2,

15, 21], the Hartree equation [2–5,19, 20], the Klein–Gordon–Schrödinger system [22–24], the

Wave–Schrödinger system [6–8,11,25] and the MS system [9,12,13,26,28]. In scattering theory,

we aim to know the interaction between more than one particles, waves etc., by comparing

scattering states (unperturbed system, without interaction) and interacting states (perturbed

system, with nonlinear interaction) as t→ ±∞. In the case of the linear Schrödinger equation,

we need to distinguish the short range case from the long range case. In the short range case,

where the Schrödinger function behaves asymptotically like a solution of the free Schrödinger

equation, ordinary wave operators are expected. In the long range case, unlike the short

range case, ordinary wave operators are not expected and have to be replaced with modified
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wave operators, which include suitable phase corrections in their definition. From this point

of view, the MS system (1.1) in R3+1 belongs to the borderline long range case, because of

the t−1 decay in L∞ norm of solutions of the wave equation. The two dimensional Klein–

Gordon–Schrödinger system and the three dimensional Wave–Schrödinger system also belong

to the same case. In the case of the MS system, the existence of modified wave operators was

first proved by Tsutsumi [28], and under weaker assumption by Shimomura [26], Ginibre–

Velo [12]. In these works, the smallness condition for the scattering data was assumed. Later,

Ginibre–Velo [9, 13] removed the smallness condition on the scattering data and proved the

existence of modified wave operators for large data. They mainly work under the Coulomb

gauge (Shimomura [26] also treated the Lorenz gauge case). So, in the present paper, we

consider scattering problem in the Lorenz gauge and prove the existence of modified wave

operators. Compared with the Coulomb gauge, the Lorenz gauge is more difficult to treat

because of the presence of the term ∇ ·A, so that we need higher order approximation in the

construction of asymptotic function for the Schrödinger part.

To state the main theorem in this paper, we introduce the Fourier transform

û(ξ) = (Fu)(ξ) = (2π)−3/2

∫
R3

e−ixξ u(x) dx

and the free Schrödinger group U(t) = exp(it∆/2) = F ∗ exp(−it|ξ|2/2)F . We also need the

free propagator for the Maxwell equations. Let ω = (−∆)1/2. For a couple (A+, Ȧ+) of

R3-valued functions and a couple (Ae+, Ȧe+) of real-valued functions, we set

A0(t) = (cosωt)A+ + ω−1(sinωt)Ȧ+, (1.3)

Ae0(t) = (cosωt)Ae+ + ω−1(sinωt)Ȧe+. (1.4)

The main theorem in this paper is the following:

Theorem 1.1. Let u+, A+, Ȧ+, Ae+, Ȧe+ be sufficiently smooth functions decaying at infinity.

We assume the support condition supp û+ ⊂ {ξ : ||ξ| − 1| ≥ η} for some 0 < η < 1, and the

compatibility conditions ∇ ·A+ + Ȧe+ = ∇ · Ȧ+ +∆Ae+ = 0. We set J̃(t, x) = t−4x|û+(x/t)|2

and J̃e(t, x) = t−3|û+(x/t)|2, and we define

Ã1(t) = −
∫ ∞

t

dt′ ω−1 sin(ω(t− t′))J̃(t′), Ãe1(t) = −
∫ ∞

t

dt′ ω−1 sin(ω(t− t′))J̃e(t
′),

so that □Ã1 = J̃ with (Ã1, ∂tÃ1) → 0 as t → ∞, and □Ãe1 = J̃e with (Ãe1, ∂tÃe1) → 0 as

t → ∞ respectively. We define S(t, x) =
∫ t

1
dt′ {−x · Ã1(t

′, t′x) + Ãe1(t
′, t′x)}. Then there
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exists a solution (u,A,Ae) to (1.2) such that

∥u(t)− e−iS(t,x/t)U(t)u+∥2 + ∥A(t)− A0(t); Ḣ
1∥+ ∥Ae(t)− Ae0(t); Ḣ

1∥ → 0 (1.5)

as t→ ∞.

We will state our result in precise, stronger but more complicated form as Proposition 4.3

in Section 4.

This paper is organized as follows. The construction of the modified wave operator is

performed by the use of the transform called pseudo-conformal inversion. In Section 2, we first

introduce this transform and replace the problem at t = ∞ with the problem at t = 0. Next we

introduce a parametrization by phase and complex-amplitude for the Schrödinger part. With

these procedures, we change the variables from (u,A,Ae) to new variables (eiϕw,B,Be), and

derive the auxiliary problem for these variables. After summarizing fundamental estimates,

we prove the uniqueness of solutions to the auxiliary system. Section 3 is concentrated on

the analysis of Cauchy problem at time zero for the auxiliary system. We first assume a

desired asymptotic behaviour of dynamical variables (w, s,B,Be) for the auxiliary system,

where s = ∇ϕ, and solve the system by contraction mapping principle. After that, we

construct such an asymptotic function from the prescribed scattering state u+. The existence

of modified wave operators for the original system is proved in Section 4.

We conclude this introduction by giving some notation which will be used throughout the

paper.

Notation. For any 1 ≤ r ≤ ∞, Lr ≡ Lr(Rn) denotes the Lebesgue space equipped with the

norm ∥u∥r = (
∫
Rn |u(x)|r dx)1/r for r < ∞, ∥u∥∞ = ess supx∈Rn |u(x)|. For any nonnegative

integer k and for 1 < r <∞, Hk
r ≡ Hk

r (Rn) denotes the Sobolev space:

Hk
r = {u ∈ S ′(Rn) : ∥u;Hk

r ∥ =
∑
|α|≤k

∥∂αu∥r ∼ ∥⟨ω⟩ku∥r <∞},

where ω = (−∆)1/2 and ⟨·⟩ = (1 + | · |2)1/2. The subscript r in Hk
r will be omitted in the

case r = 2. We also use the homogeneous Sobolev space Ḣk
r with norm ∥u; Ḣk

r ∥ = ∥ωku∥r. In
particular it will be understood that Ḣ1(R3) ⊂ L6(R3). In addition we shall use the notation

Ḧk = Ḣ1 ∩ Ḣk for ∀ k ≥ 1.

For any Banach space X ⊂ S ′(Rn), we denote by ⟨x⟩X the space defined by

⟨x⟩X = {u ∈ S ′(Rn) : ⟨x⟩−1u ∈ X}.
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For any interval I and for any Banach space X we denote by C (I,X) (resp. Cw(I,X)) the

space of strongly (resp. weakly) continuous functions from I to X. For a given interval I, we

denote by (X, f) the set

(X, f) = {u ∈ C (I,X) : ∥u(t);X∥ ≤ f(t) ∀ t ∈ I}, (1.6)

where X is a Banach space and f ∈ C (I,R+). For real numbers a and b we use the notation

a ∨ b = Max(a, b) and a ∧ b = Min(a, b).

2. Preliminaries

2.1. Formulation of the problem. We will first perform a change of variables, which trans-

form the problem at t = ∞ into the problem at t = 0. This transform is called pseudo-

conformal inversion, and is well adapted to the study of the asymptotic behaviour in time of

solutions to (1.2).

Let U(t) = exp (i(t/2)∆) be the free Schrödinger group. We use the decomposition

U(t) =M(t)D(t)FM(t),

where M(t) = eix
2/2t is the operator of multiplication, F is the Fourier transform and D(t) is

the dilation operator

(D(t)f)(x) = (it)−3/2(D0(t)f)(x) = (it)−3/2f(x/t), (2.1)

normalized to be unitary in L2. Taking this factorization into account, we change the variable

for the Schrödinger function from u to v, or its parametrization by a complex amplitude w

and a phase ϕ, according to

u(t) =M(t)D(t)v(1/t) =M(t)D(t) exp(iϕ(1/t))w(1/t). (2.2)

Correspondingly, we change the variable for the electro-magnetic potentials from A and Ae

to B and Be, according to

A(t) = −t−1D0(t)B(1/t), Ae(t) = −t−1D0(t)Be(1/t). (2.3)

Substituting (2.2) and (2.3) into the first equation of (1.2) and commuting the Schrödinger

operator with MD, we obtain

{(i∂t + (1/2)∆A − Ae)u}(t)

= t−2M(t)D(t){(i∂t′ + (1/2)∆B(t′) − B̌(t′) + t′−1Be(t′))v(t′)}t′=(1/t).
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Here, for an R3-valued function f of space-time we define

f̌(t, x) = t−1x · f(t, x). (2.4)

Then the first equation of (1.2) becomes

(i∂t + (1/2)∆B − B̌ + t−1Be)v = 0.

Next, we rewrite the Maxwell part. We write the second and the third equations of (1.2)

by the associated integral equation, namely

A = A0 + A′ ≡ A0 −
∫ ∞

t

dt′ ω−1 sin(ω(t− t′))J(t′), (2.5)

Ae = Ae0 + A′
e ≡ Ae0 −

∫ ∞

t

dt′ ω−1 sin(ω(t− t′))Je(t
′). (2.6)

Here, we recall that A0 and Ae0 are solutions of the free wave equations given by (1.3) and

(1.4) respectively, and ω = (−∆)1/2. In order to ensure the condition ∇ · A + ∂tAe = 0, we

assume that

∇ · A+ + Ȧe+ = ∇ · Ȧ+ +∆Ae+ = 0. (2.7)

Furthermore, let P = 1 −∇∆−1div be the projector on divergence free vector fields. Then,

by the current conservation we have

(1− P )J = ∇∆−1∇ · J = −∇∆−1∂tJe.

Integrating by parts, we can rewrite the equation for A as

A = A0 −
∫ ∞

t

dt′ ω−1 sin(ω(t− t′))PJ(t′)−
∫ ∞

t

dt′ ∇ω−2 cos(ω(t− t′))Je(t
′). (2.8)

We put

M1 = −x|v|2, M2 = Im v∇Bv = Imw∇Kw, Me = |v|2. (2.9)

Then we have

J(t) = t−3D0(t){(x|v(t′)|2)− t−1 Im v(t′)(∇− iB(t′))v(t′)}t′=1/t

= −t−3D0(t)(M1 + t−1M2)(1/t), (2.10)

and

Je(t) = t−3D0(t)|v(1/t)|2 = t−3D0(t)Me(1/t). (2.11)
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Substituting (2.10) and (2.11) into (2.8) and (2.6) respectively, and letting t
′
= tν we obtain

A′(t) = −t−1D0(t)

∫ ∞

1

dν ν−3ω−1 sin(ω(ν − 1))PD0(ν)(M1 + (tν)−1M2)(1/tν)

− t−1D0(t)

∫ ∞

1

dν ν−3∇ω−2 cos(ω(ν − 1))D0(ν)Me(1/tν),

A
′

e(t) = t−1D0(t)

∫ ∞

1

dν ν−3ω−1 sin(ω(ν − 1))D0(ν)Me(1/tν).

From these equalities, we change the variables from (A
′
, A

′
e) to (B

′
, B

′
e) by

A
′
= −t−1D0(t)B

′
(1/t), A

′

e = −t−1D0(t)B
′

e(1/t), (2.12)

and similarly from (A0, Ae0) to (B0, Be0) for the homogeneous part, in accordance with (2.3).

Therefore

B′ = B1 +B2, B1 = F1(PM1) + E1(Me),

B2 = tF2(PM2), B′
e = B3 = −F1(Me), (2.13)

with M1,M2 and Me defined by (2.9), and with Fj, j = 1, 2, and E1 defined by

Fj(M) =

∫ ∞

1

dν

νj+2

sinω(ν − 1)

ω
D0(ν)M(t/ν),

E1(M) =

∫ ∞

1

dν

ν3
∇ cosω(ν − 1)

ω2
D0(ν)M(t/ν). (2.14)

Hence the system (1.2) becomes
i∂tv = −(1/2)∆Bv + (B̌ − t−1Be)v,

B = B0 +B1 +B2,

Be = Be0 +B3.

(2.15)

The first equation of (2.15) is also parametrized by (w, ϕ) as (2.2). In terms of (w, ϕ), this

equation becomes

(i∂t + ∂tϕ+ (1/2)∆K − B̌ + t−1Be)w = 0, (2.16)

where ∆K = ∇2
K = (∇− iK)2, K := B + s with s := ∇ϕ. Since we have only one equation

for two functions w and ϕ, we impose an equation for the phase function ϕ, which should be

specified later.
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In the Maxwell part, B1 = B1(w) = B1(w,w) and B3 = B3(w) = B3(w,w) are explicitly

defined quadratic form of w. Here,

B1(w1, w2) = −F1(PxRew1w2) + E1(Rew1w2), B3(w1, w2) = −F1(Rew1w2). (2.17)

On the other hand, B2 is determined by

B2 = B2(w,w, s+B) with B2(w1, w2, K) ≡ tF2(P Imw1∇Kw2). (2.18)

Here, the right-hand side contains B2 through B, so that (2.18) is an equation for B2, and

that we should regard B2 as a dynamical variable.

There is a large amount of freedom in the choice of ϕ, and we choose ϕ so as to get rid

of the long range terms in (2.16) coming from the interaction. All the terms coming from

the covariant Laplacian are expected (and will turn out) to be short range, if we assume the

support condition for w+ = Fu+. The contribution of B2 to B̌ is also short range because of

the factor t in (2.18). The terms B̌1 in B̌ and t−1B3 are also of long range. Let χ ∈ C ∞(R3,R),
0 ≤ χ ≤ 1, χ(ξ) = 1 for |ξ| ≤ 1, χ(ξ) = 0 for |ξ| ≥ 2, and let 0 < β < 1. We define

χL ≡ F ∗χ(·tβ)F, χS = 1− χL.

Then we can split B̌1 and t−1B3 into short range and long range parts asB̌1 = B̌S
1 + B̌L

1 , B̌
S
1 = χSB̌1, B̌

L
1 = χLB̌1,

B3 = BS
3 +BL

3 , B
S
3 = χSB3, B

L
3 = χLB3.

(2.19)

B̌L
1 and t−1BL

3 are of long range, but smoother than B̌1 and t
−1B3 themselves. Corresponding

to the fact that B̌0 − t−1Be0 and B̌2 are regarded as short range, we denote

BS
m = B̌S − t−1BS

e , (2.20)

where B̌S := B̌0 + B̌S
1 + B̌2, B

S
e := Be0 + BS

3 . Note that B̌0 and t−1Be0 may not be short

range separately. As the equation for ϕ, we can impose

∂tϕ = B̌L
1 − t−1BL

3 . (2.21)

Thus, we obtain a closed system of equations for (w, s,B2), namely
i∂tw = Hw ≡ −(1/2)∆Kw +BS

mw,

∂ts = ∇B̌L
1 − t−1∇BL

3 ,

B2 = B2(w,w,K)

(2.22)
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with B̌L
1 , B

L
3 and B2 defined by (2.19) and (2.18). Here, in the first and the third equations

of (2.22), the phase ϕ appears only through its gradient s = ∇ϕ, so that we have replaced

the equation (2.21) for ϕ by that for s, by taking the gradient of the both-sides of (2.21).

The problem of constructing the wave operators is transformed into the problem of solving

(2.22) with suitable asymptotic forms of (w, s,B1, B2, B3) as t → 0. We will solve this

transformed problem in Section 3.

In order to solve the problem, apart from the system (2.22), it is useful to consider also a

partly linearized system for (w,B2), namelyi∂tw′ = Hw′,

B′
2 = B2(w,w,K)

(2.23)

for new variables (w′, B′
2), where K still corresponds to (w,B2). We do not need to introduce

a new variable s′, since s is explicitly determined by the second equation of (2.22) as an

explicit function of w.

2.2. Estimates for the Maxwell part. We summarize properties of the homogeneous term

(A0, Ae0) of the Maxwell part (A,Ae), defined by (1.3) and (1.4). From the Lorenz gauge

condition ∇ ·A0 + ∂tAe0 = 0, we easily see that x ·A0 − tAe0 satisfies the homogeneous wave

equation as well as A0 and Ae0, that is,

□(x · A0 − tAe0) = 0

with initial data (x · A0 − tAe0)|t=0 = x · A+ and ∂t(x · A0 − tAe0)|t=0 = x · Ȧ+ − Ae+. We

shall need the dilation operator

Q = t∂t + x · ∇+ 1. (2.24)

Since we have the relation Q∂jt∇k = ∂jt∇k(Q− j − k), QA0 and QAe0 also satisfy the homo-

geneous wave equations, so that QA0 and QAe0 can be written as

(QA0)(t) = (cosωt)(1 + x · ∇)A+ + ω−1(sinωt)(2 + x · ∇)Ȧ+, (2.25)

(QAe0)(t) = (cosωt)(1 + x · ∇)Ae+ + ω−1(sinωt)(2 + x · ∇)Ȧe+. (2.26)

If we change variables from A0 and Ae0 to B0 and Be0 according to (2.3), we obtain

(x · A0 − tAe0)(t) = −t−1D0(t)(B̌0 − t−1Be0)(1/t), (2.27)
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and

∇kQjA0(t) = (−1)j+1t−1−kD0(t)(∇k(t∂t)
jB0)(1/t), (2.28)

∇kQjAe0(t) = (−1)j+1t−1−kD0(t)(∇k(t∂t)
jBe0)(1/t). (2.29)

We introduce some decay estimates of A0 and Ae0. For that purpose, we need assumptions

for initial data. We shall say that a pair of functions (A , ˙A ) defined on R3 satisfies the

condition (D) if

A ∈ L2, ∇2A ∈ L1, ω−1 ˙A ∈ L2, ∇ ˙A ∈ L1.

Moreover, we shall say that (A , ˙A ) satisfies the condition (D)jk if (x ·∇)j
′∇k(A , ˙A ) satisfies

(D) for 0 ≤ j′ ≤ j.

Lemma 2.1. Let j, k be nonnegative integers. Let (A0, Ae0) be a pair of solutions of the

homogeneous wave equations defined by (1.3) and (1.4) satisfying the compatibility conditions

(2.7). Let (A+, Ȧ+), (Ae+, Ȧe+), and (x ·A+, x · Ȧ+ −Ae+) satisfy the condition (D)jk. Then

(A0, Ae0) satisfies the following estimates:

∥(Qj′∇kA0)(t)∥r ∨ ∥(Qj′∇kAe0)(t)∥r ∨ ∥(Qj′∇k(x · A0 − tAe0))(t)∥r ≤ b0t
−1+2/r (2.30)

for 0 ≤ j′ ≤ j, for 2 ≤ r ≤ ∞ and for all t > 0.

Let B0, Be0 and B̌0 be defined by (2.3) and (2.4). Then B0, Be0 and B̌0 satisfy the following

estimates:

∥∂jt∇kB0(t)∥r ∨ ∥∂jt∇kBe0(t)∥r ∨ ∥∂jt∇k(B̌0 − t−1Be0)(t)∥r ≤ b0t
−j−k+1/r (2.31)

for 2 ≤ r ≤ ∞ and for all t > 0.

Proof. For the proof of (2.30), see [27]. If j > 0, we also use the relation Q∂jt∇k = ∂jt∇k(Q−
j − k). The estimate (2.31) follows from (2.27), (2.28), (2.29) and (2.30). □

We next give some estimates for various components of B1 and B3 expressed by (2.19). It

follows immediately therefrom that

∥ωmB̌S
1 ∥2 ≤ tβ(p−m)∥ωpB̌S

1 ∥2 ≤ tβ(p−m)∥ωpB̌1∥2, (2.32)

∥ωm(t−1BS
3 )∥2 ≤ tβ(p−m)−1∥ωpBS

3 ∥2 ≤ tβ(p−m)−1∥ωpB3∥2 (2.33)

for m ≤ p, and similarly

∥ωmB̌L
1 ∥2 ≤ (2t−β)(m−p)∥ωpB̌L

1 ∥2 ≤ (2t−β)(m−p)∥ωpB̌1∥2, (2.34)

∥ωm(t−1BL
3 )∥2 ≤ (2t−β)(m−p)∥ωp(t−1BL

3 )∥2 ≤ (2t−β)(m−p)∥ωp(t−1B3)∥2 (2.35)
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for m ≥ p.

