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Abstract

Growth factors have recently gained clinical importance for wound management. Application of recombinant growth
factors has been shown to mimic cell migration, proliferation, and differentiation in vivo, allowing for external modulation
of the healing process. Perioperative drug delivery systems can enhance the biological activity of these growth factors,
which have a very short in vivo half-life after topical administration. Although the basic mechanisms of these growth
factors are well understood, most have yet to demonstrate a significant impact in animal studies or small-sized clinical
trials. In this review, we emphasized currently approved growth factor therapies, including a sustained release system for
growth factors, emerging therapies, and future research possibilities combined with surgical procedures. Approaches
seeking to understand wound healing at a systemic level are currently ongoing. However, further research
and consideration in surgery will be needed to provide definitive confirmation of the efficacy of growth
factor therapies for intractable wounds.
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Background
Growth factors are endogenous signaling molecules that
regulate cellular responses for wound healing process.
These proteins are upregulated in response to tissue dam-
age and are secreted by platelets, leukocytes, fibroblasts,
and epithelial cells. Once growth factors are secreted, they
act through autocrine, paracrine, or endocrine mecha-
nisms by binding to membrane or cytoplasmic receptors.
Binding to receptors results in a cascade of events that ac-
tivate the cellular machinery to facilitate wound healing.
Even at low concentrations, growth factors can have a
marked impact on the wound microenvironment, leading
to rapid increases in cell migration, proliferation, and dif-
ferentiation [1]. In vivo and in vitro studies analyzing
non-healing acute and chronic wounds have demonstrated
de-regulation of several growth factors (e.g., platelet-de-
rived growth factor (PDGF) [2], vascular endothelial
growth factor (VEGF) [3], and fibroblast growth factor
(FGF) [4]), suggesting a potential target for therapy, which
has led to a robust interest in using exogenous growth
factors and cytokines in the clinical setting to improve the
outcomes of non-healing wounds. These evidences have

led to a number of surgical applications where controlled
drug delivery of human recombinant growth factors has
great therapeutic potential [1]. Indeed, perioperative drug
delivery of recombinant or exogenous growth factors is a
routine adjunctive treatment in a lot of surgical fields,
including burn surgery, oral surgery, orthopedic surgery,
and plastic surgery [5–7]. However, recombinant or ex-
ogenous growth factors have limited clinical applications
because they have a short in vivo half-life due to their low
stability, restricted absorption rate through the skin
around the wounds, and elimination by exudation before
reaching the wounds after topical application [8].
Currently, with the advent of genetic engineering and

advances in biological technology, there are many growth
factors known to exert powerful effects for surgical use,
including PDGF, VEGF, FGF, epidermal growth factor
(EGF), keratinocyte growth factor (KGF), transforming
growth factor beta (TGF-β), granulocyte-macrophage
colony-stimulating factor (GM-CSF), and others [1].
Although the basic mechanisms of these growth factors
are well understood, most have yet to demonstrate a sig-
nificant impact in pre-clinical or small-sized trial. As there
is a critical need for these new treatment options for the
management of intractable wounds (e.g., pressure ulcers,
venous leg ulcers, and diabetic foot ulcers), understanding
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how these growth factors may be utilized to optimize the
wound microenvironment for healing is an exciting av-
enue of future research.
The purpose of this review is to outline the use of

growth factors and release systems that prolong the bio-
activity of growth factors as an alternative or adjunct to
surgical treatment. In this review, we emphasized clinical
outcome studies conducted on human subjects, with
animal studies highlighted in the absence of clinical
evidence for wound healing.

Review
Surgical debridement
Prior to the application of any growth factors, the contami-
nated wounds should be debrided meticulously and
completely. Decreased angiogenesis, accumulation of devi-
talized tissue, increased proteases, hyperkeratotic tissue,
and local infection around the wound are characteristics of
chronic wounds, which prevent adequate cellular response
to wound-healing stimuli [9]. It has been reported that
wound bed preparation facilitates well-ordered restoration
and regeneration of damaged tissue, and enhances the
function of new therapies [9, 10].
Surgical debridement is a promising approach of remov-

ing devitalized tissue from chronic wounds and a procedure
to decrease bacterial contamination and infection while
enabling the stimulation of wound contraction and epitheli-
alization (Fig. 1a, b). Although the rationale for debride-
ment seems logical, it is still unclear how to objectively
determine the borders for surgical debridement. Currently,
some molecular markers in patients with chronic wounds
to guide surgical debridement have been reported, but the
clinical evidence to support these hypotheses in enhancing
wound healing is limited [11]. However, surgical debride-
ment of chronic wounds is a safe and effective technique to
make growth factor receptors respond to exogenous topical
treatment. As the functions of growth factors are known to
be dependent on their spatial distribution, controlling the
delivery of growth factors temporally is important for their

effective use as regenerative medicine in clinical settings
[12]. The indications for surgical debridement include (1)
removal of the source of sepsis, defined as systemic inflam-
matory response syndrome in the presence of infection; (2)
decrease bacterial burden to reduce the probability of re-
sistance to antibiotic treatment; (3) obtain accurate cultures
taken after debridement from the tissue for systemic anti-
biotic treatment; and (4) stimulation of the wound bed to
promote healing and prepare for flap surgery, skin grafting,
or topical application of exogenous growth factors [13, 14].

