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COMPLETE YAMABE SOLITONS WITH FINITE

TOTAL SCALAR CURVATURE

SHUN MAETA

Abstract. In this paper, we show that steady or shrinking com-
plete gradient Yamabe solitons with finite total scalar curvature
and non-positive Ricci curvature are Ricci flat. Moreover, under
certain pinching condition for Ricci curvature, we show that steady
or shrinking complete gradient Yamabe solitons with finite total
scalar curvature and non-positive scalar curvature have zero scalar
curvature.

1. Introduction

A Riemannian manifold (Mn, g) is called a gradient Yamabe soliton
if there exists a smooth function F on M and a constant ρ ∈ R, such
that

(1) (R− ρ)g = ∇∇F,

where R is the scalar curvature on M . If ρ > 0, ρ = 0 or ρ < 0, Yamabe
solitons are called shrinking, steady or expanding (cf. [3]). By scaling
the metric, we can assume ρ = 1, 0,−1, respectively. If the potential
function F is constant, then Yamabe solitons are called trivial. Yamabe
solitons are special solutions of the Yamabe flow which was introduced
by R. Hamilton [4]. Since it is well known that any compact Yamabe
soliton is trivial (cf. [7]), it is important to study complete Yamabe
solitons. P. Daskalopoulos and N. Sesum showed that all locally con-
formally flat complete gradient Yamabe solitons with positive sectional
curvature have to be rotationally symmetric (cf. [3]). There are many
interesting studies for Yamabe soliton and CR Yamabe solitons (see
for example Pak Tung Ho’s paper [5], [6].) Under certain integrality
conditions, L. Ma and V. Miquel gave some conditions for the scalar
curvature (cf. [9]). L. Ma and L. Cheng’s paper [8] is also important.
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Recently, H.-D. Cao, X. Sun and Y. Zhang gave a classification the-
orem for complete steady gradient Yamabe solitons under the Ricci
curvature is positive (cf. [1]). Therefore, in this paper, under the Ricci
curvature is non-positive, we show the following.

Theorem 1.1. Let (M, g) be a steady or shrinking complete gradient
Yamabe soliton with non-positive Ricci curvature. If the scalar curva-
ture R ∈ Lp(M) for some 0 < p < ∞, then M is Ricci flat.

Under the scalar curvature is non-positive and certain pinching con-
dition for Ricci curvature of M , we show the following.

Theorem 1.2. Let (M, g) be a steady or shrinking complete gradient
Yamabe soliton with non-positive scalar curvature and Ric ≥ ϕRg for
some non-negative function ϕ : M → R+ ∪ {0}. If the scalar curvature
R ∈ Lp(M) for some 0 < p < ∞, then the scalar curvature is 0.

Remark 1.3. If the trace free Ricci curvature Ric = Ric − 1
n
Rg is

non-negative, then it satisfies the assumption Ric ≥ ϕRg for ϕ = 1
n
.

2. Proof of Theorem 1.1 and 1.2

In this section, we give a proof of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. In general, we have

(2) ∆∇iF = ∇i∆F + Ricij∇jF,

where ∇ is the Levi-Civita connection, ∆ is the Laplacian, and Ric is
the Ricci tensor on M , respectively. Substituting

∆∇iF = ∇k∇k∇iF = ∇k((R− ρ)gki) = ∇iR,

and
∇i∆F = ∇i(n(R− ρ)) = n∇iR,

into (2), we have

(3) (n− 1)∇iR + Ricil∇lF = 0.

Thus we have

(4) (n− 1)g(∇R,∇F ) = −Ric(∇F,∇F ).

On the other hand, by (3) and the contracted second Bianchi identity,

(5) (n− 1)∆R +
1

2
g(∇R,∇F ) +R(R− ρ) = 0.

Combining (4) and (5), we obtain

(6) ∆R =
1

2(n− 1)2
Ric(∇F,∇F )−

1

n− 1
R(R− ρ).
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Thus we have

∆R2 = 2R∆R + 2|∇R|2(7)

=
1

(n− 1)2
RRic(∇F,∇F )−

2

n− 1
R2(R− ρ)

+ 2|∇R|2.