We now estimate Fj(M) and Ej(M) defined by (2.14). From (2.14) it follows that

ωFj(M) = Fj+1(ωM), ωEj(M) = Ej+1(ωM), (2.36)

∂tFj(M) = Fj+1(∂tM), ∂tEj(M) = Ej+1(∂tM), (2.37)

and from the identity [x, f(ω)] = f ′(ω)ω−1∇ together with ∇P = 0, it follows that

x · Fj(PM) = Fj−1(x · PM),

x · Ej(M) = Ej−1(x ·M)− ω−2∇ · Ej(M) + Fj−1(M)− Fj(M). (2.38)

In order to estimate Fj and Ej, we define

Ij(f)(t) =

∫ ∞

1

dν ν−j−3/2f(t/ν) (2.39)

for any j ∈ R and for any nonnegative function f in R+. Note that Ij(f) is decreasing for

j and increasing for f , namely, if j ≥ k and f(t) ≤ g(t) a.e. in I, then Ij(f) ≤ Ik(g). Let

α ∈ R with α + j + 1/2 ≥ 0. If f(t) = t−αf(t) satisfies
∫ t

0
dt′ t′−1f(t′) ≤ cf(t), then we have

Ij(f)(t) ≤ cf(t). Indeed, by the change of the variable, we have

Ij(f)(t) = t−j−1/2

∫ t

0

dt′ t′j+α−1/2f(t′) ≤ tα
∫ t

0

dt′ t′−1f(t′) ≤ cf(t).

Lemma 2.2. For any m, j ∈ R the following estimates hold:

(1) About ∥ωmFj(M)∥2 and ∥ωmEj(M)∥2, we obtain

∥ωmFj(M)∥2 ≤ cIj+m−2(∥ωm−1M∥2 ∧ ∥ωmM∥2),

∥ωmEj(M)∥2 ≤ cIj+m−2(∥ωm−1M∥2). (2.40)

(2) About ∥ωmx · Fj(PM)∥2 and ∥ωmx · Ej(M)∥2, we obtain

∥ωmx · Fj(PM)∥2 ≤ cIj+m−3(∥⟨x⟩ωm−1M∥2),

∥ωmx · Ej(M)∥2 ≤ c(Ij+m−3(∥⟨x⟩ωm−1M∥2) + Ij+m−3(∥ωm−2M∥2)). (2.41)

(3) For any r, r1 with 2 ≤ r ≤ 4 and 3/r1 = 2 + 1/r, we obtain

∥Fj(M)∥r ∨ ∥Ej(M)∥r ≤ c

∫ ∞

1

dν (ν − 1)−1+2/rν−j+1/r∥M(t/ν)∥r1 . (2.42)

Proof. The proof of the estimates for Fj(M), see Lemma 3.6 in [13]. We can prove the

estimates for Ej(M) in the same way, taking account of the estimate | cos |ξ|(ν − 1)| ≤ 1 and

the monotonicity of Ij(f). □
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Hereafter, in all of the estimates in this paper, we denote by C a positive constant whose

specific value is not required but depends on the asymptotic functions (wa, Ka) through the

available norms. Absolute constants will be in general omitted, except in special arguments

where they are explicitly needed, in which case they are denoted by c.

2.3. Uniqueness of Solutions for the Auxiliary System. We shall derive a uniqueness

result for the solutions of (2.22) under suitable assumptions on their behaviour at time zero.

We begin with some estimates of the difference of two solutions of the system (2.23). For two

functions or operators fi, i = 1, 2, we define f± = (1/2)(f1 ± f2), so that f1 = f+ + f−, f2 =

f+−f− and (fg)± = f+g±+f−g∓. Let (w
′
i, B

′
2i), i = 1, 2, be a pair of solutions of the linearized

system (2.23) associated with a pair (wi, si, B2i), i = 1, 2. Then, taking the difference for the

equations for (w′
i, B

′
2i), we see that (w′

−, B
′
2−) satisfies the equationsi∂tw′

− = H+w
′
− +H−w

′
+,

B′
2− = 2B2(w+, w−, K+)− tF2(PK−(|w+|2 + |w−|2)),

(2.43)

where

H+ = −(1/2)∆K+ + (1/2)K2
− +BS

m+, (2.44)

H− = iK− · ∇K+ + (i/2)(∇ ·K−) +BS
m−. (2.45)

By definition, B1− and B3− satisfy

B1− = 2B1(w+, w−), B̌
S/L
1− = 2B̌

S/L
1 (w+, w−), (2.46)

B3− = 2B3(w+, w−), B
S/L
3− = 2B

S/L
3 (w+, w−). (2.47)

If si, i = 1, 2, satisfy the second equation of (2.22), then

∂ts− = ∇B̌L
1− − t−1∇BL

3−. (2.48)

By the following lemma, we can estimate the difference of two solutions of the linearized

system (2.23). The estimates of w′
− are stated in differential form for brevity, but should

be understood in integral form, in the same way as the conservation laws of Proposition 4.1

in [13].

Lemma 2.3. Let 0 < β < 1. Let I = (0, τ ] with 0 < τ ≤ 1. Let h1 ∈ C (I,R+) satisfy∫ τ

0

dt t−3/2h1(t) <∞. (2.49)
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Let wi, i = 1, 2 satisfy wi ∈ L∞(I,H3), xwi ∈ L∞(I,H2) and

∥⟨x⟩w−(t)∥2 ≤ Ch1(t) (2.50)

for all t ∈ I.

(1) Let B1(wi), B3(wi), i = 1, 2, be defined by (2.17). Then B1(wi), B3(wi) ∈ (C ∩L∞)(I, Ḧ4),

t∇B̌1(wi) ∈ (C ∩ L∞)(I, Ḧ2) and B1−, B3− satisfy the estimates

∥∇B1−∥2 ≤ CI0(∥⟨x⟩w−∥2), (2.51)

∥∇∇ ·B1−∥2 ≤ CI1(∥∇w−∥2) + CI1(∥w−∥2), (2.52)

∥∇B3−∥2 ≤ CI0(∥w−∥2), (2.53)

∥∇B̌1−∥2 ≤ Ct−1I−1(∥⟨x⟩w−∥2). (2.54)

(2) Let si satisfy the second equation of (2.22) with w = wi, i = 1, 2, with si(t0) ∈ Ḧ2 for

some t0 ∈ I. Then si ∈ C (I, Ḧ2), s− ∈ C (I,H2) and s− satisfies the estimates

∥∇k∂ts−∥2 ≤ Ct−1−kβI−1(∥⟨x⟩w−∥2) (2.55)

for k = 0, 1, 2. Furthermore, s−(t) has an L
2 limit as t→ 0.

(3) Let B0 and Be0 satisfy (2.31) for 0 ≤ j, k, l + k ≤ 1 and r = ∞. Let in addition

t∂twi ∈ L∞(I,H1), i = 1, 2. Let B2i satisfy B2i ∈ L∞(I, Ḧ2), t∂tB2i ∈ L∞(I, Ḣ1), t∇B̌2i ∈
L∞(I, Ḣ1), i = 1, 2. Let (w′

i, B
′
2i), i = 1, 2 be solutions of the linearized system (2.23)

satisfying the same conditions as (wi, B2i), i = 1, 2. Then the following estimates hold:

|∂t∥w′
−∥2| ≤ C(∥∇ · s−∥2 + (1− ln t)(∥s−∥3 + ∥∇B−∥2)

+ tβ(∥∇B̌1−∥2 + t−1∥∇B3−∥2) + ∥∇B̌2−∥2), (2.56)

|∂t∥xw′
−∥2| ≤ ∥∇K+w

′
−∥2 + C(∥∇ · s−∥2 + (1− ln t)(∥s−∥3 + ∥∇B−∥2)

+ tβ(∥∇B̌1−∥2 + t−1∥∇B3−∥2) + ∥∇B̌2−∥2), (2.57)

|∂t∥∇K+w
′
−∥2| ≤ C(t−1(∥w′

−∥2 + ∥w′
−∥3) + t−1∥s−∥2 + (1− ln t)∥∇s−∥2

+ ∥∇∇ ·B−∥2 + ∥∇∇ · s−∥2 + t−1∥∇B−∥2

+ ∥∇B̌1−∥2 + t−1∥∇B3−∥2 + (1− ln t)∥∇B̌2−∥2), (2.58)

∥∇B′
2−∥2 ≤ CtI1((1− ln t)∥w−∥2 + ∥s−∥2 + ∥∇B−∥2), (2.59)

∥∇B̌′
2−∥2 ≤ CI0((1− ln t)∥⟨x⟩w−∥2 + ∥s−∥2 + ∥∇B−∥2). (2.60)
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Proof. Part (1). From (2.13), (2.14), (2.39) and (2.40), and from Lemma 3.2 in [13], we

obtain the estimates

∥ωm+1B1(wi)∥2 ≤ Im(∥ωmx|wi|2∥2) + Im(∥ωm|wi|2∥2) ≤ C, (2.61)

∥ωm+1B3(wi)∥2 ≤ Im(∥ωm|wi|2∥2) ≤ C (2.62)

for 0 ≤ m ≤ 3. Similarly from (2.41), we obtain

∥ωm+1B̌1(wi)∥2 ≤ t−1(Im−1(∥⟨x⟩ωmx|wi|2∥2) + Im−1(∥⟨x⟩ωm|wi|2∥2)

+ Im−1(∥ωm−1|wi|2∥2))

≤ Ct−1 (2.63)

for 1 ≤ m ≤ 2. These estimates show that B1(wi), B3(wi) and ∇B̌1(wi) belong to the

class stated in part (1) of the lemma. The estimates (2.51)–(2.54) for the differences follow

immediately from (2.40), (2.41), (2.46) and (2.47). From (2.49), (2.50) and the change of

variable, it follows that I−1(∥⟨x⟩w−∥2) ≤ Ct1/2, and that the right-hand side of (2.54) is

finite.

We note that we can similarly obtain the estimates

∥ωm+1∂tB1(wi)∥2 ≤ Im+1(∥ωmx∂t|wi|2∥2) + Im+1(∥ωm∂t|wi|2∥2) ≤ Ct−1, (2.64)

∥ωm+1∂tB3(wi)∥2 ≤ Im+1(∥ωm∂t|wi|2∥2) ≤ Ct−1 (2.65)

for 0 ≤ m ≤ 1, to be used in the proof of part (3).

Part (2). From (2.62) and (2.63), we obtain

∥ωm+1∂tsi∥2 = ∥ωm+1(∇B̌L
1 (wi)− t−1∇BL

3 (wi))∥2 ≤ Ct−1 (2.66)

for 0 ≤ m ≤ 1. Integrating (2.66) over time, we obtain

∥ωm+1si∥2 ≤ C(1− ln t) (2.67)

for 0 ≤ m ≤ 1 and for all t ∈ I. These estimates show the property si ∈ C (I, Ḧ2). The

estimate (2.55) follows from (2.34), (2.35) and (2.54). Since ∥∂ts−(t)∥2 ≤ Ct−1/2, the limit

s−(0) = limt→0 s−(t) exists in L
2.

Part (3). We note that from (2.61)–(2.67) we obtain

∥B1+∥∞ ∨ ∥∇B1+∥∞ ∨ t∥∇B̌1+∥∞ ∨ t∥∂tB1+∥∞

∨ ∥B3+∥∞ ∨ ∥∇B3+∥∞ ∨ t∥∂tB3+∥∞ ≤ C, (2.68)

t∥∂ts+∥∞ ≤ C, ∥s+∥∞ ∨ ∥∇s+∥6 ≤ C(1− ln t). (2.69)
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We first estimate ∥w′
−∥2. From (2.43), by using (2.32) and (2.33), we obtain

|∂t∥w′
−∥2| ≤ ∥H−w

′
+∥2 = ∥ − i(s− +B−) · ∇K+w

′
+ + (i/2)(∇ · (s− +B−))w

′
+

+ (B̌S
− − t−1BS

e−)w
′
+∥2

≤ ∥s−∥3∥∇K+w
′
+∥6 + ∥B−∥6∥∇K+w

′
+∥3

+ (∥∇ · s−∥2 + ∥∇ ·B−∥2)∥w′
+∥∞

+ tβ(∥∇B̌1−∥2 + t−1∥∇B3−∥2)∥w′
+∥∞ + ∥B̌2−∥6∥w′

+∥3,

which implies (2.56) from the assumptions on wi, B0, Be0, B2i and the estimate (2.68).

We next estimate ∥xw′
−∥2. From (2.32), (2.33), (2.43) and the commutation relation

[x,H+] = ∇K+ , we similarly obtain

|∂t∥xw′
−∥2| ≤ ∥∇K+w

′
−∥2 + ∥xH−w

′
+∥2

≤ ∥∇K+w
′
−∥2 + ∥s−∥3∥x∇K+w

′
+∥6 + ∥B−∥6∥x∇K+w

′
+∥3

+ (∥∇ · s−∥2 + ∥∇ ·B−∥2)∥xw′
+∥∞

+ tβ(∥∇B̌1−∥2 + t−1∥∇B3−∥2)∥xw′
+∥∞ + ∥B̌2−∥6∥xw′

+∥3,

which implies (2.57).

We next estimate ∥∇K+w
′
−∥2. We take the covariant gradient of (2.43) to obtain

i∂t∇K+w
′
− = −(1/2)∇K+∆K+w

′
− + ((1/2)K2

− +BS
m+)∇K+w

′
−

+ (∂tK+ +∇BS
m+ +K−∇K−)w

′
−

+ iK− · ∇2
K+
w′

+ + i(∇K−) · ∇K+w
′
+ + (i/2)(∇ ·K−)∇K+w

′
+

+ (i/2)(∇∇ ·K−)w
′
+ + (∇BS

m−)w
′
+ +BS

m−∇K+w
′
+,

so that we have

|∂t∥∇K+w
′
−∥2| ≤ ∥(∂tK+ +∇BS

m+)w
′
−∥2 + ∥K− · ∇2

K+
w′

+∥2

+ ∥∇K−∥2(∥∇K+w
′
+∥∞ + ∥K−w

′
−∥∞)

+ ∥∇∇ ·K−∥2∥w′
+∥∞ + ∥∇B̌2−∥2(∥∇K+w

′
+∥3 + ∥w′

+∥∞)

+ (∥∇B̌1−∥2 + t−1∥∇B3−∥2)(tβ∥∇K+w
′
+∥∞ + ∥w′

+∥∞). (2.70)
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We next estimate the first two terms in the right-hand side of (2.70).

∥(∂tK+ +∇BS
m+)w

′
−∥2 ≤ ∥∂t(s+ +B0 +B1+) +∇(B̌0 + B̌1+ − t−1Be0 − t−1B3+)∥∞∥w′

−∥2

+ ∥∂tB2+ +∇B̌2+∥6∥w′
−∥3

≤ Ct−1(∥w′
−∥2 + ∥w′

−∥3), (2.71)

∥K−∇2
K+
w′

+∥2 ≤ ∥s−∥3(∥∇2w′
+∥6 + ∥∇(s+ +B2+)∥6∥w′

+∥∞)

+ ∥s−∥2(∥K+∥∞∥∇w′
+∥∞ + (∥∇(B0 +B1+)∥∞ + ∥K+∥2∞)∥w′

+∥∞)

+ ∥B−∥6(∥∇2w′
+∥3 + ∥K+∥∞∥∇w′

+∥3 + ∥∇(B0 +B1+)∥∞∥w′
+∥3

+ ∥∇(s+ +B2+)∥6∥w′
+∥6 + ∥K+∥2∞∥w′

+∥3)

≤ C((1− ln t)∥s−∥3 + t−1(∥s−∥2 + ∥∇B−∥2)). (2.72)

We substitute (2.71) and (2.72) into (2.70), and estimate the other terms similarly. Then we

obtain (2.58).

We finally estimate B′
2−. From (2.40), (2.41) and (2.43), we obtain

∥∇B′
2−∥2 ≤ tI1(∥w−∥2∥∇K+w+∥∞ + ∥s−∥2∥w+∥2∞ + ∥B−∥6∥w+∥26),

∥∇B̌′
2−∥2 ≤ I0(∥⟨x⟩w−∥2∥∇K+w+∥∞ + ∥s−∥2∥w+∥∞∥⟨x⟩w+∥∞

+ ∥B−∥6∥⟨x⟩w+∥6∥w+∥6),

which implies (2.59) and (2.60). □

We apply Lemma 2.3 to obtain a uniqueness result for the nonlinear system (2.22) with

initial condition at time zero.

Proposition 2.4. Let 0 < β < 1. Let I = (0, τ ] with 0 < τ ≤ 1. Let h1 ∈ C (I,R+) be such

that h1(t) = (t−2β ∨ t−1/2)h1(t) be non decreasing and satisfy∫ t

0

dt′ t′−1h1(t
′) ≤ ch1(t) (2.73)

for some c > 0 and for all t ∈ I. Let B0 and Be0 satisfy (2.31) for r = ∞ and 0 ≤ j, k, j+k ≤
1. Let (wi, si, B2i), i = 1, 2, be two solutions of the system (2.22) such thatwi ∈ L∞(I,H3), xwi ∈ L∞(I,H2), t∂twi ∈ L∞(I,H1),

B2i ∈ L∞(I, Ḧ2), t∂tB2i ∈ L∞(I, Ḣ1), t∇B̌2i ∈ L∞(I, Ḣ1).
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Assume in addition that s−(0) = 0 and that

∥⟨x⟩w−(t)∥2 ≤ Ch1(t) (2.74)

for all t ∈ I. Then (w1, s1, B21) = (w2, s2, B22).

Proof. Since (2.73) implies (2.49), we can apply Lemma 2.3. Especially, we see that s−(t) is

convergent in L2 as t → 0, and more strongly, the limit exists in H2. Indeed, from (2.55),

(2.73) and (2.74), we obtain ∥∇2∂ts−∥2 ≤ Ct−1−2βh1(t), which ensures the existence of H2-

limit.

We first prove the proposition for τ small enough. Once we have proved the uniqueness for

small τ , we can prove the uniqueness for general τ by similar but more standard arguments.

We set

v0 = ∥⟨x⟩w−∥2, v1 = ∥∇K+w−∥2, V0 = sup
t∈I

h1(t)
−1v0(t).

From Lemma 2.3, especially (2.51)–(2.55) and from (2.73) with (w′
i, B

′
2i) = (wi, B2i), we

obtain

∥∇B1−∥2 ∨ ∥∇B3−∥2 ≤ CV0h1, (2.75)

∥∇∇ ·B1−∥2 ≤ C

∫ t

0

dt′ t′−1v1(t
′) + CV0h1, (2.76)

∥∇B̌1−∥2 ≤ CV0t
−1h1, (2.77)

∥∇ks−∥2 ≤ CV0t
−kβh1 (2.78)

for all t ∈ I and for k = 0, 1, 2. In the proof of (2.76), we have used the estimate

I1(∥∇w−∥2) =
∫ t

0

dt′ t′
−1
(t′/t)3/2∥∇w−(t

′)∥2 ≤
∫ t

0

dt′ t′
−1∥∇w−(t

′)∥2.

The time integral in the right-hand side converges because of the estimate

∥∇w−∥2 ≤ (∥w−∥2∥∆w−∥2)1/2 ≤ C(V0h1)
1/2.

We obtain (2.76) if we replace the ordinary derivative by the covariant derivative in that

integral, by adding a harmless term V0h1. On the other hand, from (2.59), (2.75) and (2.78),

we obtain

∥∇B2−∥2 ≤ CV0t(1− ln t)h1 + CtI1(∥∇B2−∥2).
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From the assumptions on B2i, it follows that B2− ∈ L∞(I, Ḣ1). Therefore, if τ is sufficiently

small, the last term in the right-hand side of can be absorbed in the left-hand side, so that

we can derive

∥∇B2−∥2 ≤ CV0t(1− ln t)h1. (2.79)

Substituting (2.75) and (2.79) into (2.60), we obtain

∥∇B̌2−∥2 ≤ CV0(1− ln t)h1. (2.80)

Substituting (2.75)–(2.80) into (2.58), we obtain

|∂tv1| ≤ C

(
V0(t

−1 + t−2β)h1 +

∫ t

0

dt′ t′−1v1(t
′) + t−1(V0h1v1)

1/2

)
.