Growth factors: a promising approach for the treatment
of intractable wounds
Topical administration of growth factors after debride-
ment is a promising approach to enhance wound healing
because of their deficiency or a noticeable deterioration of
quality in chronic wounds (Fig. 2). Several approved medi-
cations including recombinant growth factors are available
as preparations for external use in the form of solutions,
ointments, creams, and gels.
Current medications containing growth factors require

high doses and/or repeated administration over a long
or short period of time, which could cause severe side
effects including oncogenesis [15–17]. Such high-dose
growth factors may increase the cost of therapy. Issues
regarding safety and cost of the growth factor-loaded
drug delivery systems (DDS) in clinical stages should be
discussed to make growth factors widely accepted.
However, some clinical studies of topically administrated
growth factors have shown reliable evidence for
therapeutic outcomes [18]. We review the recent clinical
or animal studies using growth factors combined with
surgical therapies for wound healing (Table 1).

PDGF family

PDGF During the natural wound healing process, plate-
lets are one of the first cell types to respond at or
around the wound site, and pivotal to generating and
initiating wound healing [1]. As mentioned above, no

Fig. 1 Pressure ulcer debridement. a This is a highly infected sacral pressure ulcer. Prior to the application of any growth factors, contaminated
wounds should be meticulously and completely debrided. b This is the same pressure ulcer after debridement. Debridement of pressure ulcers is
a safe and effective technique to make growth factor receptors respond to exogenous topical treatment
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single exogenous agent can effectively facilitate all
aspects of the wound-healing response [19]. Therefore,
combination therapy with various treatments is required
for successful cutaneous wound repair. Platelets have been
used as a rich source of growth factors including PDGF.
The PDGF are produced by platelets, macrophages, endo-
thelial cells, fibroblasts, and keratinocytes [20]. PDGF has
been found to regulate cell growth and division and play a
role in angiogenesis [21, 22]. It is a potent mitogen and
chemoattractant for mesenchymal cells [23].
PDGF is the first and only recombinant growth factor

approved by the Food and Drug Administration (FDA) in
the USA for topical administration and is used for the
treatment of diabetic foot ulcers [20]. In a randomized
controlled trial (RCT), a topical gel containing PDGF-BB
(Regranex®) was compared with a placebo in 118 patients
with non-healing diabetic ulcers enrolled from 10 different
centers. Patients were treated for 20 weeks or until

complete wound closure. Of the patients treated with
PDGF, 48% healed compared with 25% of the patients
treated with the placebo. A combined analysis of three
additional clinical trials came to similar conclusions
regarding the efficacy of PDGF-BB [24]. The results of
these studies suggest that a daily dose of 100 μg/g
PDGF-BB increases healing by as much as 39% compared
with placebo. With an excellent safety profile and ease of
administration, PDGF-BB should be considered for the
treatment of diabetic foot ulcers, especially those unre-
sponsive to standard care. However, of particular note, in-
creased cancer risk has been reported in patients treated
with more than three tubes of becaplermin (recombinant
PDGF) [25]. So, we need for further research regarding
the true correlation between cancer incidence rates and
using becaplermin gel.
Topical applications of PDGF to pressure ulcers and

venous ulcers have been attempted with minimal efficacy

Fig. 2 Biological and clinical aspect of growth factors

Table 1 Representative growth factors and their applications for intractable wounds

Growth factors Administration Function Effective wound type

PDGF Topical Regulate cell growth and division, chemoattractant for mesenchymal
cells, angiogenesis

Diabetic foot ulcers

VEGF Topical Initiate angiogenesis; proliferation and migration of endothelial cells Diabetic foot ulcers

EGF Topical or intralesional
injection

Stimulate proliferation and migration of keratinocytes; increase
tensile strength of new skin

Burns, non-healing ulcers,
and diabetic foot ulcers

bFGF Topical Stimulate proliferation, migration, and angiogenesis in injured skin Pressure ulcers, venous
ulcers, and burns

GM-CSF Topical or subcutaneous
injection

Recruit Langerhans cells, stimulate proliferation and differentiation Non-healing wounds and
venous ulcers

PDGF platelet-derived growth factor, VEGF vascular endothelial growth factor, EGF epidermal growth factor, bFGF basic fibroblast growth factor, GM-CSF
granulocyte-macrophage colony-stimulating factor
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[26, 27]. The reasons for failed efficacy might be due to
penetration of growth factors into the wound or age of
the patients. Larger RCT are needed to test its efficacy
in pressure ulcers and venous ulcers.

