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Aerobic Oxidative Sulfenylation of Pyrazolones and Pyrazoles 

Catalyzed by Metal-Free Flavin–Iodine Catalysis 

Kazumasa Tanimoto, Ryoma Ohkado, and Hiroki Iida* 

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 

1060 Nishikawatsu, Matsue 690-8504, Japan 

 

ABSTRACT: Two-component metal-free catalytic oxidative sulfenylation of pyrazolones with thiols has 

been achieved using the biomimetic flavin and iodine. The methodology is mild and eco-friendly, and 

proceeds in the presence of air or molecular oxygen (1 atm) as the sole sacrificial reagent, and generates 

water as the only by-product. The methodology was also extended to the sulfenylation of pyrazoles and 

electron-rich benzenes and afforded a series of thioethers in good yields. 
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 Pyrazoles and their derivatives are an important class of aza-heterocycles, which display a wide 

range of pharmacological and biological activities.1 Notably, commercially available drugs and 

agrochemicals such as Crizotinib (anticancer),2 Sildenafil (erectile dysfunction therapeutic),3 Celecoxib 

(anti-inflammatory),4 and Fipronil (agricultural insecticide)5 contain the pyrazole skeleton (Figure 1). Due 

to their widespread applications in medicinal chemistry, considerable efforts have been devoted toward 

the synthesis and functionalization of pyrazoles.6,7 Among them, the sulfenylation of pyrazolones and 

pyrazoles by direct C-H functionalization has attracted increasing attention, due to the crucial contribution 

of C-S bond incorporation toward imparting diversity to pharmaceutical and material science-relevant 

molecules.8 Indeed, sulfur-containing pyrazole derivatives have been recognized as promising candidates 

for medicinal and agrochemical compounds,9 e.g. Sildenafil,3 Celecoxib,4 Fipronil,5 potent anti-

inflammatory agent I,9d and fungicidal active agent II9e (Figure 1). 

 

Figure 1. Biologically active pyrazole derivatives. 

 

Several reagents have been reported for the direct sulfenylation of C-H bonds, such as thiols, 

disulfides, sulfenyl halides, sulfonyl hydrazides, sulfonyl cyanides, sulfinates, sulfinic acid, and 1-

(substituted phenylthio)pyrrolidine-2,5-dione.8,10 However, most of these C-H sulfenylation reagents 

require moisture-free reaction conditions or involve multiple synthetic manipulations. Since thiols are the 
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simplest, most atom-economical, and readily available sulfenylation reagents, the thiol-mediated 

oxidative sulfenylation has emerged as a highly reliable strategy for a variety of substrates. However, 

methods for the sulfenylation of pyrazolones11 and pyrazoles12 with thiols have been rather limited. Despite 

their potential advantages, these reported methods typically involve harsh reaction conditions and may 

require the use of expensive transition metal catalysts, and/or a stoichiometric amount of a base or 

oxidant.11,12 The use of ambient molecular oxygen as the sole sacrificial reagent for oxidative sulfenylation 

would be an ideal approach because molecular oxygen is an atom-economical and low-polluting green 

oxidant which generates the non-hazardous water as the byproduct.13 The recent demand for green and 

sustainable oxidative transformations has driven the use of ambient molecular oxygen in these processes. 

However, to the best of our knowledge, eco-friendly approaches to oxidative pyrazolone and pyrazole 

sulfenylation using molecular oxygen have not been reported. 

 Recently, we reported the development of a novel strategy for green metal-free oxidation by 

coupling flavin and iodine catalysis, which enabled the use of molecular oxygen as a terminal oxidant.14 

By the activation of O2
15,16 under biomimetic flavin organocatalysis, formation thiadiazole rings by the 

reaction of N-tosylhydrazones with sulfur14a was successfully achieved using the two-component catalysis 

system under aerobic conditions, and the sulfenylation was further extended to the reaction of indole 

analogs with thiols.14b,c Building on the successes of these flavin-iodine coupled catalyses, we report herein, 

the first examples of the oxidative sulfenylations of pyrazolones and pyrazoles using molecular oxygen 

as the sole sacrificial reagent. Importantly, this methodology meets the growing demand for the 

development of green chemical transformations. 