Setting v1 = V0v, g = C(t−1 + t−2β)h1 and l = Ct−1h
1/2
1 , we find that this inequality becomes

|∂tv| ≤ g +

∫ t

0

dt′ t′−1v(t′) + lv1/2. (2.81)

Integrating (2.81) in t and applying the Schwarz inequality for the last term, we obtain

v(t) ≤ G(t) + C

∫ t

0

dt′ t′−1(t− t′)v(t′) +

∫ t

0

dt′ (lv1/2)(t′)

≤ G(t) + Ctz(t) + z(t)1/2
(∫ t

0

dt′ t′l2(t′)

)1/2

≤ G(t) + Ctz(t) + Cz(t)1/2h
1/2
1 (t),

where G(t) :=
∫ t

0
dt′ g(t′), z(t) :=

∫ t

0
dt′ t′−1v(t′), so that v = t∂tz. Therefore we have

∂tz ≤ t−1G+ Cz + lz1/2. (2.82)

Applying Lemma 2.3 in [10] to (2.82), we obtain

z ≤ eCt

{∫ t

0

dt′ l(t′) +

(∫ t

0

dt′ t′−1G(t′)

)1/2
}2

≤ C(1 + t1−2β)h1(t).

Substituting this result into (2.82), we obtain

v1 ≤ CV0(1 + t1−2β)h1(t). (2.83)

Substituting (2.75), (2.77)–(2.80) and (2.83) into (2.56) and (2.57), we obtain

∂tv0 ≤ CV0(t
−β + t−1+β)h1(t).
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Integrating this inequality in time, we obtain

V0 ≤ CV0(τ
1−β + τβ).

From this inequality, we see that V0 = 0 for τ small enough. By definition of V0 together with

(2.79), we can conclude ∥⟨x⟩w−(t)∥2 = ∥∇B2−(t)∥2 = 0 for 0 < t ≤ τ . □

3. Cauchy problem at Time Zero for the Auxiliary system

In this section, we aim to solve the Cauchy problem at time zero for auxiliary system (2.22).

We choose a set of asymptotic functions wa = (wa, sa, B1a, B2a, B3a) which are expected to

be suitable asymptotic forms of (w, s,B1, B2, B3) at t = 0, and we try to construct solutions

of (2.22) that are asymptotic to wa in a suitable sense at t = 0. Note that although B1

and B3 are explicit functions of w, we do not assume that B1a = B1(wa), B3a = B3(wa) and

sa = s(wa); we only assume that the difference of both sides decay sufficiently fast (see (3.14)

and the assumption (A3), especially (3.31), (3.32) and (3.34)). We also define

Ba = B0 +B1a +B2a, Bea = Be0 +B3a, Ka = sa +Ba, Bma = B̌a − t−1Bea. (3.1)

In order to solve the auxiliary system (2.22) with the previous asymptotic behaviour at

t = 0, we define the difference variables

(q, σ,G1, G2, G3) ≡ (w − wa, s− sa, B1 −B1a, B2 −B2a, B3 −B3a). (3.2)

We also define

G = G1 +G2, L = σ +G, (3.3)

so that

B = Ba +G, Be = Bea +G3, K = Ka + L. (3.4)

We define in addition

QK1(K2, ·) = K2 · ∇K1 + (1/2)(∇ ·K2), (3.5)

so that

∆K1+K2 = ∆K1 − 2iQK1(K2, ·)−K2
2 . (3.6)
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The separation of Ba, Bea and of G,G3 into short range and long range parts follows the same

pattern as that of B and Be, namely
B̌S

1a = χSB̌1a, B̌
L
1a = χLB̌1a,

B̌S
a = B̌0 + B̌S

1a + B̌2a,

BS
3a = χSB3a, B

L
3a = χLB3a,

(3.7)


ǦS

1 = χSǦ1, ǦL
1 = χLǦ1,

GS
3 = χSG3, GL

3 = χLG3,

ǦS = ǦS
1 + Ǧ2

(3.8)

with χS and χL defined by (2.19). By the relation [χ(tβω), x] = −tβχ′(tβω)ω−1∇, we have

ǦS
1 = t−1+βχ′(tβω)ω−1∇ ·G1 + t−1x · (χSG1), (3.9)

ǦL
1 = −t−1+βχ′(tβω)ω−1∇ ·G1 + t−1x · (χLG1). (3.10)

Using the definitions (3.2)–(3.6), we rewrite the auxiliary system (2.22) in terms of the

difference variables. We take (q, σ,G1, G2, G3) as independent dynamical variables and we

consider G1, G3 and σ with initial condition σ(0) = 0 as functions of q. The auxiliary system

for (q, σ,G1, G2, G3) then becomes

i∂tq = Hq − R̃1,

∂tσ = ∇ǦL
1 − t−1∇GL

3 −R2,

G1 = B1(q, 2wa + q)−R3,

G2 = B2(q, 2wa + q,K)− tF2(PL|wa|2)−R4,

G3 = B3(q, 2wa + q)−R5,

(3.11)

where

R̃1 = R1 −H1wa, (3.12)

H = (−1/2)∆K +BS
m,

H1 = iQKa(L, ·) + (1/2)L2 + ǦS − t−1GS
3 , (3.13)
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and the remainders Rj, 1 ≤ j ≤ 5 are defined by

R1 = i∂twa + (1/2)∆Kawa −BS
mawa,

R2 = ∂tsa −∇B̌L
1a + t−1∇BL

3a,

R3 = B1a −B1(wa),

R4 = B2a − B2(wa, Ka),

R5 = B3a −B3(wa),

(3.14)

where BS
ma = B̌S

a − t−1BS
ea. In the equation for G2 in (3.11), we have used the identity

B2(w,K) = B2(wa, Ka) + B2(q, 2wa + q,K)− tF2(PL|wa|2). (3.15)

The remainders Rj, 1 ≤ j ≤ 5, express the accuracy of the set of asymptotic solutions

(wa, sa, B1a, B2a, B3a) to the original system (2.22).

The resolution of the new auxiliary system (3.11) proceeds in two steps.

Firstly, we solve the system (3.11) for (q, σ,G1, G2, G3) tending to zero as t → 0 with

general boundedness properties of wa, sa, B1a, B2a, B3a and general decay assumptions on the

remainders Rj, 1 ≤ j ≤ 5, as t → 0. For that purpose, we shall need a partly linearized

version of the system (3.11) for the independent dynamical variables (q,G2). With

w′ = wa + q′, B′
2 = B2a +G′

2, (3.16)

the linearized version of (3.11) corresponding to (2.23) becomesi∂tq′ = Hq′ − R̃1,

G′
2 = B2(q, 2wa + q,K)− tF2(PL|wa|2)−R4.

(3.17)

Again we do not need new variables G′
1, G

′
3 and σ, since G1, G3 and σ (with the initial

condition σ(0) = 0) are explicit functions of q. We solve the linearized system (3.17) for

(q′, G′
2) with given (q,G2), thereby defining a mapping Γ : (q,G2) 7→ (q′, G′

2). We then prove

that the mapping Γ is a contraction in a suitable function space X(I) for I = (0, τ ] and τ

sufficiently small.

Secondly, we construct asymptotic functions (wa, sa, B1a, B2a, B3a) satisfying the assump-

tion needed for the previous step. For that purpose, one solves the auxiliary system (3.11)

approximately by an iteration procedure. Unlike the Coulomb gauge case, in the Lorenz

gauge, the term ∇ · B0 appears in H. This term loses one power of t for both one time or

space derivatives (see Lemma 2.1), which makes our analysis more difficult. To overcome this
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difficulty, we need higher order approximation for w. It turns out that the third approxima-

tion for w and the second approximation for (s,B1, B2, B3) are sufficient. (In the Coulomb

gauge, the second approximation for w is sufficient.)

We now define the spaces where to look for solutions of the auxiliary system. For any

interval I ⊂ (0, 1], we denote by X0(I) the Banach space

X0(I) = {(w,B2) : w ∈ C (I,H3) ∩ C 1(I,H1),

xw ∈ C (I,H2) ∩ C 1(I, L2), B2, B̌2 ∈ C (I, Ḣ1 ∩ Ḣ2) ∩ C 1(I, Ḣ1)}, (3.18)

where B̌2 is defined by (2.4). In order to take into account the time decay of the norms of the

variables q and G2 (see (3.2)) as t tends to zero, we introduce a function h ∈ C (I,R+) where

I = (0, τ ] with 0 < τ ≤ 1, such that the function h(t) = t−3/2h(t) be non decreasing in I and

satisfy ∫ t

0

dt′ t′−1h(t′) ≤ c h(t) (3.19)

for some c > 0 and for all t ∈ I. A typical example of such an h is h(t) = t3/2+λ, with λ > 0,

which satisfies (3.19) with c = λ−1. The function h(t) will characterize the time decay of

∥q(t)∥2 as t→ 0. We then define the Banach space

X(I) = {(q,G2) ∈ X0(I) : ∥(q,G2);X(I)∥ <∞} (3.20)

with

∥(q,G2);X(I)∥ = sup
t∈I

h(t)−1{t−1/2∥q(t)∥2 ∨ ∥⟨x⟩q(t)∥2 ∨ t(∥⟨x⟩∂tq(t)∥2 ∨ ∥⟨x⟩∆q(t)∥2)

∨ t3/2(∥∇∂tq(t)∥2 ∨ ∥∇∆q(t)∥2) ∨ t−1/2∥∇G2(t)∥2

∨ t1/2(∥∇2G2(t)∥2 ∨ ∥∇∂tG2(t)∥2 ∨ ∥∇Ǧ2(t)∥2)

∨ t3/2(∥∇2Ǧ2(t)∥2 ∨ ∥∇∂tǦ2(t)∥2)}.

In Subsection 3.2, it turns out that the choice h(t) = t2(1 − ln t)6 will suffice. This type of

space has previously been used in the Coulomb gauge case in [13], but in the Lorenz gauge

case, we need more subtle argument, so that we characterize that ∥q(t)∥2 decays faster than

∥⟨x⟩q(t)∥2 as t→ 0.

In some stages of the first step, we need smallness conditions on τ which depend on

(wa, sa, Ba, Bea). Such conditions are called asymptotic region conditions. They are essen-

tially imposed in order to prove Γ to be a contraction mapping, but they are also used to
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eliminate higher order terms with respect to the dynamical variables and make the estimates

simpler.

3.1. Existence of Solutions of the auxiliary system. We now turn to the first step. We

need the general assumptions made on (wa, sa, Ba, Bea), listed as (A1), (A2) and (A3) below.

The final result will need all the assumptions (A1), (A2) and (A3), but some intermediate

ones will need only part of them. In these assumptions, let I0 = (0, τ0] with 0 < τ0 ≤ 1.

(A1) (boundedness properties of wa)

wa satisfies the following properties:

wa ∈ (C ∩ L∞)(I0, H
3), xwa ∈ (C ∩ L∞)(I0, H

2), (3.21)

t1/2∂twa ∈ (C ∩ L∞)(I0, H
2), t1/2x∂twa ∈ (C ∩ L∞)(I0, H

1). (3.22)

In order to state (A2), we recall that Ba = B0+B1a+B2a, Bea = Be0+B3a, Ka = sa+Ba,

and that B̌S
a = B̌0 + B̌S

1a + B̌2a, B
S
ea = Be0 +BS

3a (see (3.7)).

(A2) (boundedness properties of (sa, Ba, Bea))

sa, Ba, Bea ∈ C (I0, H
1
∞) with sufficient additional regularity, and the following estimates

hold for all t ∈ I0:

∥Ka∥∞ ≤ C(1− ln t), (3.23)

∥∂tKa∥∞ ∨ ∥∇Ka∥∞ ∨ t∥∇∇Ka∥∞

∨t∥∇∂tKa∥∞ ∨ t2∥∇∂t∇Ka∥∞ ≤ Ct−1, (3.24)

∥∇sa∥∞ ∨ ∥∇∇ · sa∥3 ∨ ∥∇(B1a +B2a)∥∞

∨ ∥∇B3a∥∞ ∨ t(∥∇∂tsa∥∞ ∨ ∥∇∂t∇ · sa∥3

∨ ∥∇∂t(B1a +B2a)∥∞ ∨ ∥∇∂tB3a∥∞) ≤ Ct−1/2, (3.25)

∥∇Bma∥∞ ∨ t∥∇∂tBma∥∞ ≤ Ct−1, (3.26)

∥BS
ma∥∞ ∨ t1/2∥∇BS

ma∥∞ ∨ t∥∂tBS
ma∥∞ ≤ Ct−1/2. (3.27)

Note that by Lemma 2.1, B0 and Be0 satisfy the assumptions made on Ba and Bea under

suitable assumptions on (A+, Ȧ+) and (Ae+, Ȧe+).

(A3) (decay properties of the remainders Rj)
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The remainders Rj, 1 ≤ j ≤ 5, satisfy the following estimates for all t ∈ I0:

∥R1∥2 ≤ r1t
−1/2h(t), (3.28)

(∥⟨x⟩R1∥2 ≤)∥⟨x⟩∂tR1;L
1((0, t], L2)∥ ≤ r1t

−1h(t), (3.29)

(∥∇R1∥2 ≤)∥∇∂tR1;L
1((0, t], L2)∥ ≤ r1t

−3/2h(t), (3.30)

∥∇kR2∥2 ≤ r2t
−1−kβh(t) for k = 0, 1, 2, (3.31)

∥∇R3∥2 ∨ t1/2∥∇2R3∥2 ∨ t(∥∇∂tR3∥2 ∨ ∥∇Ř3∥2)

∨ t3/2∥∇2∂tR3∥2 ∨ t3/2∥∇2Ř3∥2 ∨ t2∥∇∂tŘ3∥2 ≤ r3h(t), (3.32)

∥∇R4∥2 ∨ t(∥∇2R4∥2 ∨ ∥∇∂tR4∥2 ∨ ∥∇Ř4∥2)

∨ t2(∥∇2Ř4∥2 ∨ ∥∇∂tŘ4∥2) ≤ r4t
1/2h(t), (3.33)

∥∇R5∥2 ∨ t1/2∥∇2R5∥2 ∨ t∥∇∂tR5∥2 ≤ r5h(t) (3.34)

for some positive constants rj, 1 ≤ j ≤ 5, where h ∈ C (I0,R+) satisfies the condition intro-

duced above.

Now we derive preliminary estimates of G1, G3, σ,G
′
2, H1 and q

′, which are functions defined

by (q,G2).

Lemma 3.1. Let 0 < β < 1 and I = (0, τ ] with 0 < τ ≤ τ0. Let wa satisfy (A1) and let

(q, 0) ∈ X0(I) with

∥q;L∞(I,H3)∥ ≤ ∥wa;L
∞(I,H3)∥, ∥xq;L∞(I,H2)∥ ≤ ∥xwa;L

∞(I,H2)∥. (3.35)

Then the following estimates hold for all t ∈ I:

∥∇G1∥2 ≤ CI0(∥q∥2) + ∥∇R3∥2, (3.36)

∥∇Ǧ1∥2 ≤ Ct−1(I−1(∥⟨x⟩q∥2) + I0(∥q∥2)) + ∥∇Ř3∥2, (3.37)

∥∇2G1∥2 ≤ CI1(∥∇q∥2) + ∥∇2R3∥2, (3.38)

∥∇2Ǧ1∥2 ≤ Ct−1(I0(∥⟨x⟩∇q∥2 + ∥q∥2) + I1(∥∇q∥2)) + ∥∇2Ř3∥2, (3.39)

∥∇∂tG1∥2 ≤ CI1(∥∂tq∥2 + t−1/2∥q∥3) + ∥∇∂tR3∥2, (3.40)

∥∇2∂tG1∥2 ≤ CI2(∥∇∂tq∥2 + t−1/2∥∇q∥3) + ∥∇2∂tR3∥2, (3.41)

∥∇∂tǦ1∥2 ≤ Ct−2(I−1(∥⟨x⟩q∥2) + I0(∥q∥2)) + Ct−1(I0(∥⟨x⟩∂tq∥2

+ t−1/2∥⟨x⟩q∥3) + I1(∥∂tq∥2 + t−1/2∥q∥3)) + ∥∇∂tŘ3∥2, (3.42)

∥∇G3∥2 ≤ CI0(∥q∥2) + ∥∇R5∥2, (3.43)
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∥∇2G3∥2 ≤ CI1(∥∇q∥2) + ∥∇2R5∥2, (3.44)

∥∇∂tG3∥2 ≤ CI1(∥∂tq∥2 + t−1/2∥q∥3) + ∥∇∂tR5∥2, (3.45)

∥∇k∂tσ∥2 ≤ Ct−kβ(∥∇Ǧ1∥2 + t−1∥∇G3∥2) + ∥∇kR2∥2 for k = 0, 1, 2, (3.46)

∥⟨x⟩−1∇k∂tσ∥2 ≤ Ct−1−kβ(∥∇G1∥2 + ∥∇G3∥2) + ∥∇kR2∥2 for k = 0, 1, 2. (3.47)

Proof. From the definitions of B1 and B3, we obtain

G1 = F1(PN1) + E1(N2)−R3, G3 = −F1(N2)−R5,

where N1 = −xRe q(2wa + q), N2 = Re q(2wa + q), so that

∂tG1 = F2(P∂tN1) + E2(∂tN2)− ∂tR3,

Ǧ1 = t−1(F0(x · PN1) + E0(x ·N2) +
∇
ω2
E1(N2) + F0(N2)− F1(N2))− Ř3,

∂tǦ1 = −t−2(F0(x · PN1) + E0(x ·N2) +
∇
ω2
E1(N2) + F0(N2)− F1(N2))

+ t−1(F1(x · P∂tN1) + E1(x · ∂tN2) +
∇
ω2
E2(∂tN2) + F1(∂tN2)− F2(∂tN2))− ∂tŘ3.