VEGF The VEGF family is composed of VEGF-A,
VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placental
growth factor [28]. Within this subset of proteins,
VEGF-A is the best studied and has a notable role in initiat-
ing angiogenesis through the proliferation and migration of
endothelial cells [29]. VEGF-A is secreted by platelets and
macrophages in response to tissue injury in early wound
healing [28]. In addition, hypoxia secondary to metabolic
dysfunction is a major stimulus for the release of VEGF-A
into the wound microenvironment [30]. Another clinical
study shows that VEGF-A improves re-epithelialization of
diabetic foot wounds associated with enhanced vessel for-
mation [31].
Based on these improvements, VEGF165, a recombin-

ant human-VEGF (rh-VEGF) gene carrying plasmid, has
been just used in only patients with diabetic and
ischemic wounds. Randomized controlled trials have
been conducted on the efficacy of topical application of
rh-VEGF in patients with neuropathic diabetic foot
ulcers [32]. In the study, there were positive trends sug-
gestive of potential signals of biological activity observed
for incidence of complete ulcer healing (41.4% treatment
vs 26.9% placebo), time to complete ulcer healing (32.5
days treatment vs 43.0 days placebo). Also, there is
currently a phase II, double-blind randomized placebo-
controlled study to assess the efficacy and/or safety of
rh-VEGF treatment in patients with diabetic foot ulcer.
Compared with other growth factors, relatively few at-

tempts have been made to use VEGF as an adjunctive
treatment in wound healing. Early clinical studies on gene
transfer had marginal success in delivering VEGF165
intramuscularly to treat non-healing, ischemic ulcers [33].
In animal models, the use of a protease-resistant VEGF-A
has been proposed for use in the protease-rich micro-
environment of chronic wounds [34]. Thus, despite prom-
ising studies in animal models, no topically based VEGF
strategy has been reported. Instead, most therapies focus-
ing on VEGF are anticancer treatments used to inhibit
proliferation of tumor blood vessels [35].

EGF family

EGF The EGF family of growth factors includes over a
dozen proteins best characterized by EGF, heparin-binding
EGF (HB-EGF), and transforming growth factor alpha
(TGF-α). This subset of proteins has been extensively stud-
ied and is known to facilitate re-epithelialization by stimu-
lating the proliferation and migration of keratinocytes [36].
Secondarily, the EGF family of proteins is responsible for

increasing the tensile strength of new skin [37]. EGF
proteins are secreted by fibroblasts, platelets, and macro-
phages and localize throughout the epidermis, particularly
in the basal layer [38].
Within this family of growth factors, EGF has experi-

enced the greatest use in human subjects. In an initial
study conducted by Brown et al., EGF was used to supple-
ment the healing of skin grafts following partial-thickness
burns. Treatment with EGF reduced the time to complete
wound re-epithelialization by 1.5 days compared with the
control [39]. More recently, chronic wounds were found
to exhibit decreased levels of EGF, providing rationale to
deliver EGF to chronic, non-healing ulcers. Several studies
evaluating the effects of EGF on diabetic foot ulcers con-
cluded that treatment increases the incidence and rate of
wound closure [40–42]. However, the challenge of using
EGF or any other exogenous growth factor is that levels of
matrix metalloproteinases are upregulated at sites of
chronic inflammation. These proteases hinder wound
healing by rapidly degrading growth factors or cytokines.
Current treatment is thus limited by the lack of sophisti-
cated delivery systems capable of providing sustained
levels of EGF in addition to inhibiting its degradation.
Recently, to overcome the drawback, in vivo work using

mice was reported [43]. The study was to utilize a novel
payload comprising of Eudragit RL/RS 100 nanofibers
carrying the bacterial inhibitor gentamicin sulfate (GS) in
concert with human recombinant EGF. The Eudragit RL/
RS 100 scaffolds with GS and EGF both showed more
rapid wound closure rates as compared to the scaffolds
with only GS and without EGF or to the treatment with
pure GS ointment, preventing further bacterial infection
challenges and promoting the wound healing process.
This novel dual DDS allows for the synchronous release of
GS and EGF and may serve as a faster and efficient ther-
apy for the treatment of intractable ulcers.
Other members of the EGF family that have known

roles in wound healing are HB-EGF and TGF-α. In ani-
mal studies, HB-EGF was transiently upregulated 2 to 4
days after wounding, indicating a role for this protein in
early healing [44]. Moreover, application of HB-EGF to
full-thickness wounds in mice increased proliferation
and migration of keratinocytes at the wound bed [45].
Recombinant human EGF including Heberprot-P®,

Regen-D™ 150, and Easyef® is commercially available.
Heberprot-P® contains 75 μg of freeze-dried EGF and is
administered intralesionally three times per week. A
study of 20 diabetic patients who have foot ulcer showed
full granulation response in all cases [46]. Intralesional
injection into the deep wound layers has better availabil-
ity, but pain at the injection site is a common complaint.
Regen-D™ 150 is a gel containing 150 μg/g EGF that is
applied topically twice a day. However, the effect of
Regen-D™ 150 is still unknown. Easyef® is a dermal
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solution spray indicated for diabetic foot ulcers. A pro-
spective study reported that 21 of 89 patients showed
improvement without EGF treatment, while complete
healing of chronic diabetic foot ulcer was observed in 52
of 68 patients treated with EGF [47].