 We began our study by probing the sulfenylation of 3-methyl-1-phenyl pyrazolone 1a with p-

tolyl thiol (2a) in the presence of I2 and a flavin catalyst, and found that the I2 and riboflavin-derived 

alloxazinium salt (4•TfO) smoothly promoted the catalytic oxidative sulfenylation of 1a in CH3CN, under 

an atmosphere of molecular oxygen to furnish the corresponding sulfenyl pyrazole 3a (the effect of 

solvents and iodine sources was summarized in Table S1, Supporting Information). Further optimization 
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of the reaction conditions revealed that the sulfenylation proceeded in excellent yield in the presence of 3 

mol% of 4•TfO and 5 mol% of I2 in CH3CN at 25 ˚C and afforded the products in an excellent yield after 

8 h (Table 1, entry 1). To our delight, a 90% yield of the products was obtained by using air (1 atm) as 

the terminal oxidant (entry 2), which indicated that the concentration of molecular oxygen in air was 

sufficient for this sulfenylation to proceed at a reasonable rate under the present mild condition. 

Table 1. Catalytic sulfenylation of 1a with 2a under various conditionsa 

 

entry flavin 
(mol%) 

iodine 
source 
(mol%) 

atmosphere time (h) yield (%) 

1 4•TfO (3) I2 (5) O2 8 94 
2 4•TfO (3) I2 (5) air 12 90 
3 None I2 (5) O2 8 2 
4 4•TfO (3) None O2 8 5 
5 4•TfO (3) I2 (5) N2 8 3 
6 None I2 (120) N2 8 25 
7 4•TfO (3) I2 (5) air 0.5 9 (91) b 

8 c 4•TfO (3) I2 (5) air 12 93 
aConditions: 1a (1.0 M), 2a (1.1 M), 4•TfO, I2, and CH3CN under air, O2, or N2 atmosphere (1 atm) at 25 °C. Yield was 
determined by 1H NMR using 1,3,5-trioxane as an internal standard. bYield of disulfide 5a calculated on the bases of 2a. c5a 
(0.55 M) was used instead of 2a. 
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thiols such as benzyl thiol (2h) was relatively slower than that with electron poor thiols, slightly higher 

temperature (40 ˚C) and molecular oxygen (1 atm) was used to promote the sulfenylation, thus gave the 

corresponding product 3f in 71% yield. On the other hand, the reaction with alkyl thiol (2i) was sluggish 

(3i) probably due to the poor electrophilicity of the corresponding iodine adduct as described later. 

Pyrazolones bearing various substituents also underwent the sulfenylation to yield the desired products 

(3j-3n) in 89-98% yields. It is noteworthy that amino, chloro, and bromo functional groups are tolerated 

(3c, 3e, 3f, and 3m) under the present reaction condition. The chemoselectivity of the transformation 

results from the efficient O2-activation catalysis of flavin, that enables mild oxidative sulfenylation in the 

absence of stoichiometric quantities of strong oxidants. 

Table 2. Aerobic sulfenylation of pyrazolonesa 

 

aConditions: 1 (1.0 M), 2 (1.1 M), 4•TfO (3 mol%), I2 (5 mol%), and CH3CN under air or O2 (1 atm) at 25 °C. bAt 40 °C. 
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 With the assessment of the scope and limitations of the developed process complete, we 

conducted a series of control experiments to gain insight into the sulfenylation reaction. The reaction of 