By Lemma 2.2, especially by the estimates (2.40) and (2.41), we obtain the following:

∥∇G1∥2 ≤ I0(∥N1∥2) + I0(∥N2∥2) + ∥∇R3∥2

≤ I0(∥q∥2∥x(2wa + q)∥∞) + I0(∥q∥2∥2wa + q∥∞) + ∥∇R3∥2,

∥∇Ǧ1∥2 ≤ t−1{I−1(∥⟨x⟩N1∥2) + I−1(∥⟨x⟩N2∥2) + I−1(∥ω−1N2∥2)

+ I−1(∥N2∥2) + I0(∥N2∥2)}+ ∥∇Ř3∥2

≤ t−1{I−1(∥xq∥2∥⟨x⟩(2wa + q)∥∞) + I−1(∥q∥2∥⟨x⟩(2wa + q)∥∞)

+ I−1(∥q∥2∥2wa + q∥3) + I−1(∥q∥2∥2wa + q∥∞)

+ I0(∥q∥2∥2wa + q∥∞)}+ ∥∇Ř3∥2,

∥∇2G1∥2 ≤ I1(∥∇N1∥2) + I1(∥∇N2∥2) + ∥∇2R3∥2,

∥∇N1∥2 ≤ 2∥∇q∥2∥x(wa + q)∥∞ + ∥q∥6(∥2wa + q∥3 + 2∥x∇wa∥3),

∥∇N2∥2 ≤ 2(∥∇q∥2∥wa + q∥∞ + ∥q∥6∥∇wa∥3),

∥∇2Ǧ1∥2 ≤ t−1{I0(∥⟨x⟩∇N1∥2) + I0(∥⟨x⟩∇N2∥2) + I0(∥N2∥2)

+ I0(∥∇N2∥2) + I1(∥∇N2∥2)}+ ∥∇2Ř3∥2,

∥⟨x⟩∇N1∥2 ≤ 2(∥x∇q∥2∥⟨x⟩(wa + q)∥∞ + ∥xq∥6∥⟨x⟩∇wa∥3) + ∥q∥2∥⟨x⟩(2wa + q)∥∞,



26 YANG LIU AND TAKESHI WADA

∥⟨x⟩∇N2∥2 ≤ 2(∥∇q∥2∥⟨x⟩(2wa + q)∥∞ + ∥q∥6∥⟨x⟩∇wa∥3),

∥∇∂tG1∥2 ≤ I1(∥∂tN1∥2) + I1(∥∂tN2∥2) + ∥∇∂tR3∥2

≤ 2I1(∥∂tq∥2∥x(wa + q)∥∞ + ∥q∥3∥x∂twa∥6)

+ 2I1(∥∂tq∥2∥wa + q∥∞ + ∥q∥3∥∂twa∥6) + ∥∇∂tR3∥2,

∥∇2∂tG1∥2 ≤ I2(∥∇∂tN1∥2) + I2(∥∇∂tN2∥2) + ∥∇2∂tR3∥2

≤ 2I2(∥∇∂tq∥2∥x(wa + q)∥∞ + ∥∂tq∥6∥wa + q∥3 + ∥∂tq∥6∥x∇wa∥3

+ ∥∇q∥3∥x∂twa∥6 + ∥q∥3∥∂twa∥6 + ∥q∥3∥∇∂twa∥6)

+ 2I2(∥∇∂tq∥2∥wa + q∥∞ + ∥∂tq∥6∥∇wa∥3

+ ∥∇q∥3∥∂twa∥6 + ∥q∥3∥∇∂twa∥6) + ∥∇2∂tR3∥2,

∥∇∂tǦ1∥2 ≤ t−2(I−1(∥⟨x⟩N1∥2) + I−1(∥⟨x⟩N2∥2) + I−1(∥ω−1N2∥2)

+ I−1(∥N2∥2) + I0(∥N2∥2)) + t−1(I0(∥⟨x⟩∂tN1∥2) + I0(∥⟨x⟩∂tN2∥2)

+ I0(∥∂tω−1N2∥2) + I0(∥∂tN2∥2) + I1(∥∂tN2∥2)) + ∥∇∂tŘ3∥2,

∥⟨x⟩∂tN1∥2 ≤ 2(∥x∂tq∥2∥⟨x⟩(wa + q)∥∞ + ∥xq∥3∥⟨x⟩∂twa∥6),

∥⟨x⟩∂tN2∥2 ≤ 2(∥∂tq∥2∥⟨x⟩(wa + q)∥∞ + ∥q∥3∥⟨x⟩∂twa∥6),

∥∂tω−1N2∥2 ≤ ∥∂tN2∥6/5 ≤ 2(∥∂tq∥2∥wa + q∥3 + ∥q∥3∥∂twa∥2),

∥∂tN2∥2 ≤ 2(∥∂tq∥2∥wa + q∥∞ + ∥q∥3∥∂twa∥6).

From these estimates together with (A1) and (3.35), we obtain (3.36)–(3.42). In the same

way we can obtain (3.43)–(3.45).

Finally, we obtain (3.46) and (3.47) from (2.34), (2.35), (3.11), (A1) and (3.35). In the

proof of (3.47), we also use (3.10) and Hardy’s inequality. □

Lemma 3.2. Let 0 < β < 1 and I = (0, τ ] with 0 < τ ≤ τ0. Let wa satisfy (A1). Let Ka

satisfy (3.23) and

∥∇Ba∥∞ ∨ ∥∇Bea∥∞ ∨ ∥∂tKa∥∞ ≤ Ct−1. (3.48)

Let (q,G2) ∈ X0(I) satisfy (3.35) and

∥L∥∞ ≤ C(1− ln t). (3.49)
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Then the following estimates hold for all t ∈ I:

∥∇G′
2∥2 ≤ CtI1(∥q∥2(1− ln t) + ∥σ∥2 + ∥∇G∥2) + ∥∇R4∥2, (3.50)

∥∇Ǧ′
2∥2 ≤ CI0(∥⟨x⟩q∥2(1− ln t) + ∥σ∥2 + ∥∇G∥2) + ∥∇Ř4∥2, (3.51)

∥∇2G′
2∥2 ≤ CtI2(∥∇Kq∥2(1− ln t) + t−1∥q∥2 + ∥∇L∥2) + ∥∇2R4∥2, (3.52)

∥∇2Ǧ′
2∥2 ≤ CI1(∥⟨x⟩∇Kq∥2(1− ln t) + t−1∥q∥2 + ∥∇L∥2) + ∥∇2Ř4∥2, (3.53)

∥∇∂tG′
2∥2 ≤ CI1(∥q∥2(1− ln t) + ∥σ∥2 + ∥∇G∥2)

+ CtI2(∥∂tq∥2(1− ln t) + ∥∇Kq∥2t−1/2 + t−1∥q∥2

+ ∥∂tσ∥2 + ∥∇∂tG∥2 + (∥σ∥2 + ∥∇G∥2)t−1/2) + ∥∇∂tR4∥2, (3.54)

∥∇∂tǦ′
2∥2 ≤ CI1(∥⟨x⟩∂tq∥2(1− ln t) + ∥⟨x⟩∇Kq∥2t−1/2 + t−1∥q∥2

+ ∥∂tσ∥2 + ∥∇∂tG∥2 + (∥σ∥2 + ∥∇G∥2)t−1/2) + ∥∇∂tŘ4∥2. (3.55)

Proof. The proof is the same as that of Lemma 5.2 in [13]. □

Lemma 3.3. Let 0 < β < 1 and I = (0, τ ] with 0 < τ ≤ τ0. Let wa satisfy (A1). Let Ka

satisfy (3.23) and (3.24). Let (q,G2) ∈ X0(I) satisfy (3.35) and

∥L∥∞ ∨ ∥∇L∥3 ≤ C(1− ln t) (3.56)

for all t ∈ I. Then the following estimates hold for all t ∈ I:

∥H1wa∥2 ≤ C((∥⟨x⟩−1σ∥3 + ∥∇G∥2)(1− ln t) + ∥⟨x⟩−1∇ · σ∥2

+ t−1+β(∥∇G1∥2 + ∥∇G3∥2) + ∥∇Ǧ2∥2), (3.57)

∥⟨x⟩H1wa∥2 ≤ C((∥σ∥3 + ∥∇G∥2)(1− ln t) + ∥∇ · σ∥2

+ tβ(∥∇Ǧ1∥2 + t−1∥∇G3∥2) + ∥∇Ǧ2∥2), (3.58)

∥⟨x⟩H1∂twa∥2 ≤ C(∥L∥∞ + ∥L∥6(1− ln t) + ∥∇ · σ∥3 + ∥∇ ·G∥3

+ tβ/2(∥∇Ǧ1∥2 + t−1∥∇G3∥2) + ∥∇Ǧ2∥2)t−1/2, (3.59)

∥⟨x⟩(∂tH1)wa∥2 ≤ C((∥∂tσ∥3 + ∥∇∂tG∥2)(1− ln t) + ∥∂t∇ · σ∥2

+ tβ(∥∇∂tǦ1∥2 + ∥∇∂t(t−1G3)∥2) + ∥∇∂tǦ2∥2

+ t−1(∥σ∥2 + ∥∇G∥2)), (3.60)

∥∇KH1wa∥2 ≤ C(∥∇L∥2(1− ln t)2 + ∥∇ · σ∥3(1− ln t) + ∥∇∇ · L∥2

+ t−1(∥σ∥2 + ∥∇G∥2) + ∥∇Ǧ1∥2 + t−1∥∇G3∥2
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+ ∥∇Ǧ2∥2(1− ln t)), (3.61)

∥∇KH1∂twa∥2 ≤ C((∥L∥∞ + ∥∇L∥3)(1− ln t) + ∥∇L∥2(1− ln t)2

+ t−1(∥σ∥2 + ∥∇G∥2) + ∥∇ · σ∥3(1− ln t) + ∥∇∇ · L∥2

+ ∥∇Ǧ1∥2 + t−1∥∇G3∥2 + ∥∇Ǧ2∥2(1− ln t))t−1/2, (3.62)

∥∇K(∂tH1)wa∥2 ≤ C(∥∇∂tL∥2(1− ln t)2 + ∥∇∂t∇ · L∥2 + t−1(∥∂tσ∥2

+ ∥∇∂tG∥2 + ∥∇L∥2(1− ln t)) + t−2(∥σ∥2 + ∥∇G∥2)

+ ∥∇∂tǦ1∥2 + ∥∇∂t(t−1G3)∥2 + ∥∇∂tǦ2∥2(1− ln t)). (3.63)

Proof. We rewrite H1 defined by (3.13) as

H1 = iQKa(L, ·) + (1/2)L2 + ǦS − t−1GS
3 . (3.64)

Using (2.32) and (2.33) together with (3.9), we obtain

∥H1wa∥2 ≤ ∥⟨x⟩−1σ∥3∥⟨x⟩∇Kawa∥6 + ∥G∥6∥∇Kawa∥3

+ ∥⟨x⟩−1∇ · σ∥2∥⟨x⟩wa∥∞ + ∥∇ ·G∥2∥wa∥∞

+ t−1+β∥∇G1∥2(∥wa∥3 + ∥⟨x⟩wa∥∞) + t−1+β∥∇G3∥2∥wa∥∞

+ ∥Ǧ2∥6∥wa∥3 + ∥L∥∞(∥⟨x⟩−1σ∥3∥⟨x⟩wa∥6 + ∥G∥6∥wa∥3),

∥⟨x⟩H1wa∥2 ≤ ∥σ∥3∥⟨x⟩∇Kawa∥6 + ∥G∥6∥⟨x⟩∇Kawa∥3

+ (∥∇ · σ∥2 + ∥∇ ·G∥2 + tβ(∥∇Ǧ1∥2 + t−1∥∇G3∥2))∥⟨x⟩wa∥∞

+ ∥Ǧ2∥6∥⟨x⟩wa∥3 + ∥L∥∞(∥σ∥3∥⟨x⟩wa∥6 + ∥G∥6∥⟨x⟩wa∥3),

∥⟨x⟩H1∂twa∥2 ≤ ∥L∥∞∥⟨x⟩∇∂twa∥2 + ∥L∥6∥Ka∥∞∥⟨x⟩∂twa∥3

+ (∥∇ · σ∥3 + ∥∇ ·G∥3 + tβ/2(∥∇Ǧ1∥2 + t−1∥∇G3∥2))∥⟨x⟩∂twa∥6

+ ∥Ǧ2∥6∥⟨x⟩∂twa∥3 + ∥L∥∞∥L∥6∥⟨x⟩∂twa∥3.

Hence we obtain (3.57), (3.58) and (3.59) by (A1), (3.23) and (3.56).

Taking the time derivative of (3.64), we obtain

∂tH1 = i(∂tL) · ∇Ka + (i/2)(∂t∇ · L) + L · (∂tK) + (∂tǦ
S)− ∂t(t

−1GS
3 ). (3.65)
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Using (2.32) and (2.33), we obtain

∥⟨x⟩(∂tH1)wa∥2 ≤ ∥∂tσ∥3∥⟨x⟩∇Kawa∥6 + ∥∂tG∥6∥⟨x⟩∇Kawa∥3

+ (∥∂t∇ · σ∥2 + ∥∂t∇ ·G∥2 + tβ∥∇∂tǦ1∥2 + tβ∥∇∂t(t−1G3)∥2)∥⟨x⟩wa∥∞

+ ∥∂tǦ2∥6∥⟨x⟩wa∥3 + ∥∂tKa∥∞(∥σ∥2∥⟨x⟩wa∥∞ + ∥G∥6∥⟨x⟩wa∥3)

+ ∥L∥∞(∥∂tσ∥3∥⟨x⟩wa∥6 + ∥∂tG∥6∥⟨x⟩wa∥3).

Hence we obtain (3.60) by (A1), (3.23), (3.24) and (3.56).

Taking the covariant gradient of H1v, using (3.64) and the identity

∇K∇Ka = ∇Ka∇− iK∇Ka − i(∇Ka), (3.66)

we obtain

∇KH1v = iL · ∇Ka∇v + (i(∇L) +KL) · ∇Kav

+ ((i/2)(∇ · L) + (1/2)L2 + (ǦS − t−1GS
3 ))∇Kv

+ ((i/2)(∇∇ · L) + L · (∇K) +∇(ǦS − t−1GS
3 ))v. (3.67)

Using (2.32) and (2.33), we obtain

∥∇KH1v∥2 ≤ ∥∇L∥2(∥∇Ka∇v∥3 + ∥∇Kav∥∞ + ∥K∥∞∥∇Kav∥3)

+ ∥∇ · L∥3∥∇Kv∥6 + ∥∇∇ · L∥2∥v∥∞

+ ∥∇L∥2∥L∥∞(∥∇Kv∥3 + ∥v∥∞)

+ ∥∇Ka∥∞(∥σ∥2∥v∥∞ + ∥G∥6∥v∥3)

+ (∥∇Ǧ1∥2 + t−1∥∇G3∥2)(tβ/2∥∇Kv∥6 + ∥v∥∞)

+ ∥∇Ǧ2∥2(∥∇Kv∥3 + ∥v∥∞). (3.68)

Applying (3.68) with v = wa and using (A1), (3.23), (3.24) and (3.56), we obtain (3.61).

On the other hand, (3.62) follows from (3.67) with v = ∂twa, except for a slightly different

estimate of the contribution of the first two terms in the right-hand side of (3.67), namely

∥L · ∇Ka∇∂twa∥2 + ∥(∇L)∇Ka∂twa∥2 ≤ ∥L∥∞∥∇Ka∇∂twa∥2 + ∥∇L∥3∥∇Ka∂twa∥6.
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Taking the covariant gradient of (∂tH1)v, using (3.65) and (3.66), we obtain

∇K(∂tH1)v = i(∂tL) · ∇Ka∇v + (i(∇∂tL) +K(∂tL)) · ∇Kav

+ ((i/2)(∂t∇ · L) + L · (∂tK) + ∂t(Ǧ
S − t−1GS

3 ))∇Kv

+ ((i/2)(∇∂t∇ · L) + (∂tL) · (∇Ka) + (∇L)(∂tK)

+ L(∇∂tK) + (∇∂t(ǦS − t−1GS
3 )))v.

Using (2.32) and (2.33), we obtain

∥∇K(∂tH1)v∥2 ≤ ∥∇∂tL∥2(∥∇Ka∇v∥3 + ∥∇Kav∥∞ + ∥K∥∞∥∇Kav∥3)

+ ∥∂t∇ · L∥2∥∇Kv∥∞ + ∥∇∂t∇ · L∥2∥v∥∞

+ ∥∇Ka∥∞(∥∂tσ∥2∥v∥∞ + ∥∂tG∥6∥v∥3)

+ ∥∂tKa∥∞∥∇L∥2(∥∇Kv∥3 + ∥v∥∞)

+ ∥∇∂tKa∥∞(∥σ∥2∥v∥∞ + ∥G∥6∥v∥3)

+ ∥∇∂tL∥2(∥L∥∞∥∇Kv∥3 + (∥∇L∥3 + ∥L∥∞)∥v∥∞)

+ (∥∇∂tǦ1∥2 + ∥∇∂t(t−1G3)∥2)(tβ∥∇Kv∥∞ + ∥v∥∞)

+ ∥∇∂tǦ2∥2(∥∇Kv∥3 + ∥v∥∞).

Substituting wa for v and using (A1), (3.23), (3.24) and (3.56), we obtain (3.63). □

We next estimate the solutions q′ of the Schrödinger equation in (3.17). The estimates are

given in differential form, but should be understood in integral form. The derivation in the

proof is formal, but the estimates in integral form are justified by Proposition 4.1 in [13].

Lemma 3.4. Let 0 < β < 1 and I = (0, τ ] with 0 < τ ≤ τ0. Let (wa, Ka) satisfy (A1), (A2)

and let B0, Be0 satisfy (2.31) for 0 ≤ j ≤ 1, 0 ≤ k ≤ 2 and r = ∞. Let (q,G2) ∈ X0(I) satisfy

(3.35), (3.56) and in addition

∥∇ǦS∥2 ∨ t−1∥∇GS
3 ∥2 ≤ Ct−1/4, (3.69)

∥∇∂tL∥2 ∨ ∥∇ǦS∥6 ∨ t−1∥∇GS
3 ∥6 ≤ Ct−3/4, (3.70)

∥∇∂t∇ · L∥2 ∨ ∥∇∂tǦS∥2 ∨ ∥∇∂t(t−1GS
3 )∥2 ≤ Ct−5/4 (3.71)
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for all t ∈ I. Let q′ with (q′, 0) ∈ X0(I) be a solution of the Schrödinger equation in (3.17).

Then the following estimates hold for all t ∈ I:

|∂t∥q′∥2| ≤ ∥R̃1∥2, (3.72)

|∂t∥xq′∥2| ≤ ∥∇Kq
′∥2 + ∥xR̃1∥2, (3.73)

|∂t∥∂tq′∥2| ≤ C(t−1∥∇Kq
′∥2 + t−3/4(∥∇Kq

′∥3 + ∥q′∥∞) + t−3/2∥q′∥2)

+ b0t
−2∥q′∥2 + ∥∂tR̃1∥2, (3.74)

|∂t∥x∂tq′∥2| ≤ ∥∇K∂tq
′∥2 + C(t−1∥x∇Kq

′∥2 + t−3/4(∥x∇Kq
′∥3

+ ∥xq′∥∞) + t−3/2∥xq′∥2) + b0t
−2∥xq′∥2 + ∥x∂tR̃1∥2, (3.75)

|∂t∥∇K∂tq
′∥2| ≤ C(t−1(∥∇2

Kq
′∥2 + ∥∂tq′∥2)

+ t−3/4(∥∇Kq
′∥∞ + ∥∂tq′∥3 + ∥∇2

Kq
′∥3)

+ t−3/2∥∇Kq
′∥2 + t−5/4∥q′∥∞ + t−5/2∥q′∥2)

+ b0t
−2∥∇Kq

′∥2 + b0t
−3∥q′∥2 + ∥∇K∂tR̃1∥2, (3.76)

∥⟨x⟩∆Kq
′∥2 ≤ ∥⟨x⟩∂tq′∥2 + Ct−1/2∥⟨x⟩q′∥2 + ∥⟨x⟩R̃1∥2, (3.77)

∥∇K∆Kq
′∥2 ≤ ∥∇K∂tq

′∥2 + C(t−1/2∥∇Kq
′∥2 + t−1∥q′∥2) + ∥∇KR̃1∥2. (3.78)

Proof. Applying standard L2 estimate for the first equation of (3.17), we immediately ob-

tain (3.72).

We next estimate xq′. From the commutation relation [x,H] = ∇K , we obtain

i∂txq
′ = ∇Kq

′ +Hxq′ − xR̃1, (3.79)

which implies (3.73).

We next estimate ∂tq
′. We take the time derivative of the first equation of (3.17) to obtain

i∂t∂tq
′ = H∂tq

′ + (∂tH)q′ − ∂tR̃1 (3.80)

with

∂tH = i(∂tK) · ∇K + (i/2)(∂t∇ ·K) + ∂tB
S
m. (3.81)
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Hence we obtain

|∂t∥∂tq′∥2| ≤ ∥(∂tH)q′∥2 + ∥∂tR̃1∥2,

∥(∂tH)q′∥2 ≤ ∥∂tKa∥∞∥∇Kq
′∥2 + ∥∂tL∥6∥∇Kq

′∥3 + ∥∂t∇ · L∥2∥q′∥∞

+ (∥∂t∇ ·Ka∥∞ + ∥∂tBS
ma∥∞)∥q′∥2

+ (∥∂tǦS∥6 + ∥∂t(t−1GS
3 )∥6)∥q′∥3.

Using (A2), (3.70), (3.71) and a covariant Sobolev inequality, we obtain (3.74).

We next estimate x∂tq
′. Multiplying x by (3.80) and using the commutation relation

[x,H] = ∇K , we obtain

i∂tx∂tq
′ = ∇K∂tq

′ +Hx∂tq
′ + x(∂tH)q′ − x∂tR̃1, (3.82)

and hence we obtain

∂t∥x∂tq′∥2 ≤ ∥∇K∂tq
′∥2 + ∥x(∂tH)q′∥2 + ∥x∂tR̃1∥2.