TGF-α As a member of EGF family, TGF-α is a mito-
genic polypeptide [48]. The function of TGF-α is similar
to EGF. The main mechanism is inducing angiogenesis
[1]. Similarly, studies conducted on mice have suggested
a role for TGF-α in early re-epithelialization [49]. The
data supports the concept that TGF-α plays a significant
early role in wound epithelialization in vivo, but its def-
icit is compensated if accompanied by granulation tissue
formation. However, other animal models about TGF-α
in wound healing have not been tested yet. Additional
basic or animal studies are needed to evaluate the func-
tion of TGF-α for wound healing.

FGF family

Basic FGF (bFGF) The FGF family comprises over 20
isoforms known for their unique mechanism of action that
involves binding to proteoglycans in the extracellular
matrix (ECM) [50]. In general, the FGF proteins are po-
tent mitogens that are instrumental in both normal
growth and the wound healing process. Of these proteins,
FGF-2, known as bFGF, is the best studied and has a
confirmed role in the proliferation of both epithelial and
mesenchymal cells as well as a possible role in
angiogenesis [51].
Of the FGF family, bFGF has been the protein of choice

for improving wound healing outcomes in humans. Rob-
son et al. treated 61 pressure ulcers with bFGF, GM-CSF,
or placebo. Ulcers treated with bFGF alone demonstrated
the best healing with regard to wound closure and had el-
evated levels of bFGF, PDGF, and TGF-β1 in the wound
fluid [52]. Similar findings were reported by Ohura et al.,
where treatment of pressure ulcers with exogenous bFGF
resulted in accelerated healing [53]. Of note, administra-
tion of bFGF to diabetic foot ulcers provided no signifi-
cant effects on healing [54]. FGF-10 has been successful in
improving the healing rate of non-healing venous ulcers,
albeit less extensively tested [55].
bFGF has also been used as an adjunctive treatment

for burn wounds and fractures. Fu et al. did a prospect-
ive randomized double-blind multicenter trial to assess
the effect of topical recombinant bFGF on burns [56].
They recruited 600 patients and described that the use
of bFGF accelerated wound healing. Since burn wounds
could be closed rapidly and the patient’s own skin soon
became available for harvest and autografting, they con-
cluded this growth factor had clinical benefits. Fiblast®

Spray is a commercially available recombinant human

bFGF product indicated skin ulcers including leg ulcers
and burn ulcers. Hayashida et al. reported that partial-
thickness burn wounds in pediatric patients treated with
bFGF exhibited accelerated healing, reduced scarring,
and improved color matching with normal skin com-
pared with controls up to half a year post-operatively
[57, 58]. Akita et al. reported similar results in adult pa-
tients with burn wounds [59]. Although current results
are promising, additional clinical trials are needed before
FGF becomes widely accepted for the surgical use of
cutaneous wounds.

Acidic FGF (aFGF) Other FGF proteins intimately in-
volved in wound healing are FGF-1, FGF-7, and FGF-10.
FGF-1 is also known as aFGF. Acidic FGF is another
classic and well-characterized member of the FGF fam-
ily, and its structure, binding receptors, and biologic
functions are similar to those of the bFGF. Ma et al.
performed a randomized, multicenter, double-blind, and
placebo-controlled clinical trial to assess the effect of
topical aFGF on the healing of skin wounds [60]. In the
study, 39 patients with deep-partial burns were included.
The assessment results showed that the fully healed rate
of the aFGF group was higher than that of the placebo
group (53.85% vs 71.79%) in deep-partial burn wounds,
and the mean healed time of the burn wounds treated
by aFGF was significantly shorter than that of the
placebo group (17.23 ± 0.53 vs 18.92 ± 0.49, p = 0.035).
The results of their clinical trial showed that the wound
healing process was faster and the healing time was also
shortened in the aFGF-treated group. This suggests that
aFGF has a potential therapeutic application for promot-
ing healing of burn wounds. Although they obtained
positive results of topical administration of aFGF for skin
wound healing, long-term follow-up of clinical trial
using aFGF is still expected before extensive clinical
applications all over the world.

KGF FGF-7, also known as KGF or palifermin, is an
FGF protein. It preferentially affects epithelial cells and
recruits fibroblasts in order to accelerate granulation tis-
sue formation.
Staiano-Coico et al. and Danilenko et al. reported that

KGF increased the rate of re-epithelialization and epidermal
thickness in full- and partial-thickness wounds on porcine
epidermis [61, 62].
FGF binding protein (FGF-BP), originally reported to

bind and activate FGF-1 and FGF-2, also interacts with
KGF and enhances the activity of low growth factor
concentrations. Furthermore, expression of FGF-BP is
increased following injury to murine skin, particularly in
keratinocytes [63]. Thus, upregulation of FGF-BP following
cutaneous injury may promote epithelial repair by stabiliz-
ing KGF and possibly providing protection from proteases
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in the wound environment. Use of this molecule, such as
incorporating it into biomaterials, may augment the activ-
ity of KGF in wound healing applications [64]. So, these
findings indicate that FGF-BP may be therapeutically
explored for the enhancement of endogenous KGF activity
at the wound site, and thus for the treatment of impaired
wound healing.
Although current results are promising, additional

clinical trials are needed before KGF becomes widely uti-
lized for the surgical management of cutaneous wounds.