Set f = R2. For a fixed point p0 ∈ M , and for every 0 < r < ∞, we
first take a cut off function η on M satisfying that
(8)


























0 ≤ η(p) ≤ 1 (p ∈ M),

η(p) = 1 (p ∈ Br(p0)),

η(p) = 0 (p )∈ B2r(p0)),

|∇η| ≤
C

r
(p ∈ M), for some constant C independent of r,

where Br(p0) are the balls centered at a fixed point p0 ∈ M with
radius r. Let a be a positive constant to be determined later. Let

b =
(a+ 3

2
)(a+3−d)

a+ 3
2
−d

, where d < a+ 1 is a positive constant.

By (7), we have
(9)

−

∫

M

g(∇(ηbfa),∇f)dvg

=

∫

M

ηbfa∆fdvg

=

∫

M

1

(n− 1)2
ηbfaRRic(∇F,∇F )dvg −

∫

M

2

n− 1
ηbfa+1(R− ρ)dvg

+ 2

∫

M

ηbfa|∇R|2dvg.

On the other hand,
(10)

−

∫

M

g(∇(ηbfa),∇f)dvg

= −2b
m
∑

i=1

∫

M

ηb−1(eiη)f
aR (eiR)dvg − 4a

∫

M

ηbfa|∇R|2dvg.

From (9) and (10), we obtain



4 SHUN MAETA

(11)
∫

M

1

(n− 1)2
ηbfaRRic(∇F,∇F )dvg −

∫

M

2

n− 1
ηbfa+1(R− ρ)dvg

+ (2 + 4a)

∫

M

ηbfa|∇R|2dvg

=− 2b
m
∑

i=1

∫

M

ηb−1(eiη)f
aR (eiR)dvg

=− 2
m
∑

i=1

∫

M

(η
b
2f

a
2 (eiR))(bη

b−2

2 f
a
2 R (eiη)dvg

≤

∫

M

ηbfa|∇R|2dvg +

∫

M

b2ηb−2fa+1|∇η|2dvg,

where the last inequality follows from Young’s inequality. By using
Young’s inequality again, we have

(12)

∫

M

b2ηb−2fa+1|∇η|2dvg

=

∫

M

ηcb2ηb−2−cf dfa+1−d|∇η|2dvg

≤
2

n− 1

∫

M

ηbfa+ 3
2dvg

+ C(a, d, n)

∫

M

η
(b−2−c)

a+3
2

a+3
2
−d f

(a+1−d)
a+3

2

a+3
2
−d |∇η|

2
a+3

2

a+3
2
−ddvg

=
2

n− 1

∫

M

ηbfa+1f
1
2 dvg

+ C(a, d, n)

∫

M

ηa+1−df
(a+1−d)

a+3
2

a+3
2
−d |∇η|

2
a+3

2

a+3
2
−ddvg,
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where c = d(a+3−d)
a+ 3

2
−d

and C(a, d, n) is a constant depending only on a, d

and n. Combining (11) and (12), we obtain
(13)

∫

M

1

(n− 1)2
ηbfaRRic(∇F,∇F )dvg −

∫

M

2

n− 1
ηbfa+1Rdvg

+

∫

M

2ρ

n− 1
ηbfa+1dvg + (1 + 4a)

∫

M

ηbfa|∇R|2dvg

≤
2

n− 1

∫

M

ηbfa+1f
1
2 dvg + C(a, d, n)

∫

M

ηa+1−df
(a+1−d)

a+3
2

a+3
2
−d |∇η|

2
a+3

2

a+3
2
−ddvg

≤
2

n− 1

∫

M

ηbfa+1f
1
2 dvg + C(a, d, n)