Estimating ∥x(∂tH)q′∥2 as before with ∇Kq
′ and q′ replaced by x∇Kq

′ and xq′ respectively,

we obtain (3.75).

We next estimate ∇K∂tq
′. We take the covariant gradient of (3.80) to obtain

i∂t∇K∂tq
′ = (∂tK +∇BS

m)∂tq
′ − (1/2)∇K∆K∂tq

′ +BS
m∇K∂tq

′

+∇K(∂tH)q′ −∇K∂tR̃1. (3.83)

Hence we have

∂t∥∇K∂tq
′∥2 ≤ ∥(∂tK +∇BS

m)∂tq
′∥2 + ∥∇K(∂tH)q′∥2 + ∥∇K∂tR̃1∥2 (3.84)

with

∇K(∂tH)q′ = i(∂tK) · ∇2
Kq

′ + (i(∇∂tK) + (i/2)(∂t∇ ·K) + (∂tB
S
m)) · ∇Kq

′

+ ((i/2)(∇∂t∇ ·K) + (∇∂tBS
m))q

′.

We estimate each term of (3.84) as follows:

∥(∂tK +∇BS
m)∂tq

′∥2 ≤ ∥∂tKa +∇BS
ma∥∞∥∂tq′∥2

+ ∥∂tL+∇ǦS − t−1∇GS
3 ∥6∥∂tq′∥3

≤ C(t−1∥∂tq′∥2 + t−3/4∥∂tq′∥3),

∥(∂tK)∇2
Kq

′∥2 ≤ C(t−1∥∇2
Kq

′∥2 + t−3/4∥∇2
Kq

′∥3),
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∥(∇∂tK)∇Kq
′∥2 + ∥(∂t∇ ·K)∇Kq

′∥2 + ∥(∂tBS
m)∇Kq

′∥2

≤ (∥∇∂tKa∥∞ + ∥∂t∇ ·Ka∥∞ + ∥∂tBS
ma∥∞)∥∇Kq

′∥2

+ (∥∇∂tL∥2 + ∥∂t∇ · L∥2)∥∇Kq
′∥∞

+ (∥∂tǦS∥6 + ∥∂t(t−1GS
3 )∥6)∥∇Kq

′∥3

≤ (b0t
−2 + Ct−3/2)∥∇Kq

′∥2 + Ct−3/4∥∇Kq
′∥∞,

∥(∇∂t∇ ·K)q′∥2 + ∥(∇∂tBS
m)q

′∥2

≤ ∥∇∂t∇ ·Ka∥∞∥q′∥2 + ∥∇∂t∇ · L∥2∥q′∥∞

+ ∥∇∂tBS
ma∥∞∥q′∥2 + ∥∇∂tǦS∥2∥q′∥∞

+ ∥∇∂t(t−1GS
3 )∥2∥q′∥∞

≤ (b0t
−3 + Ct−2)∥q′∥2 + Ct−5/4∥q′∥∞.

Here, we have used (A2), (3.41), (3.70) and (3.71). The constant b0 is the one which appears

in Lemma 2.1. Substituting these estimates into (3.81), we obtain (3.76).

We next estimate ⟨x⟩∆Kq
′ and ∇K∆Kq

′. Using the first equation of (3.17), we have

∥⟨x⟩∆Kq
′∥2 ≤ ∥⟨x⟩∂tq′∥2 + ∥BS

m∥∞∥⟨x⟩q′∥2 + ∥⟨x⟩R̃1∥2,

∥∇K∆Kq
′∥2 ≤ ∥∇K∂tq

′∥2 + ∥BS
m∥∞∥∇Kq

′∥2 + ∥(∇BS
m)q

′∥2 + ∥∇KR̃1∥2.

On the other hand, from (A2), (3.69) and (3.70), we have

∥(∇BS
m)q

′∥2 ≤ ∥∇BS
ma∥∞∥q′∥2 + (∥∇ǦS∥3 + t−1∥∇GS

3 ∥3)∥q′∥6

≤ C(t−1∥q′∥2 + t−1/2∥∇Kq
′∥2).

From these inequalities, we obtain (3.77) and (3.78). □

Lemma 3.5. Let 2 ≤ r ≤ 3. We define

n = ∥K∥2∞ + ∥∇ · L∥23 + ∥∇ ·Ka∥∞ + ∥K∥∞ + ∥∇ · L∥3,

n̄ = ∥K∥2∞ + ∥∇L∥23 + ∥∇Ka∥∞,

ñ = ∥K∥3∞ + ∥∇L∥33 + ∥K∥∞∥∇Ka∥∞ + ∥∇∇ ·Ka∥∞ + ∥∇∇ · L∥22.
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Then the following estimates hold:

∥⟨x⟩∇Kv∥3 ≤ ∥⟨x⟩∇v∥1/22 (∥⟨x⟩∆v∥2 + ∥∇v∥2)1/2

+ ∥K∥∞∥⟨x⟩v∥1/22 (∥⟨x⟩∇v∥2 + ∥v∥2)1/2, (3.85)

∥⟨x⟩∆Kv∥r ≤ ∥⟨x⟩∆v∥r + n∥⟨x⟩v∥r, (3.86)

∥∇2
Kv∥r ≤ ∥∆v∥r + n̄∥v∥r, (3.87)

∥∇∆v∥2 ≤ ∥∇K∆Kv∥2 + ∥∇Ka∥∞∥∇v∥2 + ñ∥v∥2. (3.88)

Proof. The proof is the same as that of Lemma 5.5 in [13]. We remark that in our case the

term (∇ ·K)v appears in ∆Kv, which disappears in the Coulomb gauge case. □

Now we will show that Γ maps a bounded set of X(I) into itself, where I = (0, τ ] with τ

sufficiently small. In what follows we assume that (q,G2) ∈ X(I) satisfies

∥q(t)∥2 ≤ V00t
1/2h(t), ∥⟨x⟩q(t)∥2 ≤ V01h(t), (3.89)

∥⟨x⟩∂tq(t)∥2 ∨ ∥⟨x⟩∆q(t)∥2 ≤ V2t
−1h(t), (3.90)

∥∇∂tq(t)∥2 ∨ ∥∇∆q(t)∥2 ≤ V3t
−3/2h(t), (3.91)

∥∇G2(t)∥2 ∨ t(∥∇2G2(t)∥2 ∨ ∥∇∂tG2(t)∥2 ∨ ∥∇Ǧ2(t)∥2)

∨ t2(∥∇2Ǧ2(t)∥2 ∨ ∥∇∂tǦ2(t)∥2) ≤ Zt1/2h(t) (3.92)

for some constants V00, V01, V2, V3, Z and for all t ∈ I, with h introduced in the definition of

X(I). Note that from the definition of V2, we have

∥⟨x⟩q(t)∥2 ≤
∫ t

0

dt′∥⟨x⟩∂tq(t′)∥2 ≤ V2h(t),

so that we may assume V01 ≤ V2. From (3.89) and (3.90) together with the Sobolev inequality,

we have

∥⟨x⟩∇q(t)∥2 ≤ (∥⟨x⟩∆q(t)∥2∥⟨x⟩q(t)∥2)1/2 ≤ V1t
−1/2h(t) (3.93)

for some constant V1. We may assume that V01 ≤ V1 ≤ V2.

Lemma 3.6. Let 1/4 ≤ β < 3/4 and I = (0, τ ] with 0 < τ ≤ τ0. Let wa, Ka and the

remainders Rj, 1 ≤ j ≤ 5, satisfy the assumptions (A1), (A2) and (A3). Let (q,G2) ∈ X(I)

satisfy the conditions (3.89)–(3.93), and let τ be sufficiently small so that (3.35) holds and

that

(V2 + r6)h ≤ t3/4 ∧ t−1/4+2β, Zh ≤ t3/4 (3.94)
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for all t ∈ I, where r6 = r2 + r3 + r5. Then the estimates (3.56), (3.69)–(3.71), and the

following estimates hold for all t ∈ I:

∥∇Ǧ1∥2 ≤ C(V01 + r3)t
−1h, (3.95)

∥∇G1∥2 ∨ ∥∇G3∥2 ≤ C((V00t
1/2) ∧ V01 + r6)h, (3.96)

∥∇2G1∥2 ∨ t∥∇2Ǧ1∥2 ≤ C(V1 + r3)t
−1/2h, (3.97)

∥∇2G3∥2 ≤ C(V1 + r5)t
−1/2h, (3.98)

∥∇∂tG1∥2 ∨ t∥∇∂tǦ1∥2 ≤ C(V2 + r3)t
−1h, (3.99)

∥∇∂tG3∥2 ∨ t∥∇∂t(t−1G3)∥2 ≤ C(V2 + r5)t
−1h, (3.100)

∥∇2∂tG1∥2 ≤ C(V2 + V3 + r3)t
−3/2h, (3.101)

∥∇kσ∥2 ∨ t∥∇k∂tσ∥2 ≤ C(V01 + r6)t
−kβh for k = 0, 1, 2, (3.102)

∥⟨x⟩−1∇kσ∥2 ≤ C(V00t
1/2 + r6)t

−kβh for k = 0, 1, 2, (3.103)

∥∇G′
2∥2 ∨ t∥∇Ǧ′

2∥2 ≤ {C((V1 + r6)t
1/2(1− ln t) + Zt) + r4}t1/2h, (3.104)

∥∇2G′
2∥2 ∨ t∥∇2Ǧ′

2∥2 ≤ {C((V1 + r6)t
1/2 + Zt2) + r4}t−1/2h, (3.105)

∥∇∂tG′
2∥2 ∨ t∥∇∂tǦ′

2∥2 ≤ {C((V2 + r6)t
1/2(1− ln t) + Zt) + r4}t−1/2h, (3.106)

∥H1wa∥2 ≤ C{(V00t1/2 + r6)(t
−β + t−1+β) + Zt−1/2}h, (3.107)

∥⟨x⟩H1wa∥2 ≤ C{(V01 + r6)(t
−β + t−1+β) + Zt−1/2}h, (3.108)

∥⟨x⟩H1∂twa∥2 ≤ C{(V01 + r6)(t
−3β/2 + t−1+β/2) + Zt−1/2}t−1/2h, (3.109)

∥⟨x⟩(∂tH1)wa∥2 ≤ C{(V2 + r6)(t
−β + t−1+β) + Zt−1/2}t−1h, (3.110)

∥∇KH1wa∥2 ≤ C{(V1 + r6)(t
−2β + t−1) + Zt−1/2(1− ln t)}h, (3.111)

∥∇KH1∂twa∥2 ≤ C{(V1 + r6)(t
−2β + t−1) + Zt−1/2(1− ln t)}t−1/2h, (3.112)

∥∇K(∂tH1)wa∥2 ≤ C{(V2 + r6)(t
−2β + t−1)

+ V3t
−1/2 + Zt−1/2(1− ln t)}t−1h. (3.113)

Proof. The estimates (3.95)–(3.103) are obtained by substituting the bounds (3.89)–(3.92)

on (q,G2) into the estimates of Lemma 3.1. Then, these estimates together with (3.92) and

(3.94) yield the estimates (3.56), (3.69)–(3.71). Once we obtain (3.56), we can use Lemmas 3.2

and 3.3 to prove the estimates (3.104)–(3.113). □
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Lemma 3.7. Let the assumptions of Lemma 3.6 be satisfied and R̃1 = R1 −H1wa. Then the

following estimates hold:

N00 = sup
t∈(0,τ ]

t−1/2h(t)−1

∫ t

0

dt′∥R̃1(t
′)∥2 ≤ r1 + C{V00(t1/2 + r6)(τ

1/2−β + τ−1/2+β) + Z},

N01 = sup
t∈(0,τ ]

h(t)−1

∫ t

0

dt′∥⟨x⟩R̃1(t
′)∥2 ≤ r1 + C{(V01 + r6)(τ

1−β + τβ) + Zτ 1/2},

N2 = sup
t∈(0,τ ]

th(t)−1

∫ t

0

dt′∥⟨x⟩∂tR̃1(t
′)∥2 ≤ r1 + C{(V2 + r6)(τ

1−β + τβ) + Zτ 1/2},

N3 = sup
t∈(0,τ ]

t3/2h(t)−1{∥∇KR̃1(t
′)∥2 ∨

∫ t

0

dt′∥∇K∂tR̃1(t
′)∥2}

≤ r1(1 + Cτ 1/2(1− ln τ)) + C{(V2 + r6)(τ
3/2−2β + τ 1/2) + V3τ + Zτ(1− ln τ)}.

Proof. The estimates follow from (A3) and (3.107)–(3.113). In the proof of the last inequality,

we also need the estimate ∥K∂tR̃1;L
1((0, t], L2)∥ ≤ Cr1(1− ln t)t−1h(t). For the proof of this

estimate, see that of Lemma 5.7 in [13]. □

We now turn to the construction of solutions (q′, G′
2) of the linearized system (3.17). We

consider (q,G2) belonging to a bounded set of X((0, τ ]), defined by (3.89)–(3.92) for some

τ, 0 < τ ≤ τ0 . We shall deal with solutions (q′, G′
2) of the system (3.17) defined in an interval

I = [t0, τ ]∩ (0, τ ] for some t0 with 0 ≤ t0 < τ . We shall need to estimate (q′, G′
2) in X(I) and

for that purpose we define the relevant norms

V ′
00 = sup

t∈I
t−1/2h(t)−1∥q′(t)∥2, V ′

01 = sup
t∈I

h(t)−1∥⟨x⟩q′(t)∥2, (3.114)

V ′
2 = sup

t∈I
th(t)−1(∥⟨x⟩∂tq′(t)∥2 ∨ ∥⟨x⟩∆q′(t)∥2), (3.115)

V ′
3 = sup

t∈I
t3/2h(t)−1(∥∇∂tq′(t)∥2 ∨ ∥∇∆q′(t)∥2), (3.116)

Z ′ = sup
t∈I

t−1/2h(t)−1{∥∇G′
2(t)∥2 ∨ t(∥∇2G′

2(t)∥2 ∨ ∥∇∂tG′
2(t)∥2

∨ ∥∇Ǧ′
2(t)∥2) ∨ t2(∥∇2Ǧ′

2(t)∥2 ∨ ∥∇∂tǦ′
2(t)∥2)}. (3.117)

For technical reasons, we shall also need the following auxiliary norms:

V ′
1 = sup

t∈I
t1/2h(t)−1∥⟨x⟩∇q′(t)∥2, (3.118)

Ṽ ′
1 = sup

t∈I
t1/2h(t)−1∥⟨x⟩∇Kq

′(t)∥2, (3.119)

Ṽ ′
3/2 = sup

t∈I
t3/4h(t)−1∥⟨x⟩∇Kq

′(t)∥3, (3.120)
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V ′
3/2 = sup

t∈I
t3/4h(t)−1∥⟨x⟩q′(t)∥∞, (3.121)

V ′
2,t = sup

t∈I
th(t)−1∥⟨x⟩∂tq′(t)∥2, (3.122)

Ṽ ′
2,x = sup

t∈I
th(t)−1∥⟨x⟩∆Kq

′(t)∥2, (3.123)

Ṽ ′
2 = V ′

2,t ∨ Ṽ ′
2,x, (3.124)

Ṽ ′′
2 = V ′

2,t ∨ sup
t∈I

th(t)−1∥∇2
Kq

′(t)∥2, (3.125)

Ṽ ′
5/2 = sup

t∈I
t5/4h(t)−1(∥∂tq′(t)∥3 ∨ ∥∇Kq

′(t)∥∞ ∨ ∥∇2
Kq

′(t)∥3), (3.126)

Ṽ ′
3,t = sup

t∈I
t3/2h(t)−1∥∇K∂tq

′(t)∥2, (3.127)

Ṽ ′
3,x = sup

t∈I
t3/2h(t)−1∥∇K∆Kq

′(t)∥2, (3.128)

Ṽ ′
3 = Ṽ ′

3,t ∨ Ṽ ′
3,x. (3.129)

We can now state the existence result of solutions of the linearized system (3.17).

Proposition 3.8. Let 1/4 ≤ β < 3/4 and I = (0, τ ] with 0 < τ ≤ τ0. Let wa, Ka and the

remainders Rj, 1 ≤ j ≤ 5, satisfy the assumptions (A1), (A2), (A3) and let B0, Be0 satisfy

(2.31) for 0 ≤ j ≤ 1, 0 ≤ k ≤ 2 and r = ∞. Let (q,G2) ∈ X(I), satisfying the bounds

(3.89)–(3.92). Then, for τ sufficiently small, there exists a unique solution (q′, G′
2) of the

system (3.17) in X(I), and that solution is estimated in the norms V ′
00, V

′
01, V

′
2 , V

′
3 , Z

′ defined

by (3.114)–(3.117) by

V ′
00 ≤ N00, (3.130)

V ′
01 ≤ b0N00τ

1/2 +N01 +N2τ +N3τ
3/2, (3.131)

V ′
2 ≤ b0N00τ

1/2 + b0N01 +N2 +N3τ
1/2, (3.132)

V ′
3 ≤ b0(N00 + b0N01 +N2) +N3, (3.133)

Z ′ ≤ C((V2 + r6)τ
1/2(1− ln τ) + Zτ) + r4. (3.134)

Proof. We first choose τ sufficiently small to satisfy the asymptotic region conditions (3.35) of

Lemma 3.1 and (3.94) of Lemma 3.6, so that we have (3.56), (3.69)–(3.71) and all the estimates

in Lemma 3.6. Furthermore, from (3.94), (3.97) and (3.102), we obtain ∥∇∇ · L∥2 ≤ Ct−1/4.

This estimate, together with (A2) and (3.56), we obtain

n, n̄ ≤ b0t
−1 + C(1− ln t)2, ñ ≤ b0t

−2 + Ct−1(1− ln t), (3.135)
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where n, n̄ and ñ are defined in Lemma 3.5.

Since G′
2 is explicitly defined by the expression (3.17) and satisfies the estimates (3.104)–

(3.106), it is defined in the same interval as (q,G2) and satisfies the estimate (3.134).

We proceed to the construction and estimates of q′. Let 0 < t0 < τ and let q′t0 be the

solution of the Schrödinger equation in (3.17) with initial condition q′t0(t0) = 0. We shall

derive estimates of (q′t0 , 0) in X([t0, τ ]) that are uniform in t0 by the use of Lemmas 3.4

and 3.5. Once we obtain such estimates, we can construct q′ as the limit of q′t0 as t0 → 0.

Indeed, let 0 < t0 < t1 ≤ τ . Since q′− ≡ q′t1 − q′t0 satisfies the equation i∂tq
′
− = Hq′−, we have

the conservation of the L2-norm of q′−, that is,

∥q′−(t)∥2 = ∥q′−(t1)∥2 = ∥q′t0(t1)∥2 ≤ V ′
00t

1/2
1 h(t1),

where V ′
00 is defined by (3.114). Since the right-hand side goes to zero as 0 < t0 < t1 → 0,

we see that q′ = limt0→0 q
′
t0

exists in L∞((0, τ ], L2). Furthermore, since (q′t0 , 0) is uniformly

bounded in X([t0, τ ]) with respect to t0, we can show that q′t0 converges to q′, strongly in

C ((0, τ ], Hs) for 0 ≤ s < 3, star-weakly in Cw((0, τ ], H
3) and pointwise in H3. We can also

show that q′ satisfies the Schrödinger equation in (3.17), and that (q′, 0) ∈ X((0, τ ]) with the

same estimates in (0, τ ] as (q′t0 , 0) in [t0, τ ], uniformly with respect to t0. For the detail, see

the proof of Proposition 5.1 in [13].

We shall now derive estimates for q′t0 . In the computation below, we omit the subscript t0

for brevity, and we use the definitions (3.114)–(3.129) with I = [t0, τ ].