TGF-β
The TGF-β proteins are members of the TGF-β super-
family and exist as three functional isoforms: TGF-β1,
TGF-β2, and TGF-β3. In the event of tissue injury,
TGF-β is released into the wound microenvironment
from storage sites in the ECM and secreted by macro-
phages, fibroblasts, and platelets [20]. In the early stages
of wound healing, TGF-β has a reported role in modu-
lating re-epithelialization, chemotaxis of leukocytes, and
angiogenesis [65, 66]. However, the hallmark of TGF-β
proteins is their ability to modulate wound contraction
and scarring [65]. TGF-β1, 2, and 3 isoforms show a
unique expression pattern spatially and temporally dur-
ing cutaneous wound repair [67, 68]. Though TGF-β1
and TGF-β3 are largely homologous, they may exert op-
posing effects. In particular, one study suggested that, in
contrast to TGF-β1, TGF-β3 may have an anti-fibrotic
effect during wound healing and in different tissues: skin
and mucosa [69].
Among the three isoforms, TGF-β1 is considered the

most important in the process of wound healing [70].
TGF-β1-deficient mice develop massive inflammation,
explaining why TGF-β1 has gained the attribute as an
anti-inflammatory cytokine. Although this may be the
case for adaptive immunity, for innate immunity, the in-
fluence of TGF-β may be dependent on the context [71].
However, contradictory results come from studies on
TGF-β1 knockout mice or mice transgenically overex-
pressing TGF-β1. Depending on the system used and
the age of the mice, TGF-β1 can both stimulate and pro-
tract wound re-epithelialization [72]. In fact, a recent
animal study revealed that TGF-β1 gene transcription
significantly correlates with the surgical vaginal and der-
mal wound closure rate [73]. Attempts to replicate this
balance by antagonizing the effects of TGF-β1 in vivo
have been successful in animals but not tested to a
significant extent in humans [74, 75].
Conversely, delivery of TGF-β3 directly to the wound

bed was an encouraging therapeutic option until 2011.
Administration of TGF-β3 (Avotermin; Renovo, UK) sig-
nificantly reduced scarring in a number of clinical trials
before the drug failed to meet its endpoints in stage III
clinical trials. While TGF-β1 promotes wound healing, it

also may promote fibrosis when unchecked. In contrast,
TGF-β3 may have an anti-fibrotic role in wound healing.
Since both isoforms signal through the same receptors,
it is still unknown how they have different biological
behaviors toward the wound healing [68]. Although it is
attractive in theory, TGF-β-based therapies have
historically been disappointing [28]. An improved under-
standing of the TGF-β pathway coupled with novel ap-
proaches and delivery systems may be necessary before a
TGF-β product secures FDA approval.

GM-CSF
GM-CSF is a cytokine found in the wound bed after
acute injury that enables faster wound healing. Specific-
ally, GM-CSF recruits Langerhans cells, stimulates local
recruitment of inflammatory cells, advances myofibro-
blast differentiation to facilitate wound contraction, and
mediates proliferation of the epidermis [76]. Recently,
topical application of GM-CSF to refractory wounds was
reported as effective in animal models, but systemic
administration has no effects on wound healing [10].
Several studies about topical application of GM-CSF

to chronic wounds were reviewed. Da Costa et al. [77]
conducted a randomized controlled trial, with patients
in the treatment arm receiving a perilesional injection of
200 μg or 400 μg of GM-CSF and the control arm receiv-
ing a placebo. After 13 weeks, complete healing was ob-
served in 61% (11/18) receiving 400 μg and in 57% (12/
21) receiving 200 μg. On the other hand, only 19% (4/
21) healed completely in the control arm. In another
trial with topical application of GM-CSF, 47 of 52 ven-
ous ulcers healed with an average healing period of 19
weeks (range 3–46) and a 90% overall healing rate. The
re-ulceration rate over 1 year was 6% [76]. Khan et al.
[78] compared these results with a study by Mayer et al.
[79] who used standard compression therapy for venous
ulcers and reported an all healing rate of 73% after 1
year. In Mayer’ study, their re-ulceration rate over 1 year
was 30%. Therefore, topical application of GM-CSF to
intractable wounds may be useful not only to speed up
wound healing rate but also to prevent re-ulceration.

Platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) as
scaffolds of growth factors
PRP
PRP was first described by Ferrari in 1987, where it was
used to seal incisions made during open-heart surgery
[80]. Since then, it has gained widespread use in a number
of surgical fields for its ability to accelerate the healing of
hard and soft tissues. By definition, PRP is a portion of the
plasma fraction of autologous blood that contains an in-
creased concentration of platelets [81]. The actual con-
centration of platelets varies based on the separation
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system but is generally in the range of 600,000 plate-
lets/μL in a 5- to 7-mL volume [82].
PRP is produced by first withdrawing and centrifuging

autologous blood in a buffered anticoagulant solution. This
facilitates the separation of whole blood components by
density and results in three layers: the erythrocyte layer, the
platelet-rich buffy coat layer, and the plasma layer. The
platelet-rich and plasma layers are aspirated and centri-
fuged a second time, resulting in a fraction of PRP that is
applied to the surgical site in conjunction with a platelet
activator such as calcium chloride or thrombin. Activated
platelets immediately undergo degranulation, releasing
alpha granules that contain an abundance of growth factors
such as PDGF-αα, PDGF-αβ, PDGF-ββ, TGF-β, EGF, and
VEGF [66, 83].
To date, PRP is the most frequently employed growth