1a with 2a in the absence of 4·TfO, I2, or molecular oxygen was studied, and the sulfenylated product 3a 

was obtained only in a trace quantity in each of these conditions, which indicated that the three 

components are essential for the desired outcome (Table 1, entries 3−5). The use of a super-stoichiometric 

quantity of I2 (120 mol%) led to a lower yield of 3a (entry 6), which further revealed the distinct advantage 

of the present dual catalytic system. To gain further insight, we analyzed the reaction mixture at 0.5 h and 

found the formation of the disulfide 5a, which results from the oxidation of 2a, in 91% yield along with 

the formation of 3a in 9% yield (entry 7). Importantly, when 5a (0.55 equiv) was used instead of 2a, the 

sulfenylation occurred smoothly in good yield (entry 8). These results suggest that the sulfenylation of 

pyrazolones under the developed reaction conditions proceeds via generation of the disulfide. 

 On the basis of these preliminary results along with related literature,11e,12,14a,b a tentative reaction 

mechanism is shown in Scheme 1. The basic mechanism of the flavin-iodine catalytic system is almost 

identical to that reported previously for indole sulfenylation.14b In this mechanism, the thiol is oxidatively 

converted to the corresponding disulfide, which reacts with I2 to form the corresponding sulfenyl iodide 

(R-SI). The ensuing nucleophilic attack of pyrazolone onto R-SI provides the desired product. This is 

supported by the fact that the sulfenylation using relatively electron rich pyrazolones smoothly proceeded 

in the present reaction. In this system, the flavin catalyst oxidizes the thiol and I– under aerobic conditions 

to generate disulfide and I2, respectively. Although conventional conditions for sulfenylation of 

pyrazolones with thiols require heating,11a-e the developed pyrazolone sulfenylation occurs at ambient 

temperature (25 ˚C) due to the multiple beneficial roles of flavin catalysis which include O2-activation and 

the oxidations of thiol and I–. 
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Scheme 1. Proposed mechanism for aerobic sulfenylation catalyzed by flavin–iodine-catalyst. 
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Table 3. Aerobic sulfenylation of pyrazolesa 

 

aConditions: 6 (1.0 M), 2 (1.1 M), 4•TfO (10 mol%), I2 (10 mol%), and CH3CN under O2 (1 atm) at 80 °C. bWithout 4•TfO. 
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bond formations is currently under investigation. 
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General Information.  The NMR spectra were measured using JEOL JNM-L400 and JNM ECX-500 

spectrometers (JEOL, Akishima, Japan) operating at 400 and 500 MHz, respectively, for 1H and 100 and 

126 MHz, respectively, for 13C using tetramethylsilane (TMS) or a solvent residual peak as the internal 

standard. The electrospray ionization mass (ESI-MS) spectra were recorded using a Bruker microTOFII-

SHIY3 mass spectrometer (Bruker, Billerica, MA). All starting materials were purchased from Aldrich 

(Milwaukee, WI), FUJIFILM Wako Pure Chemical Industries (Osaka, Japan), Nacalai tesque (Kyoto, 

Japan), HYDRUS CHEMICAL INC. (Tokyo, Japan), and Tokyo Kasei (TCI, Tokyo, Japan) and were 

used as received. 5-Ethyl-1,3,7,8-tetramethylalloxazinium triflate (4·TfO) was synthesized according to 

the previously reported methods.17 

Typical Procedure for Catalytic Sulfenylation of Pyrazolones.  A mixture of 1a (174 mg, 1.0 mmol), 

2a (137 mg, 1.1 mmol), I2 (12.7 mg, 0.050 mmol), 4·TfO (13.5 mg, 0.030 mmol), and CH3CN (1.0 mL) 

was stirred at 25 °C for 12 h under air (1 atm). Evaporation of the solvent and purification of the residue 

by column chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded 3a (272 mg, 92%) 

as a white solid. The results for the sulfenylation of pyrazolones are summarized in Table 2. 