Integrating (3.72) and (3.73) in [t0, t] with q(t0) = 0, we obtain

∥q′(t)∥2 ≤
∫ t

t0

dt′∥⟨x⟩R̃1(t
′)∥2,

∥⟨x⟩q′(t)∥2 ≤ Ṽ ′
1

∫ t

t0

dt′ t′−1/2h(t′) +

∫ t

t0

dt′∥⟨x⟩R̃1(t
′)∥2,

so that

V ′
00 ≤ N00, V ′

01 ≤ Ṽ ′
1τ

1/2 +N01. (3.136)

Integrating (3.74) and (3.75) in [t0, t] with ∂tq
′(t0) = iR̃1(t0), we obtain

∥⟨x⟩∂tq′(t)∥2 ≤(Ṽ ′
3,t + C(Ṽ ′

1 + Ṽ ′
3/2 + V ′

01))

∫ t

t0

dt′ t′−3/2h(t′)

+ b0V
′
01

∫ t

t0

dt′ t′−2h(t′) + ∥⟨x⟩R̃1(t0)∥2 +
∫ t

t0

dt′∥⟨x⟩∂tR̃1(t
′)∥2,
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so that

V ′
2,t ≤ b0V

′
01 + Ṽ ′

3,tτ
1/2 + C(Ṽ ′

1 + Ṽ ′
3/2 + V ′

3/2 + V ′
01)τ

1/2 +N2.

Integrating (3.76) in [t0, t] with ∇K∂tq
′(t0) = i∇KR̃1(t0), we obtain

∥∇K∂tq
′(t)∥2 ≤ b0Ṽ

′
1

∫ t

t0

dt′ t′−5/2h(t′)

+ C(Ṽ ′′
2 + Ṽ ′

5/2 + Ṽ ′
1 + V ′

3/2 + V ′
00t

1/2)

∫ t

t0

dt′ t′−2h(t′)

+ b0V
′
00

∫ t

t0

dt′ t′−5/2h(t′) + ∥∇KR̃1(t0)∥2 +
∫ t

t0

dt′∥∇K∂tR̃1(t
′)∥2,

so that

Ṽ ′
3,t ≤ b0(V

′
00 + Ṽ ′

1) + C(Ṽ ′′
2 + Ṽ ′

5/2 + Ṽ ′
1 + V ′

3/2 + V ′
00τ

1/2)τ 1/2 +N3.

From (3.77), (3.78), we then obtain

Ṽ ′
2,x ≤ V ′

2,t + CV ′
01τ

1/2 +N2,

Ṽ ′
3,x ≤ V ′

3,t + C(Ṽ ′
1τ

1/2 + V ′
00τ) +N3,

so that Ṽ ′
2 and Ṽ ′

3 satisfy the same estimates as V ′
2,t, Ṽ

′
3,t, namely

Ṽ ′
2 ≤ b0V

′
01 + Ṽ ′

3,tτ
1/2 + C(Ṽ ′

1 + Ṽ ′
3/2 + V ′

3/2 + V ′
01)τ

1/2 +N2, (3.137)

Ṽ ′
3 ≤ b0(V

′
00 + Ṽ ′

1) + C(Ṽ ′′
2 + Ṽ ′

5/2 + Ṽ ′
1 + V ′

3/2 + V ′
00)τ

1/2 +N3. (3.138)

We will next replace the covariant derivatives in (3.136), (3.137), (3.138) with usual ones, by

the use of assumption (A2) and Lemma 3.5 together with the Sobolev inequality. From (A2),

we obtain

Ṽ ′
1 ≤ V ′

1 + CV ′
01τ

1/2(1− ln τ), (3.139)

Ṽ ′
3,t ≤ V ′

3 + CV ′
2τ

1/2(1− ln τ). (3.140)

From Lemma 3.5, especially (3.85), and (3.86), (3.87) with r = 2, we have

Ṽ ′
3/2 ≤ (V ′

1(V
′
2 + V ′

1τ
1/2))1/2 + C(V ′

01(V
′
1 + V ′

01τ
1/2))1/2τ 1/2(1− ln τ)

≤ (V ′
1V

′
2)

1/2 + C(V ′
1 + V ′

01τ
1/2)τ 1/4(1− ln τ), (3.141)

V ′
2 ≤ Ṽ ′

2 + CV ′
01, (3.142)

Ṽ ′′
2 ≤ V ′

2 + CV ′
01. (3.143)



40 YANG LIU AND TAKESHI WADA

Here, we have used (3.135). From the Sobolev inequality, the estimate (3.87) with r = 3, and

(3.135), we obtain

∥∂tq′∥3 ≤ (V ′
2V

′
3)

1/2t−5/4h(t),

∥∇Kq
′∥∞ ≤ ((V ′

2V
′
3)

1/2 + C(V ′
1V

′
2)

1/2t1/2(1− ln t))t−5/4h(t),

∥∇2
Kq

′∥3 ≤ ((V ′
2V

′
3)

1/2 + C(V ′
01V

′
1)

1/2)t−5/4h(t).

Combining these estimates, we obtain

Ṽ ′
5/2 ≤ (V ′

2V
′
3)

1/2 + C(V ′
2τ(1− ln τ)2 + V ′

1 + V ′
01). (3.144)

Using (3.88), (3.135) and (A2), and the Sobolev inequality, we estimate

sup
t∈I

t3/2h(t)−1∥∇∆q′(t)∥2 ≤ Ṽ ′
3,x + b0τ

1/4(V ′
00V

′
2)

1/2 + (b0 + Cτ(1− ln τ))V ′
00

≤ Ṽ ′
3,x + b0(V

′
2τ

1/2 + V ′
00) + CV ′

00τ(1− ln τ),

which together with (3.140) implies

V ′
3 ≤ Ṽ ′

3 + b0V
′
00 + C(V ′

2 + V ′
00τ

1/2)τ 1/2(1− ln τ). (3.145)

Now, we replace the covariant derivatives in (3.136), (3.137) and (3.138) with usual ones by

the use of (3.139)–(3.145). First, substituting (3.139) into the second inequality of (3.136),

we obtain

V ′
01 ≤ V ′

1τ
1/2 + CV ′

01τ(1− ln τ) +N01. (3.146)

Next, substituting (3.139), (3.140), (3.141) into (3.137) and substituting the result into

(3.142), we obtain

V ′
2 ≤ b0V

′
01 + V ′

3τ
1/2 + C(V ′

2τ(1− ln τ) + ((V ′
1V

′
2)

1/2 + V ′
1 + V ′

01)τ
1/2) +N2. (3.147)

Substituting (3.139), (3.143), (3.144) into (3.138) and using V ′
3/2 ≤ (V ′

1V
′
2)

1/2, we obtain

Ṽ ′
3 ≤ b0(V00 + V ′

1) + C((V ′
2V

′
3)

1/2 + V ′
2 + V ′

1 + V ′
01(1− ln τ) + V ′

00)τ
1/2 +N3. (3.148)

Substituting (3.148) into (3.145), we obtain

V ′
3 ≤ b0(V

′
00 + V ′

1) + C((V ′
2V

′
3)

1/2 + (V ′
2 + V ′

01)(1− ln τ) + V ′
1 + V ′

00)τ
1/2 +N3. (3.149)

We next simplify the resulting inequalities (3.146), (3.147), (3.149) by using the inequality

V ′
1 ≤ (V ′

01V
′
2)

1/2 to eliminate V ′
1 , the obvious inequality V ′

01 ≤ V ′
2 at some harmless places,
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smallness conditions of the type Cτ(1− ln τ) ≤ 1 to eliminate the diagonal terms in V ′
01 and

V ′
2 in (3.146), (3.147) and some elementary algebraic manipulations. We obtain

V ′
00 ≤ N00, V ′

01 ≤ V ′
2τ

1/2 +N01, (3.150)

V ′
2 ≤ b0V

′
01 + V ′

3τ
1/2 +N2, (3.151)

V ′
3 ≤ b0V

′
00 + b0(V

′
01V

′
2)

1/2 + CV ′
2τ

1/2(1− ln τ) +N3. (3.152)

Substituting (3.150), (3.152) into (3.151), we obtain

V ′
2 ≤ b0(N00τ

1/2 +N01) + CV ′
2τ

1/2(1− ln τ) +N3τ
1/2 +N2,

which yields (3.132) under an additional smallness condition on τ . Substituting (3.132) into

(3.150), (3.152) yields (3.131), (3.133). □

We can now derive the main result of this section, namely the existence of solutions of the

nonlinear system (3.11).

Proposition 3.9. Let β = 1/2. Let wa, Ka and the remainders Rj, 1 ≤ j ≤ 5, satisfy the

assumptions (A1), (A2), (A3) and let B0, Be0 satisfy (2.31) for 0 ≤ j ≤ 1, 0 ≤ k ≤ 2 and

r = ∞. Then there exists τ , 0 < τ ≤ τ0 and there exists a unique solution (q,G2) ∈ X(I) of

the system (3.11), where I = (0, τ ]. In particular (q,G2) satisfies the estimates (3.89)–(3.92)

for some constants V00, V01, V2, V3 and Z depending on wa, Ka and on the remainders through

the norms occurring in the assumptions (A1), (A2) and (A3). The solution (q,G2) is unique

under the assumption that (q,G2) ∈ X0(I), and that (q,G2) satisfies the following conditions:

q ∈ L∞(I,H3), xq ∈ L∞(I,H2), t∂tq ∈ L∞(I,H1),

∇G2 ∈ L∞(I,H1), t∇∂tG2 ∈ L∞(I, L2), t∇2Ǧ2 ∈ L∞(I, L2),

∥⟨x⟩q(t)∥2 ≤ Ch1(t)

for all t ∈ I, for some h1 satisfying the conditions of Proposition 2.4.

Proof. Proposition 3.8 defines a mapping Γ : (q,G2) → (q′, G′
2) from X(I) into itself. For

given V = (V00, V01, V2, V3) and Z, we define a subset R of X(I) by (3.89)–(3.92). We show

that for sufficiently small τ and for a suitable choice of (V , Z), the mapping Γ is a contraction

on R with respect to the norm

sup
t∈I

h(t)−1∥⟨x⟩q(t)∥2 + sup
t∈I

t1/2h(t)−1∥∇q(t)∥2 + sup
t∈I

t−1/2h(t)−1(∥∇G2(t)∥2 ∨ t∥∇Ǧ2(t)∥2),
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which we have used in Lemma 2.3.

We first show that Γ maps R into itself. If β = 1/2, then it follows from Lemma 3.7 that

N00 ≤ Cr + C(V00τ
1/2 + Z),

N01 ≤ Cr + C(V01 + Z)τ 1/2,

N2 ≤ Cr + C(V2 + Z)τ 1/2,

N3 ≤ Cr + C(V2 + V3 + Z)τ 1/2,

where r = max1≤i≤5 ri. Therefore, from Proposition 3.8, it follows that V ′ = (V ′
00, V

′
01, V

′
2 , V

′
3)

and Z ′ defined by (3.114)–(3.117) satisfy

|V ′| ≤ Cr + C|V |τ 1/2 + CZ,

Z ′ ≤ c r + C((|V |(1− ln τ) + r) + Z)τ 1/2

as long as the conclusion of Proposition 3.8 is satisfied. Here, |V | = max{V00, V01, V2, V3}, c is
an absolute constant, and the various constants C may depend on the asymptotic functions

(wa, sa, Ba, Bea) but are independent of (V , Z). We shall choose (V , Z) such that

Z = 2cr, V00 = V01 = V2 = V3 = 2C(r + Z).

We shall take τ sufficiently small, so that the assumption of Proposition 3.8 is satisfied, and

that

2C|V |τ 1/2 ≤ |V |, 2C((|V |(1− ln τ) + r) + Z)τ 1/2 ≤ Z.

Then, we find that Γ(R) ⊂ R.

We next show that Γ is a contraction mapping on R. We note that R is closed with respect

to this metric. For i = 1, 2, let (qi, G2i) ∈ R and (q′i, G
′
2i) = Γ(qi, G2i). We define (q±, G2±)

and (q′±, G
′
2±) by f± = (1/2)(f1 ± f2), so that in particular all those quantities belong to R.

We set

V0− = sup
t∈I

h(t)−1∥⟨x⟩q−(t)∥2,

V1− = sup
t∈I

t1/2h(t)−1∥∇q−(t)∥2,

Z− = sup
t∈I

t−1/2h(t)−1(∥∇G2−(t)∥2 ∨ t∥∇Ǧ2−(t)∥2),
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and similarly for the primed quantities, and we estimate V ′
0−, V

′
1−, Z

′
− in terms of V0−, V1−, Z−.

From Lemma 2.3, we obtain

∥G1−∥2 ∨ ∥G3−∥2 ≤ CV0−h, (3.153)

∥Ǧ1−∥2 ∨ t−1∥G3−∥2 ≤ Ct−1V0−h, (3.154)

∥∇kσ−∥2 ≤ CV0−t
−k/2h for k = 0, 1, 2, (3.155)

|∂t∥q′−∥2| ≤ C(V0− + Z−)t
−1/2h, (3.156)

|∂t∥xq′−∥2| ≤ (V ′
1− + CV ′

0−t
1/2(1− ln t) + CV0− + CZ−)t

−1/2h, (3.157)

|∂t∥∇K+q
′
−∥2| ≤ C(V ′

0−t
−1 + (V ′

0−V
′
1−)

1/2t−5/4 + V0−t
−1

+ V1−t
−1/2 + Z−t

−1/2(1− ln t))h. (3.158)

Integrating (3.156)–(3.158) over time and estimating G′
2− by Lemma 2.3, especially (2.59),

(2.60), we obtain

V ′
0− ≤ V ′

1−τ
1/2 + C(V ′

0−τ(1− ln τ) + V0−τ
1/2 + Z−τ

1/2),

V ′
1− ≤ C(V ′

0−τ
1/2(1− ln τ) + (V ′

0−V
′
1−)

1/2τ 1/4 + V0−τ
1/2 + V1−τ + Z−τ(1− ln τ)),

Z ′
− ≤ C(V0−τ

1/2(1− ln τ) + Z−τ).

From these estimates, we obtain

V ′
0− + V ′

1− + Z ′
− ≤ C((V ′

0− + V ′
1− + V0−)τ

1/2(1− ln τ) + V1−τ + Z−τ
1/2),

which implies

V ′
0− + V ′

1− + Z ′
− ≤ (1/2)(V0− + V1− + Z−)

for τ sufficiently small. This proves that Γ is a contraction mapping, and hence Γ has a fixed

point by the contraction mapping principle. □

3.2. Analysis of the Asymptotic Functions. We now turn to the second step, namely

the construction of (wa, sa, Ba, Bea), which is an asymptotic solution of the auxiliary system

(2.22), satisfying the assumptions made in the previous step and in particular the remainder

estimates needed for the Cauchy problem at t = 0 for that system. We note that as regards

Ba and Bea, we separately construct asymptotic forms B1a, B2a and B3a, namely

B′
a = B1a +B2a, B′

ea = B3a
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in accordance with (2.13). We construct (wa, sa, Ba, Bea) by solving the system (2.22) by

iteration in the form wa =
∑

j waj etc., with waj = O(tj) modulo logarithms. Then, we first

define the approximate solution of order 0 by
i∂twa0 + (1/2)∆wa0 = 0, wa0(0) = w+,

B1a0 = B1(wa0), B2a0 = 0, B3a0 = B3(wa0),

∂tsa0 = ∇B̌L
1 (wa0)− t−1∇BL

3 (wa0), sa0(1) = 0.

(3.159)

Here, the choice B2a0 = 0 reflects the fact that B2 itself is of order t. We next define the

terms of order t by

B2a1 = B2(wa0, wa0, sa0 +B1a0),

i∂twa1 = i(sa0 +B1a0) · ∇wa0 + (i/2)(∇ · (sa0 +B1a0))wa0

+ (1/2)(sa0 +B1a0)
2wa0 + (B̌S

1a0 + B̌2a1 − t−1BS
3a0)wa0, wa1(0) = 0,

B1a1 = 2B1(wa0, wa1), B3a1 = 2B3(wa0, wa1),

∂tsa1 = 2∇B̌L
1 (wa0, wa1)− 2t−1∇BL

3 (wa0, wa1), sa1(0) = 0.

(3.160)

For wa and B2a, we need the approximate solution of order 2 defined by

B2a2 = 2B2(wa0, wa1, sa0 +B1a0)− tF2(P (sa1 +B1a1 +B2a1)|wa0|2),
i∂twa2 = −(1/2)∆wa1 + i

∑
j+k=1

{(saj +B1aj +B2aj) · ∇wak

+ (1/2)(∇ · (saj +B1aj +B2aj))wak}
+ (1/2)

∑
j+k+l=1

(saj +B1aj +B2aj)(sak +B1ak +B2ak)wal

+
∑

j+k=1

(B̌S
1aj + B̌2a(j+1) − t−1BS

3aj)wak, wa1(0) = 0.

(3.161)

We definewa = wa0 + wa1 + wa2, sa = sa0 + sa1,

B1a = B1a0 +B1a1, B2a = B2a1 +B2a2, B3a = B3a0 +B3a1.
(3.162)

Then (wa, sa, Ba, Bea) defined above turns out to be an adequate approximate solution. In

the construction of wa, we omit the contribution of B0 and Be0, so that they appear only in

R1 and R4. For any polynomial function f(wa, sa, B1a, B2a, B3a) and any nonnegative integer

p, we define

f(wa, sa, B1a, B2a, B3a)≥p =
∑

j+k+l+m+n≥p

f(waj, sak, B1al, B2am, B3an).
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The remainders Rj, 1 ≤ j ≤ 5, defined by (3.14) then become

R1 = R10 +R11, (3.163)

where

R10 = −iB0 · ∇wa − (i/2)(∇ ·B0)wa

− (B0(sa +B1a +B2a) + (1/2)B2
0 + B̌0 − t−1Be0)wa, (3.164)

R11 = (1/2)∆wa2 − {i(sa +B1a +B2a) · ∇wa + (i/2)(∇ · (sa +B1a +B2a))wa

+ (1/2)(sa +B1a +B2a)
2wa + B̌S

1awa − t−1BS
3awa}≥2 − (B̌2awa)≥3, (3.165)

R2 = −∇B̌L
1 (wa)≥2 + t−1∇BL

3 (wa)≥2, (3.166)

R3 = −B1(wa)≥2, (3.167)

R4 = R40 +R41, (3.168)

R5 = −B3(wa)≥2, (3.169)

where

R40 = tF2(PB0|wa|2), (3.170)

R41 = −B2(wa, wa, sa +B1a +B2a)≥2. (3.171)

We now turn to estimate (wa, sa, Ba, Bea). We use the spaces Ḧk = Ḣ1 ∩ Ḣk and the

notation v ∈ (X, f) to mean that v ∈ C (I,X) with ∥v(t);X∥ ≤ f(t) for all t ∈ I, with

I = (0, τ ] for some τ, 0 ≤ τ ≤ 1, with τ = 1 in the present case.