factor product during surgery [84, 85]. It has a particu-
larly broad set of applications in dental surgery where it
is used to improve wound healing of mucosal surfaces
and bone. For example, PRP-treated bone grafts in sinus
lift procedures exhibit increased osteogenesis and greater
bone density 6 months post-operatively [86, 87], as well
as accelerated healing of the overlying mucosa [88]. In
tooth extraction, post-operative administration of PRP
into the alveolar socket reduces pain and swelling 3 days
post-operatively [89], improves the quality of hard and
soft tissue healing [90, 91], and may decrease the
incidence of hemorrhagic complications in patients
taking anticoagulant medications [92]. Osseointegration
of dental implants is also improved using PRP, suggest-
ing potential therapeutic value in procedures designed
around immediate loading [93, 94].
In contrast, there are conflicting results regarding the ef-

ficacy of PRP in periodontal surgery. A few studies have
reported that adjunctive PRP may be beneficial for the
treatment of intrabony or furcation defects [95, 96], but
the majority found no effect or limited effects [97–99].
Similarly, application of PRP to a gingival graft did not im-
prove periodontal outcomes after grafting [100].
Within the plastic surgery field, PRP has emerged as an

effective treatment adjunct for cutaneous wounds and fat
grafts. In cutaneous wounds, PRP appears to improve the
rate of wound healing in healthy [101, 102] and diabetic
patients [103–105]. In a study by Hom et al.,
full-thickness wounds made on volunteers were treated
with or without PRP. Wounds treated with PRP exhibited
accelerated wound closure and increased cellularity com-
pared with controls, particularly in patients who achieved
greater fold increases in platelet concentration relative to
baseline levels [106]. Other observed benefits in
PRP-treated wounds include decreased time to recon-
structive surgery [101, 102], decreased length of hospital
stay [102], and a decreased incidence of limb amputation
regardless of underlying comorbidities [105, 107].

Although PRP has merited use in a number of surgical
fields, much remains unknown regarding the optimal
dose, platelet concentration, method of administration,
and long-term outcomes in all fields of surgery [108].
Standardization of PRP to expand its clinical use also re-
mains a problem as the varying concentrations of plate-
lets, growth factors, and leukocytes are possibly
responsible for conflicting study results. However, PRP is
likely to gain popularity as an autologous, cost-effective
preparation with minimal side effects.

PRF
Fibrin sealants have been used for several decades as
hemostatic agents to achieve wound closure. Although
initially successful, legal ramifications over concerns of
viral transmission severely limited the distribution and use
of these products [109]. PRF is a product derived from au-
tologous blood with similar properties to the fibrin seal-
ants [110]. Due to its autologous nature, PRF did not face
the legal problems of its predecessors and has since been
applied to a variety of surgical indications.
The methodology used to generate PRF is nearly iden-

tical to that of PRP. The main difference is that no anti-
coagulant or activator is used in the production of PRF,
simplifying the process. In the absence of anticoagulants,
the contact between the vial wall and the platelets dur-
ing centrifugation stimulates the activation of the coagu-
lation cascade. Fibrinogen present in the donor blood
cross-links platelets and is converted to fibrin by en-
dogenous thrombin. The final result is a platelet-charged
fibrin clot that can be administered directly to the surgi-
cal site to stimulate wound healing and closure.
Although the fibrin clot plays a major role in

hemostasis and secretion of growth factors, it does not
achieve the same platelet concentration or levels of
growth factors as PRP [111]. However, the fibrin clot
can secondarily act as a three-dimensional scaffold to
direct migration, proliferation, angiogenesis, and
chemotaxis of inflammatory cells [112]. The size and
shape of the formed clot can also be optimized for the
surgical site, as recently demonstrated by Alio et al. in
the use of an eye-shaped PRF clot for surgical repair of
corneal perforation [113].
PRF has the greatest number of applications in dental

surgery. For example, the use of adjunctive PRF in peri-
odontal management of intrabony defects has resulted in
improved osteogenesis, periodontal outcomes, and healing
of mucosal surfaces compared with conventional treat-
ment alone [114–116]. Of note, a study conducted by
Pradeep et al. comparing adjunctive PRF and PRP in treat-
ing intrabony defects found that both therapies produced
similar outcomes with regard to bone regeneration; how-
ever, the authors state their preference for PRF in clinical
practice because of its simpler production protocol [117].
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In another study, PRF in conjunction with surgical
debridement was successful in facilitating bone regener-
ation in 15 of 15 patients presenting periapical lesions un-
responsive to conventional endodontic treatment [118].
Within the oral and maxillofacial surgery fields, the use of
adjunctive PRF may improve osteogenesis in sinus lift
procedures, but available data is inconclusive [119, 120].
Like PRP, administration of PRF into the alveolar socket
following tooth extraction may limit hemorrhage in
patients on anticoagulant therapy [121].
The use of PRF has been limited in plastic surgery,