∫

M

f
(a+1−d)

a+3
2

a+3
2
−d

(

1

r

)2
a+3

2

a+3
2
−d

dvg

=
2

n− 1

∫

M

ηbfa+1f
1
2 dvg + C(a, d, n)

∫

M

f
p
2

(

1

r

)2
a+3

2

a+3
2
−d

dvg,

where we chose a and d such that p = 2(a + 1− d)
a+ 3

2

a+ 3
2
−d

. Since R ≤ 0,

we have

(14)

∫

M

1

(n− 1)2
ηbfaRRic(∇F,∇F )dvg

+

∫

M

2ρ

n− 1
ηbfa+1dvg + (1 + 4a)

∫

M

ηbfa|∇R|2dvg

≤ C(a, d, n)

∫

M

f
p
2

(

1

r

)2
a+3

2

a+3
2
−d

dvg.

Since 0 < d < a + 1, 0 < p = 2(a + 1 − d) a+2
a+2−d

< 2(a + 1). By the

assumption
∫

M
f

p
2dvg < ∞ (0 < p < ∞), letting r ↗ ∞ in (14), the

right hand side of (14) goes to zero and the left hand side of (14) goes
to

∫

M

1

(n− 1)2
faRRic(∇F,∇F )dvg

+

∫

M

2ρ

n− 1
fa+1dvg + (1 + 4a)

∫

M

fa|∇R|2dvg,

since η = 1 on Br(p0). Thus, we have

(15)

∫

M

1

(n− 1)2
faRRic(∇F,∇F )dvg

+

∫

M

2ρ

n− 1
fa+1dvg + (1 + 4a)

∫

M

fa|∇R|2dvg ≤ 0.
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Thus, we obtain R is constant. By (5), R = 0 or R = ρ.
Case 1: M is a shrinking Yamabe soliton (ρ = 1). By (15), we have

R = 0.
Case 2: M is a steady Yamabe soliton (ρ = 0). Obviously R = 0.
Therefore, we obtain R = 0. From this and the assumption that the

Ricci curvature is non-positive, we obtain the Ricci curvature is 0. !

By the similar argument as in the proof of Theorem 1.1, we show
Theorem 1.2.

Proof of Theorem 1.2. By the same argument as in the proof of Theo-
rem 1.1, we have

(16)

∫

M

1

(n− 1)2
ηbfaRRic(∇F,∇F )dvg

+

∫

M

2ρ

n− 1
ηbfa+1dvg + (1 + 4a)

∫

M

ηbfa|∇R|2dvg

≤ C(a, d, n)

∫

M

f
p
2

(

1

r

)2
a+3

2

a+3
2
−d

dvg.

Since the assumption Ric ≥ ϕRg, we have

(17)

∫

M

1

(n− 1)2
ηbϕfa+1|∇F |2dvg

+

∫

M

2ρ

n− 1
ηbfa+1dvg + (1 + 4a)

∫

M

ηbfa|∇R|2dvg

≤ C(a, d, n)

∫

M

f
p
2

(

1

r

)2
a+3

2

a+3
2
−d

dvg.

By the assumption
∫

M
f

p
2dvg < ∞ (0 < p < ∞), letting r ↗ ∞ in

(17), the right hand side of (17) goes to zero and the left hand side of
(17) goes to

∫

M

1

(n− 1)2
ϕfa+1|∇F |2dvg

+

∫

M

2ρ

n− 1
fa+1dvg + (1 + 4a)

∫

M

fa|∇R|2dvg,
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since η = 1 on Br(p0). Thus, we have

(18)

∫

M

1

(n− 1)2
ϕfa+1|∇F |2dvg

+

∫

M

2ρ

n− 1
fa+1dvg + (1 + 4a)

∫

M

fa|∇R|2dvg ≤ 0.

Therefore, we obtain R is constant. By (5), R = 0 or R = ρ.
Case 1: M is a shrinking Yamabe soliton (ρ = 1). By (18), we have

R = 0.
Case 2: M is a steady Yamabe soliton (ρ = 0). Obviously R = 0.

!
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