Lemma 3.10. Let β > 0. Let w+ ∈ Hk+ , xw+ ∈ Hk+−1 with k+ ≥ 7 ∨ (5 + β−1). Then the

components of wa, sa, Ba and Bea defined by (3.159)–(3.162) satisfy the following properties:

wa0 ∈ (Hk+ , 1), xwa0 ∈ (Hk+−1, 1), (3.172)

∂twa0 ∈ (Hk+−2, 1), ∂txwa0 ∈ (Hk+−3, 1), (3.173)

B1a0, B3a0 ∈ (Ḧk++1, 1), B̌1a0 ∈ (⟨x⟩Ḣ1 ∩ Ḣ2 ∩ Ḣk+ , t−1), (3.174)

∂tB1a0, ∂tB3a0 ∈ (Hk+−1, 1), (3.175)

∂tB̌1a0 ∈ (⟨x⟩Ḣ1 ∩ Ḣ2 ∩ Ḣk+ , t−2) + (Ḧk+−2, t−1), (3.176)

sa0 ∈ (Ḧk+−1, (1− ln t)), ∂tsa0 ∈ (Ḧk+−1, t−1), (3.177)

B2a1 ∈ (Hk++1, t(1− ln t)), B̌2a1 ∈ (Ḧk++1, (1− ln t)), (3.178)

∂tB2a1 ∈ (Hk++1, (1− ln t)) + (Hk+−1, t(1− ln t)), (3.179)
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∂tB̌2a1 ∈ (Ḧk++1, t−1) + (Hk+−1, (1− ln t)). (3.180)

Let in addition k+ ≥ 2(1 + β−1) and define k1 = (k+ − 2) ∧ (k+ − β−1), k2 = (k1 − 2) ∧ (k1 +

1− β−1). Then

wa1 ∈ (Hk1 , t(1− ln t)2), xwa1 ∈ (Hk1 , t(1− ln t)2), (3.181)

∂twa1 ∈ (Hk1 , (1− ln t)2), ∂txwa1 ∈ (Hk1 , (1− ln t)2), (3.182)

B1a1, B3a1 ∈ (Hk1+1, t(1− ln t)2), B̌1a1 ∈ (Ḧk1+1, (1− ln t)2), (3.183)

∂tB1a1, ∂tB3a1 ∈ (Hk1+1, (1− ln t)2), (3.184)

∂tB̌1a1 ∈ (Ḧk1+1, t−1(1− ln t)2) + (Hk+−2, (1− ln t)2), (3.185)

sa1 ∈ (Hk1 , t(1− ln t)2), ∂tsa1 ∈ (Hk1 , (1− ln t)2), (3.186)

B2a2 ∈ (Hk1+1, t2(1− ln t)3), B̌2a2 ∈ (Hk1+1, t(1− ln t)3), (3.187)

∂tB2a2 ∈ (Hk1+1, t(1− ln t)3) + (Hk+−2, t2(1− ln t)2), (3.188)

∂tB̌2a2 ∈ (Hk1+1, (1− ln t)3) + (Hk+−2, t(1− ln t)2), (3.189)

wa2 ∈ (Hk2 , t2(1− ln t)4), xwa2 ∈ (Hk2 , t2(1− ln t)4), (3.190)

∂twa2 ∈ (Hk2 , t(1− ln t)4), ∂txwa2 ∈ (Hk2 , t(1− ln t)4), (3.191)

Proof. We note that k1 ≥ 5 and k2 ≥ 3 provided that k+ ≥ 2(1+β−1). The properties (3.172)–

(3.189) are proved similarly as Lemma 6.1 in [13]. For the proof of (3.190) and (3.191), we

need the following estimates:

∥ωk2B̌S
1a0∥2 ∨ ∥B̌S

1a0∥∞ ∨ t−1(∥ωk2BS
3a0∥2 ∨ ∥BS

3a0∥∞) ≤ C, (3.192)

∥ωk2B̌S
1a1∥2 ∨ ∥B̌S

1a1∥∞ ∨ t−1(∥ωk2BS
3a1∥2 ∨ ∥BS

3a1∥∞) ≤ Ct(1− ln t)2. (3.193)

These estimates are derived by (3.174) and (3.183), together with the Sobolev inequal-

ity, (2.32) and (2.33). For example, we have

∥ωk2B̌S
1a1∥2 ≤ tβ(k1+1−k2)∥ωk1+1B̌1a0∥2 ≤ Ct(1− ln t)2,

since β(k1 + 1− k2) ≥ 1. Using these estimates together with the Leibniz rule, we obtain

⟨x⟩
∑
j+l=1

(B̌S
1aj − t−1BS

3aj)wal ∈ (Hk2 , t(1− ln t)2).

Indeed, we estimate for instance

∥ωk2B̌S
1a1wa0∥2 ≤ ∥ωk2B̌S

1a1∥2∥wa0∥∞ + ∥B̌S
1a1∥∞∥ωk2wa0∥2 ≤ Ct(1− ln t)2.



LONG RANGE SCATTERING FOR THE MAXWELL–SCHRÖDINGER SYSTEM 47

The other terms in ∂twa2 are estimated in Hk2 by (3.172)–(3.189) and the Leibniz rule. The

worst term is s2a0wa1 = O(t(1− ln t)4), so that we obtain (3.191). Integrating (3.191) in t, we

obtain (3.190). □

We summarize the information on (wa, sa, Ba, Bea) which follows from Lemma 3.10 in the

following proposition.

Proposition 3.11. Let β > 0. Let w+ ∈ Hk+ , xw+ ∈ Hk+−1 with k+ ≥ 7∨ (5 + β−1)∨ 2(1 +

β−1) and let k1 = (k+ − 2) ∧ (k+ − β−1), k2 = (k1 − 2) ∧ (k1 + 1− β−1). Let (wa, sa, B
′
a, B

′
ea)

be defined by (3.159)–(3.162) and B′
a = B1a +B2a, B

′
ea = B3a. Then (wa, sa, B

′
a, B

′
ea) satisfies

the following properties:

wa ∈ (Hk2 , 1), xwa ∈ (Hk2 , 1), (3.194)

∂twa ∈ (Hk2 , (1− ln t)2), ∂txwa ∈ (Hk2 , (1− ln t)2), (3.195)

sa ∈ (Ḧk1 , (1− ln t)), ∂tsa ∈ (Ḧk1 , t−1), (3.196)

B′
a, B

′
ea ∈ (Ḧk1+1, 1), t−1B′

ea ∈ (Ḧk1+1, t−1),

B̌′
a ∈ (⟨x⟩Ḣ1 ∩ Ḣ2 ∩ Ḣk1+1, t−1), (3.197)

∂tB
′
a, ∂tB

′
ea ∈ (Hk1+1, (1− ln t)2), (3.198)

∂tB̌
′
a ∈ (⟨x⟩Ḣ1 ∩ Ḣ2 ∩ Ḣ(k1+1)∧(k+−2), t−2),

∂t(t
−1B′

ea) ∈ (Ḧk1+1, t−2). (3.199)

Furthermore B′S
ma ≡ B̌S

1a + B̌2a − t−1BS
3a satisfies the estimate

∥B′S
ma∥∞ + t∥∂tB′S

ma∥∞ ≤ C(1− ln t). (3.200)

Proof. The estimate (3.200) is proved similarly as (3.192) and (3.193) in the proof of Lemma 3.10.

Unlike (3.193), it suffices to show ∥B̌S
1a1∥∞∨t−1∥BS

3a1∥∞ ≤ C, and this is indeed proved by the

Sobolev inequality as before under the condition k1 − 1/2 > 0. The properties and estimates

(3.194)–(3.199) follow from Lemma 3.10. □

We now turn to the estimates of the remainders. The final result will be that the remainders

satisfy the assumption (A3) of above with

h(t) = t2(1− ln t)6.

We first consider the part not containing B0 and Be0, namely R11, R2, R3, R41 and R5. The

estimates for that part follow from or extend Lemma 3.10. The part containing B0 and Be0

require different arguments and additional assumptions.
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Proposition 3.12. Let β > 0. Let w+ ∈ Hk+ , xw+ ∈ Hk+−1 with k+ ≥ 7∨ (5 + β−1)∨ 2(1 +

β−1) and let k1 = (k+ − 2)∧ (k+ − β−1), k2 = (k1 − 2)∧ (k1 + 1− β−1). Then the remainders

R2, R3, R41, R5 and R11 satisfy the following properties:

R2 ∈ (Hk2 , t(1− ln t)4), (3.201)

R3, R5, tŘ3 ∈ (Hk2+1, t2(1− ln t)4), (3.202)

∂tR3, t∂tŘ3, ∂tR5 ∈ (Hk2+1, t(1− ln t)4), (3.203)

R41, tŘ41 ∈ (Hk2+1, t3(1− ln t)5), (3.204)

∂tR41, t∂tŘ41 ∈ (Hk2+1, t2(1− ln t)5), (3.205)

R11, xR11 ∈ (Hk2−2, t2(1− ln t)6), (3.206)

∂tR11, x∂tR11 ∈ (Hk2−2, t(1− ln t)6). (3.207)

Proof. We can prove the properties (3.201), (3.202) and (3.203) of R2, R3 and R5 follow from

the properties of wa0, wa1 and wa2 in Lemma 3.10.

We next show the properties (3.204) and (3.205) of R41. Expanding the right-hand side

of (3.171) and estimating each term by Lemma 3.10, we see that the worst term is tF2(Psa0|wa1|2) =
O(t2(1− ln t)5), so that we obtain the estimate of R41. We can obtain the estimates of tŘ41,

∂tR41 and t∂tŘ41 similarly.

We proceed to the estimate of R11. We first consider

(B̌S
1awa)≥2 = B̌S

1a0wa2 + B̌S
1a1wa1 + B̌S

1a1wa2.

We obtain B̌S
1a1wa2 ∈ (Hk2 , t2(1− ln t)6) by (3.183) and (3.190) together with the Leibniz rule,

without using the cut-off by χS. On the other hand, the estimates of B̌S
1a0wa2 and B̌S

1a1wa1

need the cut-off by χS. Indeed, we obtain B̌S
1a0wa2, B̌

S
1a1wa1 ∈ (Hk2 , t2(1 − ln t)4) by the use

of the estimates (3.192) and (3.193). The other terms in R11 are estimated in Hk2−2. The

term of the lowest regularity is ∆wa2 ∈ (Hk2−2, t2(1− ln t)4), and the term of the worst decay

is s2a0wa2 ∈ (Hk2 , t2(1− ln t)6). Thus we obtain R11 ∈ (Hk2−2, t2(1− ln t)6). We can estimate

xR11, ∂tR11 and x∂tR11 analogously. □

To obtain the estimates of R10 and R40, we shall need the following estimate:

Lemma 3.13. Let s ∈ R and let m be a nonnegative integer. Then, for any ψ ∈ Hs with

xψ ∈ Hs−1, the following estimate holds for j, l = 0, 1 :∥∥∥∥∥⟨x⟩l∂jt
{
U(t)ψ −

m−1∑
k=0

(it∆)k

2kk!
ψ

}
;Hs−2m−2j−l

∥∥∥∥∥ ≤ Ctm−j. (3.208)
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Proof. We first consider the case j = 0, l = 0. By the Plancherel theorem together with the

Taylor expansion, the square of the left-hand side is bounded by∫
dξ (1 + |ξ|2)s−2m

∣∣∣∣∣
{
e−it|ξ|2/2 −

m−1∑
k=0

(−it|ξ|2)k

2kk!

}
ϕ̂(ξ)

∣∣∣∣∣
2

≤ ct2m
∫
dξ (1 + |ξ|2)s|ϕ̂(ξ)|2,

so that (3.208) follows. If (j, k) ̸= (0, 0), we use the relations

[x, U(t)] = −it∇, [x,∆k] = −2k∆k−1∇ and ∂tU(t) = (it∆/2)U(t). □

We now turn to the estimates of the parts R10 and R40 of the remainders containing B0

and Be0. For that purpose, we set

R1(v) = −iB0 · ∇v − (i/2)(∇ ·B0)v − (B0(sa +B′
a) + (1/2)B2

0 + B̌0 − t−1Be0)v,

R4(f) = tF2(PB0f),

so that R10 = R1(wa), R40 = R4(|wa|2). We also set

Ṙ1(v) = −i(∂tB0) · ∇v − (i/2)(∂t∇ ·B0)v

− {(∂tB0)(sa +Ba) +B0(∂t(sa +B′
a)) + (∂t(B̌0 − t−1Be0))}v,

(∇R1)(v) = −i(∇B0) · ∇v − (i/2)(∇∇ ·B0)v

− {(∇B0)(sa +Ba) +B0(∇(sa +B′
a)) + (∇(B̌0 − t−1Be0))}v,

(∇Ṙ1)(v) = −i(∇∂tB0) · ∇v − (i/2)(∇∂t∇ ·B0)v

− {(∇∂tB0)(sa +Ba) + (∂tB0)(∇(sa +Ba))

+ (∇B0)(∂t(sa +B′
a)) +B0(∇∂t(sa +B′

a)) + (∇∂t(B̌0 − t−1Be0))}v,

so that ∂tR1(v) = Ṙ1(v) + R1(∂tv),

∇∂tR1(v) = (∇Ṙ1)(v) + (∇R1)(∂tv) + Ṙ1(∇v) + R1(∇∂tv).

To obtain desired estimates for R10 and R40, we need additional assumptions for w+, which will

be clearly understood in terms of an approximation wb of wa. Let w+ satisfy the assumption

of Lemma 3.10. We set wb = wb0 + wb1 with

wb0 := w+ +
1

2
it∆w+,

i∂twb1 := i(sa0 +Ba0) · ∇w+ +
i

2
(∇ · (sa0 +B1a0))w+ +

1

2
(sa0 +B1a0)

2w+

+ (B̌S
1a0 + B̌2a1 − t−1BS

3a0)w+, wb1(0) = 0.
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Then, it follows that

⟨x⟩lwb ∈ (H5−l, 1), ⟨x⟩l∂twb ∈ (H5−l, (1− ln t)2) (3.209)

for l = 0, 1. On the other hand, from Lemma 3.13, we see

∥⟨x⟩l∂jt (wa0 − w+);H
5−l∥ ≤ Ct1−j, ∥⟨x⟩l∂jt (wa0 − wb0);H

3−l∥ ≤ Ct2−j.

Using the first estimate together with Lemma 3.10, we can show

∥⟨x⟩l∂t(wa1 − wb1);H
5−l∥ ≤ Ct(1− ln t)2.

From these estimates together with (3.190)–(3.191), for j, l = 0, 1, we obtain

∥⟨x⟩l∂jt (wa − w+);H
3−l∥ ≤ Ct1−j(1− ln t)2, (3.210)

∥⟨x⟩l∂jt (wa − wb);H
3−l∥ ≤ Ct2−j(1− ln t)4. (3.211)

Now we shall prove the following estimate of R10.

Lemma 3.14. Let w+ satisfy the assumption of Proposition 3.11. Let B0 and Be0 satisfy

(2.31) for 2 ≤ r ≤ ∞ and 0 ≤ j, k ≤ 1. Let wb, B0 and Be0 satisfy in addition

∥⟨x⟩l((t∂t)p∇qB0)(t∂t)
r∇swb∥2 ∨ ∥⟨x⟩l((t∂t)r∇s(B̌0 − t−1Be0))wb∥2

≤ Ct1/2+l(1− ln t)4 (3.212)

for l, p, r, s = 0, 1, q = 0, 1, 2 with l + q + s ≤ 2, p+ r ≤ 1. Then

∥⟨x⟩∂tR10∥2 ∨ t∥∇∂tR10∥2 ≤ Ct1/2(1− ln t)5. (3.213)

Proof. We first let v be an arbitrary function defined on the space-time, and derive estimates

of R1(v), Ṙ1(v), (∇R1)(v) and (∇Ṙ1)(v). From Proposition 3.11 and (2.31), we estimate

∥⟨x⟩lR1(v)∥2 ≤ ∥⟨x⟩lB0 · ∇v∥2 + ∥⟨x⟩l(∇ ·B0)v∥2

+ {∥B0∥2(∥sa +B′
a∥∞ + ∥B0∥∞) + ∥B̌0 − t−1Be0∥2}∥⟨x⟩lv∥∞

≤ ∥⟨x⟩lB0 · ∇v∥2 + ∥⟨x⟩l(∇ ·B0)v∥2 + Ct1/2(1− ln t)∥⟨x⟩lv∥∞

≤ Ct1/3∥⟨x⟩l∇v∥6 + Ct−1/2∥⟨x⟩lv∥∞ (3.214)

for l = 0, 1. If l = 0, we may replace the first term with Ct1/2∥∇v∥2. Similarly we have

∥⟨x⟩lṘ1(v)∥2 ≤ ∥⟨x⟩l(∂tB0) · ∇v∥2 + ∥⟨x⟩l(∂t∇ ·B0)v∥2 + C(1− ln t)∥⟨x⟩l(∂tB0)v∥2

+ Ct−1∥⟨x⟩lB0v∥2 + ∥⟨x⟩l(∂t(B̌0 − t−1Be0))v∥2

≤ Ct−2/3∥⟨x⟩l∇v∥6 + Ct−3/2∥⟨x⟩lv∥∞ (3.215)
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for l = 0, 1. If l = 0, we may replace the first term with Ct−1/2∥∇v∥∞. Furthermore, we have

∥(∇R1)(v)∥2 ≤ ∥(∇B0) · ∇v∥2 + ∥(∇∇ ·B0)v∥2 + Ct−1/2(1− ln t)∥v∥∞

≤ Ct−1/2∥∇v∥∞ + Ct−3/2∥v∥∞. (3.216)

∥(∇Ṙ1)(v)∥2 ≤ ∥(∇∂tB0) · ∇v∥2 + ∥(∇∂t∇ ·B0)v∥2 + (1− ln t)∥(∇∂tB0)v∥2

+ t−1∥(∂tB0)v∥2 + t−1∥(∇B0)v∥2

+ t−1∥B0v∥2 + ∥(∇∂t(B̌0 − t−1Be0))v∥2

≤ Ct−3/2∥∇v∥∞ + Ct−5/2∥v∥∞. (3.217)

It follows from (3.211) and (3.214)–(3.217) that

∥⟨x⟩∂tR1(wa − wb)∥2 ∨ t∥∇∂tR1(wa − wb)∥2 ≤ Ct1/2(1− ln t)5. (3.218)

For example, applying (3.214) with v = ∂t(wa −wb) and (3.215) with v = wa −wb, we obtain

the estimate of ∥⟨x⟩∂tR1(wa − wb)∥2. We can obtain the estimate of ∥∇∂tR1(wa − wb)∥2
analogously.

On the other hand, using the estimates (3.214)–(3.217) together with the additional as-

sumption (3.212) and the property (3.209) of wb, we see

∥⟨x⟩∂tR1(wb)∥2 ∨ t∥∇∂tR1(wb)∥2 ≤ Ct1/2(1− ln t)5. □

Lemma 3.15. Let w+ satisfy the assumption of Proposition 3.11. Let B0 and Be0 satisfy

(2.31) for r = 2 and 0 ≤ j, k ≤ 1. Let B0 satisfy in addition

∥(∇k∂jtB0)w+∥2 ≤ Ct3/2−j−k (3.219)

for 0 ≤ j, k, j + k ≤ 1. Then the following estimate holds for 0 ≤ j, k, j + k ≤ 1:

∥∇k+1∂jtR40∥2 ∨ t∥∇k+1∂jt Ř40∥2 ≤ Ct5/2−j−k(1− ln t)4. (3.220)

Proof. We define v± = wa±w+, so that R4(|wa|2−|w+|2) = R4(Re v+v−). From Lemma 3.10

and (3.210), we have the estimates

∥⟨x⟩l∂jt v+;H3−l∥ ≤ C(1− ln t)2j, ∥⟨x⟩l∂jt v−;H3−l∥ ≤ Ct1−j(1− ln t)2 (3.221)

with j, l = 0, 1. Using (2.40) and (2.41), we estimate

∥∇k+1∂jtR4(Re v+v−)∥2 ≤ tIj+k+1(∥∇k∂jtB0v+v−∥2) + δj1I1(∥B0v+v−∥2),

∥∇k+1∂jt Ř4(Re v+v−)∥2 ≤ Ij+k(∥⟨x⟩∇k∂jtB0v+v−∥2).
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Using these estimates, (2.31) with r = 2 and (3.221), we have

∥∇k+1∂jtR4(|wa|2 − |w+|2)∥2 ∨ t∥∇k+1∂jt Ř4(|wa|2 − |w+|2)∥2

≤ Ct5/2−j−k(1− ln t)4. (3.222)

We next estimate R4(|w+|2). Using again (2.40), (2.41), we have

∥∇k+1∂jtR4(|w+|2)∥2 ≤ tIj+k+1(∥∇k∂jtB0|w+|2∥2) + δj1I1(∥B0|w+|2∥2),

∥∇k+1∂jt Ř4(|w+|2)∥2 ≤ Ij+k(∥⟨x⟩∇k∂jtB0|w+|2∥2)

for the relevant values of j and k. From (3.219) and (2.31), we have

∥⟨x⟩l(∇k∂jtB0)|w+|2∥2 ≤ ∥(∇k∂jtB0)w+∥2∥⟨x⟩w+∥∞ ≤ Ct3/2−j−k,

∥⟨x⟩lB0∇|w+|2∥2 ≤ 2∥B0∥2∥∇w+∥∞∥⟨x⟩w+∥∞ ≤ Ct1/2

for l = 0, 1. Substituting the last two estimates into the previous ones, we obtain

∥∇k+1∂jtR4(|w+|2)∥2 ∨ t∥∇k+1∂jt Ř4(|w+|2)∥2

≤ Ct5/2−j−k. (3.223)

The estimate (3.220) follows from (3.222) and (3.223). □

In Lemmas 3.14 and 3.15, we have assumed the estimates (3.212) and (3.219). These

estimates are stronger than those we can expect from Lemma 2.1, or more precisely the

estimates for solutions to the free wave equations (2.31), so that we impose an additional

assumption for the support of w+. Let w+ satisfy the assumption of Proposition 3.11, and let

χ0 be the characteristic function of the support of w+. Then a sufficient condition to ensure

(3.212) and (3.219) is that

∥χ0∇k∂jtB0∥2 ∨ ∥χ0∇k∂jt (B̌0 − t−1Be0)∥2 ≤ Ct5/2−j−k (3.224)

for j = 0, 1, k = 0, 1, 2. We note that we can only obtain the bound Ct1/2−j−k unless χ0 is

multiplied. To obtain (3.224), we assume in addition

suppw+ ⊂ {x : ||x| − 1| ≥ η} (3.225)

for some η, 0 < η < 1, which is the same condition that occurs in [6,28]. Under this condition,

it is easy to see that (3.224) holds for compactly supported (A+, Ȧ+) and (Ae+, Ȧe+). In fact,

if

supp (A+, Ȧ+), supp (Ae+, Ȧe+) ⊂ {x : |x| ≤ R},
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then by the Huygens principle

suppA0 ∪ supp (x · A0 − tAe0) ⊂ {(x, t) : ||x| − t| ≤ R},

so that

suppB0 ∪ supp (B̌0 − t−1Be0) ⊂ {(x, t) : ||x| − 1| ≤ tR},

and the left-hand side of (3.224) vanishes for t ≤ η/R. More general assumptions on (A+, Ȧ+)

and (Ae+, Ȧe+) are given in the following Lemma.