with most studies using it as a therapeutic option to
achieve wound closure [122, 123]. Patches or dressings
incorporating patient-derived PRF have been described
but have yet to be used on humans [124]. PRF has also
been used in facial rejuvenation by Sclafani et al., where
he observed new collagen deposition and angiogenesis 7
and 19 days post-treatment, respectively [125, 126].
Lastly, PRF has been applied in conjunction with fat
grafts to improve survivability of the graft, with greater
graft viability than that of PRP-treated grafts [127].
Although there are fewer surgical applications and less

conclusive data for PRF compared with PRP, PRF is prom-
ising from a tissue engineering perspective for its proper-
ties as a scaffold with a complex three-dimensional
architecture [128]. Coupled with its autologous nature,
the versatility of PRF may lead to the discovery of novel
therapeutics and delivery systems in the future.

Current limitations of growth factors and future
perspectives
Growth factors are well-established as critically import-
ant signaling molecules, but their use in surgery is cur-
rently limited. As of 2018, the greatest success has been
autogenously derived growth factor preparations such as
PRP and PRF. These formulations will likely continue to
be successful and their role will expand within the surgi-
cal arena. Conversely, other growth factors with more
limited roles, such as PDGF, TGF-β, or FGF, will flourish
with advances in the fields of cell biology and immun-
ology. The currently unremarkable results with the de-
livery of isolated growth factors indicate our incomplete
understanding of how growth factors interact to guide
wound healing.
Researchers of growth factor therapies focus on two key

points. First, the effective use of growth factors is highly
dependent on available delivery systems. Ongoing research
has targeted this aspect of therapy with novel delivery
platforms, such as polymer gels, coated dressings, cham-
ber devices, and nanoparticles, described in recent reports
[129–132]. Micro- and nanospheres are colloidal systems
prepared using natural or synthetic materials, including
poly lactic-co-glycolic acid (PLGA), alginate, gelatin, chito-
san, and other polymer combinations [133–135]. Among

them, PLGA is one of the most widely used polymers for
GF entrapment in chronic wound therapy because it is
biocompatible, biodegradable, less hydrophilic than other
polymers, absorbs less water, and is thus slowly degraded,
allowing for sustained drug release [136, 137]. Also, PLGA
degradation produces lactate, which accelerates angiogen-
esis, activates pro-collagen factors, and recruits endothe-
lial progenitor cells to the wound site. On this subject,
Dong et al. [136] developed human recombinant
EGF-loaded PLGA microspheres (MS) for chronic wound
care that demonstrated an encapsulation efficiency of
85.6%. The in vivo studies showed that topical administra-
tion of human recombinant EGF-PLGA-MS to wounds
enhanced the fibroblast proliferation rate and wound heal-
ing compared with free human recombinant EGF. In
addition, the amount of proliferating cell nuclear antigen,
which represents cell proliferation in the epidermis, was
significantly greater in wounds treated with human re-
combinant EGF-PLGA-MS than in the control groups on
days 7 and 14 after wound induction [136].
Using new bioinspired hydrogels with bFGF is also

useful [138]. This study demonstrated that bioinspired
hydrogels based on the chemical structure and nano-
morphology of alga adhesive using gum arabic, pectin,
and calcium combined with bFGF showed great promise
for wound healing applications. The in vivo results
showed that the bioinspired hydrogels with bFGF was
able to significantly enhance cell proliferation, wound
re-epithelialization, collagen deposition, and contraction
without any toxicity and inflammation compared with
the hydrogels without bFGF and commercially available
wound healing products.
The second criticism of growth factor-based therapies

is that sites of chronic inflammation generate complex
microenvironments not amenable to treatment with a
single growth factor [43]. The optimal therapeutic strat-
egy is sustained delivery of growth factors that are able
to withstand the abundance of proteases in the micro-
environment. In addition, the proper growth factors
must be secreted at the correct time and in precise con-
centrations to achieve favorable outcomes. Although
growth factors mainly control interactions among cells
or between cells and the ECM, wound care involving a
single growth factor cannot completely manage the com-
plex wound healing process, which is coordinated by the
actions of multiple cell types including keratinocytes, fi-
broblasts, platelets, and other stromal cells [139]. This
intricate interplay may be the reason for the great suc-
cess of autologous products, such as PRP and PRF,
where the identity and concentration of growth factor
release are not under our control. Ito et al. reported that
collagen/gelatin sponge impregnated with bFGF may be
used as scaffolds with adipose tissue-derived stromal
cells (ASCs) for adipogenesis [140]. The controlled
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release nature promotes bFGF-induced angiogenesis and
ASCs proliferation. This modern technique is applicable for
the reconstruction of volume contour deformities by surgi-
cal interventions of adipose tissues or trauma [140]. Wu et
al. investigated the role of PDGF-AA in ASCs and endothe-
lial progenitor cells enhancing wound healing [141]. In the
study, they knocked down PDGF-AA expression in ASCs
using the PDGF-AA short hairpin RNA technique and in-
vestigated the related molecular mechanism. The
wound-healing assay of the study showed that transplant-
ation of ASCs could enhance wound healing rate. The re-
sults showed that the PDGF-AA knockdown ASCs group
had much less improvement of wound healing than other
groups treated with wild-type ASCs in wound tissues. They
concluded that PDGF-AA might play a vital role in ASCs
enhancing wound healing, possibly by its effects on
angiogenesis.
Effective translation of laboratory knowledge into clin-