Lemma 3.16. Let w+ satisfy the support condition (3.225) for some η with 0 < η < 1. Let

χR be the characteristic function of the set {x : |x| ≥ R}. Let (A+, Ȧ+) and (Ae+, Ȧe+)

satisfy (2.7) together with the estimates∥χR∇k(x · ∇)jA+∥2 ∨ ∥χR∇k(x · ∇)j(x · A+)∥2 ≤ CR−2,

∥χR(x · ∇)jȦ+;L
2 ∩ L6/5∥ ∨ ∥χR(x · ∇)jAe+;L

2 ∩ L6/5∥ ≤ CR−2
(3.226)

for 0 ≤ j ≤ 1, 0 ≤ k ≤ 2 and for all R ≥ R0 for some R0 > 0. Then (3.224) holds for

0 ≤ j ≤ 1, 0 ≤ k ≤ 2 and for all t ∈ (0, 1].

Proof. For the proof, see Lemma 5.2, part (2) of [6] and Lemma 6.6 of [13]. □

We finally collect the results of this part to show that the asymptotic functions constructed

here satisfy the assumptions (A1), (A2) and (A3) of Section 3.

Proposition 3.17. Let β > 0. Let w+ ∈ Hk+ , xw+ ∈ Hk+−1 with k+ ≥ 7∨ (5 + β−1)∨ 2(1 +

β−1). Let B0, Be0 satisfy the condition (2.31) for 2 ≤ r ≤ ∞ and 0 ≤ j, k ≤ 3. Then

(1) The asymptotic functions (wa, sa, Ba, Bea) defined by (3.159)–(3.162) satisfy the assump-

tions (A1) and (A2).

(2) Let in addition B0, Be0 and w+ satisfy the condition (3.224) for 0 ≤ j, l ≤ 1, 0 ≤ k,m ≤ 2

and k + l + m ≤ 2. Then the remainders Rj, 1 ≤ j ≤ 5, defined by (3.14) satisfy the

assumption (A3) with

h(t) = t2(1− ln t)6.

(3) The same result as in Part (2) holds under the assumptions of Lemma 3.16.

Proof. Part (1) follows from Proposition 3.11 and from (2.31). Part (2) follows from Propo-

sition 3.12 and Lemmas 3.14 and 3.15. Part (3) follows from Part (2), from (3.224) and from

Lemma 3.16. □
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4. Modified Wave Operators for the Original System

In this section we construct the wave operators for the original system (1.2). For that

purpose we first state the main result on the Cauchy problem at t = 0 for the auxiliary

system (2.22).

Proposition 4.1. Let β = 1/2. Let X(·) be defined by (3.20) with h(t) = t2(1 − ln t)6. Let

u+ be such that w+ ≡ Fu+ ∈ H7, xw+ ∈ H6. Let B0 and Be0 satisfy the conditions (2.31)

with 2 ≤ r ≤ ∞ and (3.224), for 0 ≤ j ≤ 1 and 0 ≤ k ≤ 2. Define (wa, sa, Ba, Bea) by

(3.1) and (3.159)–(3.162). Then there exists τ , 0 < τ ≤ 1 such that the auxiliary system

(2.22) has a unique solution (w, s,B2) such that σ ≡ s − sa satisfies σ(0) = 0 and such that

(q,G2) ≡ (w − wa, B2 − B2a) ∈ X((0, τ ]). In particular the following estimates hold for all

t ∈ (0, τ ]:

∥∇k∂jt ⟨x⟩lq∥2 ≤ Ct2−j−k/2(1− ln t)6 (4.1)

for 0 ≤ j, l ≤ 1 and 0 ≤ 2j + l + k ≤ 3,

∥∇k+1∂jtG2∥2 ∨ t∥∇k+1∂jt Ǧ2∥2 ≤ Ct5/2−j−k(1− ln t)6 (4.2)

for 0 ≤ j, k, j + k ≤ 1.

In addition, the following estimates hold for all t ∈ (0, τ ] :

∥∂jtG2∥2 ∨ t∥∂jt Ǧ2∥2 ≤ Ct5/2−j(1− ln t)6, (4.3)

∥∇k+1∂jtG1∥2 ∨ t∥∇k+1∂jt Ǧ1∥2 ∨ ∥∇k+1∂jtG3∥2 ≤ Ct2−j−k/2(1− ln t)6 (4.4)

for 0 ≤ j, k, j + k ≤ 1,

∥∂jtG1∥2 ∨ t∥∂jt Ǧ1∥2 ∨ ∥∂jtG3∥2 ≤ Ct2−j(1− ln t)6, (4.5)

∥∇k∂jtσ∥2 ≤ Ct2−j−k/2(1− ln t)6 (4.6)

for j = 0, 1 and 0 ≤ k ≤ 2.

The solution is actually unique under the conditions on (q,G2) stated in Proposition 3.9.

Proof. The existence of (q,G2) and the estimates (4.1), (4.2) thereof follow from Proposi-

tions 3.9 and 3.17. The estimates (4.4) and (4.6) follow from Lemma 3.6, especially the

estimates (3.95)–(3.102). The estimates (4.3) and (4.5) are derived by (2.40) and (2.41),

similarly as in the proof of Lemma 3.1. □
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The result for the original system (1.2) for (u,A,Ae) is obtained by translating Proposi-

tion 4.1 for the auxiliary system (2.22). For that purpose, we need to reconstruct the phase ϕ

satisfying ∇ϕ = s. Let wa = wa0+wa1+wa2 and sa = sa0+sa1 be defined by (3.159)–(3.162),

and let (w, s,B2) be the solution to (2.22) obtained by Proposition 4.1. We define

ϕa =

∫ t

1

dt′ (B̌L
1 (wa0(t

′))− t′−1BL
3 (wa0(t

′)))

+ 2

∫ t

0

dt′ (B̌L
1 (wa0(t

′), wa1(t
′))− t′−1BL

3 (wa0(t
′), wa1(t

′))), (4.7)

so that sa = ∇ϕa. We shall also need a special term of ϕa, namely

ϕb =

∫ t

1

dt′ B̌1(w+)−
∫ t

1

dt′ t′−1B3(w+) = (ln t)x ·B1(w+)− (ln t)B3(w+). (4.8)

Furthermore, we define

ψ =

∫ t

0

dt′ {B̌L
1 (q, 2wa + q) + B̌L

1 (wa)≥2 − t′−1(BL
3 (q, 2wa + q) +BL

3 (wa)≥2)}(t′), (4.9)

so that ∇ψ = σ by (3.8), (3.11) and (3.166). Finally we define ϕ = ϕa + ψ, so that ∇ϕ = s

and ϕ satisfy (2.21). The phases ϕa, ϕb and ϕ satisfy the following properties. We use again

the notation (1.6) as in Lemma 3.10.

Lemma 4.2. Let β = 1/2 and w+ ∈ H7, xw+ ∈ H6. We define ϕa, ϕb by (4.7) and (4.8)

respectively. Then the following properties hold for ϕa and ϕb:

⟨x⟩−1∂tϕb ∈ (Ḧ8, t−1), (4.10)

∂tϕb ∈ (⟨x⟩Ḣ1 ∩ Ḣ2 ∩ Ḣ7, t−1), (4.11)

⟨x⟩−1ϕb ∈ (Ḧ8, (1− ln t)), (4.12)

ϕb ∈ (⟨x⟩Ḣ1 ∩ Ḣ2 ∩ Ḣ7, (1− ln t)), (4.13)

∂t(ϕa − ϕb) ∈ (Ḧ5, (1− ln t)2), (4.14)

ϕa − ϕb ∈ (Ḧ5, t(1− ln t)2). (4.15)

Furthermore, we define ϕ by (4.9) with wa defined by (3.159)–(3.162) and q obtained by Propo-

sition 4.1. Then, we have ψ ∈ C ((0, τ ], Ḧ3) with the estimate

∥∇k+1∂jtψ∥2 ≤ Ct2−j−k/2(1− ln t)6 (4.16)

for j = 0, 1 and 0 ≤ k ≤ 2.
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Proof. We can estimate B̌1(w+) and B3(w+) in the same way as in the proof of Lemma 2.3,

especially the inequalities (2.61)–(2.63). Then we obtain

∥B̌1(w+); Ḣ
2 ∩ Ḣ7∥ ≤ Ct−1, ∥B1(w+); Ḧ

8∥ ∨ ∥B3(w+); Ḧ
8∥ ≤ C.

These estimates yield (4.10)–(4.13). We proceed to the estimate of ϕa − ϕb. From Lemma

3.10, especially from the property (3.183), the contributions of B̌1a1 and t
−1B3a1 are estimated

by C(1− ln t)2. On the other hand, by the estimates (2.32) and (2.33), we obtain

∥B̌S
1 (wa0); Ḧ

5∥ ∨ t−1∥BS
3 (wa0); Ḧ

5∥ ≤ C.

Finally, by the estimate ∥⟨x⟩l(wa0 − w+);H
5−l∥ ≤ Ct with l = 0, 1, we have

∥B̌1(wa0)− B̌1(w+); Ḧ
5∥ ∨ t−1∥B3(wa0)−B3(w+); Ḧ

6∥ ≤ C.

Collecting these estimates, we obtain (4.14) and (4.15). Finally, we can obtain (4.16) from

Proposition 4.1, especially from the estimate (4.6). □

We can now define the modified wave operator for the MS system in the form (1.2). We

start from the asymptotic data (u+, A+, Ȧ+, Ae+, Ȧe+) for (u,A,Ae). We define w+ = Fu+,

we define B0 and Be0 by (2.3), (1.3) and (1.4), namely

A0(t) = (cosωt)A+ + ω−1(sinωt)Ȧ+ = −t−1D0(t)B0(1/t), (4.17)

Ae0(t) = (cosωt)Ae+ + ω−1(sinωt)Ȧe+ = −t−1D0(t)Be0(1/t). (4.18)

We define (wa, sa, Ba, Bea) by (3.1) and (3.159)–(3.162). We solve the auxiliary system (2.22)

by Proposition 4.1. We reconstruct the phase ϕ = ϕa + ψ as explained above. We set

B = B0 + B1 + B2 and Be = Be0 + B3, where B1 = B1(w,w) and B3 = B3(w,w) are

defined by (2.17). We finally substitute (w, ϕ,B) into (2.2), (2.3) and obtain a solution

(u,A,Ae) of the system (1.2) defined for large time. The modified wave operator is the

mapping Ω : (u+, A+, Ȧ+, Ae+, Ȧe+) → (u,A,Ae) thereby obtained.

We now turn to the study of the asymptotic properties of (u,A,Ae) and in particular of its

convergence to its asymptotic form (ua, Aa, Aea) defined in analogy with (2.2) and (2.3) by

ua(t) =M(t)D(t) exp(iϕa(1/t))wa(1/t), (4.19)

Aa(t) = −t−1D0(t)Ba(1/t) = A0 − t−1D0(t)(B1a +B2a)(1/t), (4.20)

Aea(t) = −t−1D0(t)Bea(1/t) = Ae0 − t−1D0(t)B3a(1/t). (4.21)
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The properties of u are best expressed in terms of ũ and ũa defined by

ũ(t) = U(−t)u(t), ũa(t) = U(−t)ua(t), (4.22)

so that

ũ(t) =M(t)∗F ∗ exp(iϕ(1/t))w(1/t), (4.23)

ũa(t) =M(t)∗F ∗ exp(iϕa(1/t))wa(1/t). (4.24)

In order to translate the properties of B and Be into properties of A and Ae, we need the

following commutation relations

∇kQjA(t) = (−1)j+1t−1−kD0(t)(∇k(t∂t)
jB)(1/t), (4.25)

∇kQjAe(t) = (−1)j+1t−1−kD0(t)(∇k(t∂t)
jBe)(1/t), (4.26)

where Q = t∂t + x · ∇+ 1 (see Section 2, especially (2.28) and (2.29)).

We can now state the main result for the original system (1.2).

Proposition 4.3. Let β = 1/2. Let u+ be such that w+ = Fu+ ∈ H7, xw+ ∈ H6 and such

that w+ satisfies the support condition (3.225). Let A+, Ȧ+, Ae+, Ȧe+ satisfy the assumptions

in Lemmas 2.1 and 3.16 for 0 ≤ j ≤ 1, 0 ≤ k ≤ 2. Define (wa, sa, Ba, Bea) by (3.1) and

(3.159)–(3.162), and (ϕa, ua, Aa, Aea) by (4.7) and (4.19)–(4.21). Let (w, s,B2) be the solution

of the auxiliary system (2.22) obtained in Proposition 4.1, let ϕ = ϕa + ψ with ψ defined by

(4.9), let B = B0 +B1 +B2, Be = Be0 +B3, let (u,A,Ae) be defined by (2.2), (2.3) and let ũ

be defined by (4.22). Let T = τ−1 and I = [T,∞). Then

(1) (u,A,Ae) satisfies the system (1.2) in I, xk∂jt∇lũ ∈ C (I, L2) for 0 ≤ j, l, j + l ≤ 1 and

0 ≤ 2j + k + l ≤ 3, and ũ satisfies the following estimates for the same values of j, k, l

and for all t ∈ I:

∥xk∂jt∇l(ũ− ũa)∥2 ≤ Ct−2−j+k/2(1 + ln t)6. (4.27)

Furthermore ∂t∇U(−t) exp(−iϕb(1/t, x/t))u(t) ∈ C (I, L2) and the following estimate

holds for all t ∈ I:

∥∂t∇U(−t) exp(−iϕb(1/t, x/t))(u(t)− ua(t))∥2 ≤ Ct−3(1 + ln t)6. (4.28)

Finally the following estimate holds

∥xl(u− ua)∥r ≤ Ct−2+l−δ(r)/2(1 + ln t)6 (4.29)

for l = 0, 1, for 2 ≤ r ≤ ∞ and for all t ∈ I, with δ(r) = 3/2− 3/r.
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(2) A,Ae ∈ C (I, Ḣ1∩ Ḣ2), x ·A− tAe ∈ C (I, Ḣ2), QA,QAe ∈ C (I,H1) and Q(x ·A− tAe) ∈
C (I, ⟨x⟩Ḣ1) where Q = t∂t+x ·∇+1. Furthermore A−Aa, Ae−Aea, x ·(A−Aa)−t(Ae−
Aea) ∈ C (I,H2) and Q(A−Aa), Q(Ae −Aea), Q(x · (A−Aa)− t(Ae −Aea)) ∈ C (I,H1)

and the following estimates hold for all t ∈ I:

∥Qj(A− Aa)∥2 ∨ ∥Qj(Ae − Aea)∥2 ∨ t−1∥Qj(x · (A− Aa)− t(Ae − Aea))∥2

≤ Ct−3/2(1 + ln t)6, (4.30)

∥∇k+1Qj(A− Aa)∥2 ∨ ∥∇k+1Qj(Ae − Aea)∥2

∨ t−1∥∇k+1Qj(x · (A− Aa)− t(Ae − Aea))∥2 ≤ Ct−5/2−k/2(1 + ln t)6 (4.31)

for 0 ≤ j, k, j + k ≤ 1.

Proof. Once we obtain Proposition 4.1 and Lemma 4.2, we can prove the proposition similarly

as Proposition 7.2 in [13]. □

Proof of Theorem 1.1. We prove the theorem under the same assumptions on the scattering

state (u+, A+, Ȧ+, Ae+, Ȧe+) as those in Proposition 4.3. We first note that J̃ and J̃e satisfy

the identity ∇ · J̃ + ∂tJ̃e = 0. Hence, integrating by parts, we obtain

Ã1(t) = −
∫ ∞

t

dt′ ω−1 sin(ω(t− t′))P J̃(t′)−
∫ ∞

t

dt′ ∇ω−2 cos(ω(t− t′))J̃e(t
′).

By definition, it follows that □Ã1 = J̃ and □Ãe1 = J̃e. Moreover, we have

∥Ã1; Ḣ1∥+ ∥∂tÃ1∥2 + ∥Ãe1; Ḣ1∥+ ∥∂tÃe1∥2 → 0

as t→ ∞. Like the translation from (A′, A′
e) to (B′, B′

e) by (2.9)–(2.12), we obtain

Ã1(t) = −t−1D0(t)B1(w+), Ãe1(t) = −t−1D0(t)B3(w+).

These relations show that S(t) = −ϕb(1/t). We define

ub(t) =M(t)D(t) exp(iϕb(1/t))wa0(1/t),

ũb(t) = U(−t)ub(t) =M(t)∗F ∗ exp(iϕb(1/t))wa0(1/t),

in accordance with (4.19) and (4.22)–(4.24). We note that ub(t) = exp(−iS(t, x/t))U(t)u+.
Then we have

ũa(t)− ũb(t) =M(t)∗F ∗ exp(iϕa(1/t))(wa(1/t)− wa0(1/t))

+M(t)∗F ∗(exp(iϕa(1/t))− exp(iϕb(1/t)))wa0(1/t).
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From Lemma 3.10, we have

∥wa(1/t)− wa0(1/t)∥2 ≤ ∥wa1(1/t)∥2 + ∥wa2(1/t)∥2 ≤ Ct−1(1 + ln t)2.

On the other hand, from Lemma 4.2, we have ∥ϕa(1/t)−ϕb(1/t)∥∞ ≤ Ct−1(1+ ln t)2. Hence,

we obtain

∥ũa(t)− ũb(t)∥2 ≤ ∥wa(1/t)− wa0(1/t)∥2 + ∥ϕa(1/t)− ϕb(1/t)∥∞ ≤ Ct−1(1 + ln t)2.

This estimate and (4.27) yield ∥ũ(t) − ũb(t)∥2 ≤ Ct−1(1 + ln t)2. On the other hand, from

Propositions 3.11 and 4.1, we have

∥B(t)−B0(t); Ḣ
1∥ ≤ ∥B′

a; Ḣ
1∥+ ∥G1; Ḣ

1∥+ ∥G2; Ḣ
1∥ ≤ C,

so that ∥A(t)−A0(t); Ḣ
1∥ ≤ Ct−1/2. Similarly we have ∥Ae(t)−Ae0(t); Ḣ

1∥ ≤ Ct−1/2. Thus

we have proved (1.5). □
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