ical therapies will be necessary to better integrate growth
factors into the framework of surgical management. One
field of growing relevance is that of systems biology, which
promises to aid us in understanding the dynamic network
of signaling pathways. Approaches seeking to understand
wound healing at a systems level are currently ongoing
and may provide the paradigm shift needed to enhance
our utilization of growth factors in surgery [142, 143]. For
example, Garcia et al. conducted curative metatarsal bone
surgery combined with intralesional administration of hu-
man recombinant EGF in neuropathic ulceration of the
forefoot in patients with diabetes. There was a 2.1-fold
shorter time for re-epithelization (healing), less recidivism,
and a 2.3-fold decrease in lesions in the human recombin-
ant EGF study group. The safety profile was appropriate
based on the low frequency of complications and the light
or moderate characteristics of the complications. Fever
and shivering were more frequent in the human recom-
binant EGF-treated group [144].
To apply the growth factors, there are several proce-

dures combined with surgical technique. Transplant-
ation of skin fibroblasts into diabetic sheep with
excisional wounds significantly increased the number of
blood vessels and accelerated wound closure [145]. Cul-
tured allogenic keratinocytes contributed for patients
with venous ulcers or extensive burns with regard to
clinical benefits [146, 147]. Keratinocytes in epidermal
substitutes produce interleukin-1α and tumor necrosis
factor-α, which synergistically mediate the secretion of
wound-healing factors from fibroblasts in dermal substi-
tutes [148]. As for epidermal or dermal substitutes, a
bi-layered living cellular construct containing both kera-
tinocytes and fibroblasts showed higher expression of cy-
tokines and growth factors and greater endothelial
network formation than did constructs containing only
keratinocytes or fibroblasts [149].

Recently, one interesting research related to surgical
sutures was reported [150]. The research introduced that
standard surgical threads could be bio-activated with
genetically modified microalgae to release both recom-
binant growth factors and oxygen directly into the
wound site. They found this to be admissible as it makes
the photosynthetic threads amenable to be stored as a
“ready-to-use” or “off-the-shelf” biomaterial, thus facili-
tating its clinical translation. Although further researches
are required to evaluate the efficacy and safety of this
new technology in vivo, this represents the first step to
create a new generation of surgical sutures with
improved regenerative capabilities.
Gene therapy for the delivery of growth factors is also

in an era of emerging treatment options for wound heal-
ing [151]. Shi et al. reported a combined gene transfer of
VEGF-A and PDGF-B for diabetic foot ulcers in rats
[152]. The aim of the study was to analyze whether the
engineered growth factors based plasmid-loaded nano-
spheres could be upregulated in streptozotocin-induced
diabetic rats and improve the wound healing. In vivo,
the expression of VEGF-A and PDGF-B was significantly
upregulated at full-thickness dorsal foot skin wounds,
and the area of ulceration was significantly reduced fol-
lowing treatment with nanosphere/plasmid.
Growth factor has demonstrated potential in improving

bone regeneration. In a study on foot and ankle surgery,
Daniels et al. compared autogenous bone grafting with the
use of an osteoconductive beta-tricalcium phosphate
(β-TCP) scaffold enriched with PDGF-BB in patients
undergoing hindfoot or ankle arthrodesis [153]. The pro-
spective randomized controlled trial evaluated the efficacy
and safety of PDGF-BB combined with an injectable
β-TCP-collagen matrix. Seventy-five patients were ran-
domized 5:1 for PDGF-BB/β-TCP-collagen (treatment, n
= 63) or autograft (control, n = 12) and treated. They
achieved clinical success in 57 of 63 (91%) PDGF-BB/
β-TCP-collagen patients and in 120 of 154 (78%) autograft
patients (p < 0.001) at 52 weeks. And, they concluded that
the application of PDGF-BB/β-TCP-collagen was a safe
and effective alternative for ankle and hindfoot fusions,
eliminating the pain and morbidity associated with
autograft bone harvesting. In the wound care arena, we
also need to challenge prospective studies evaluating
wound healing in combination with growth factors.
Although the clinical results of these growth factors

are encouraging, most studies involved a small sample
size and are disparate in measured endpoints. In
addition, there are few references making a comparative
study of the effects of each growth factor [154, 155]. A
Cochrane systematic review inspected a heterogeneous
group of trials that assessed 11 different growth factors
for diabetic foot ulcers [156]. They found evidence
suggesting that growth factors may increase the healing
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rate of diabetic foot ulcers. However, we are sure that
the outcomes and conclusions are based on randomized
clinical trials with high risk of systematic errors (bias). It
is obvious that more clinical trials are required to assess
the benefits and harms of growth factors in the manage-
ment of diabetic foot ulcers.

Conclusion
Proper surgical techniques and management remains para-
mount to achieving favorable outcomes. Further research
which incorporates surgical procedures is needed to pro-
vide definitive confirmation of the efficacy of growth factor
therapies for intractable wounds.
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