Spectroscopic data of 3-methyl-1-phenyl-4-(p-tolylthio)-1H-pyrazol-5-ol (3a).18 1H NMR (500 MHz, 

DMSO-d6, 25 °C, δ): 12.12 (br s, 1H), 7.75 (d, J = 7.8 Hz, 2H), 7.47 (t, J = 7.9 Hz, 2H), 7.27 (t, J = 7.4 

Hz, 1H), 7.09 (d, J = 8.1 Hz, 2H), 7.00 (d, J = 8.1 Hz, 2H), 2.23 (s, 3H), 2.13 (s, 3H). 13C{1H} NMR (126 

MHz, DMSO-d6, 25 °C, δ): 155.5, 151.8, 138.3, 134.8, 134.3, 129.7, 128.9, 125.7, 125.3, 120.8, 87.3, 

20.4, 12.3. 

Spectroscopic data of 3-methyl-1-phenyl-4-(phenylthio)-1H-pyrazol-5-ol (3b).18 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded the desired product (159 mg, 

94%) as a pale yellow solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 12.18 (br s, 1H), 7.76 (d, J = 7.8 

Hz, 2H), 7.48 (t, J = 7.9 Hz, 2H), 7.28 (t, J = 7.6 Hz, 3H), 7.15−7.03 (m, 3H), 2.14 (s, 3H). 13C{1H} NMR 

(126 MHz, DMSO-d6, 25 °C, δ): 155.6, 152.0, 138.4, 138.1, 129.1, 129.0, 125.8, 124.94, 124.89, 120.8, 

86.9, 12.3. 

Spectroscopic data of 4-(4-chlorophenylthio)-3-methyl-1-phenyl-1H-pyrazol-5-ol (3c).19 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded the desired product (176 mg, 

93%) as a white solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 12.27 (br s, 1H), 7.75 (d, J = 7.7 Hz, 

2H), 7.47 (t, J = 7.9 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 8.5 Hz, 2H), 

2.13 (s, 3H). 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 155.9, 151.8, 138.1, 137.6, 129.5, 129.0, 

126.6, 125.8, 120.8, 86.5, 12.3. 
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Spectroscopic data of 3-methyl-4-(4-nitrophenylthio)-1-phenyl-1H-pyrazol-5-ol (3d). Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 9/1, v/v) afforded the desired product (190 mg, 

97%) as a yellow solid. Mp: 215.1-216.3 ˚C. IR (KBr, cm–1): 1620, 1504, 1399, 1340, 1089. 1H NMR (500 

MHz, DMSO-d6, 25 °C, δ): 8.13 (d, J = 9.0 Hz, 2H), 7.76 (d, J = 7.7 Hz, 2H), 7.49 (t, J = 7.9 Hz, 2H), 

7.34−7.25 (m, 3H), 2.14 (s, 3H). 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 156.9, 151.9, 148.9, 144.7, 

138.0, 129.0, 126.0, 124.9, 124.2, 120.9, 85.2, 12.2. HRMS (ESI+) (m/z): (M + Na+) calculated for 

C16H13N3O3SNa, 350.0570; found, 350.0565. 

Spectroscopic data of 4-(3,5-dichlorophenylthio)-3-methyl-1-phenyl-1H-pyrazol-5-ol (3e).20 Column 

chromatography (SiO2, hexane/ethyl acetate = 2/1, v/v) afforded the desired product (178 mg, 85%) as a 

white solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 7.76 (d, J = 7.6 Hz, 2H), 7.47 (t, J = 8.0 Hz, 2H), 

7.33−7.25 (m, 2H), 7.07 (d, J = 1.7 Hz, 2H), 2.15 (s, 3H). 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 

157.1, 151.9, 143.5, 137.9, 134.7, 129.0, 125.9, 124.6, 122.9, 120.9, 85.8, 12.2. 

Spectroscopic data of 4-(2-aminophenylthio)-3-methyl-1-phenyl-1H-pyrazol-5-ol (3f).21 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded the desired product (158 mg, 

89%) as a pale yellow solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 7.70 (d, J = 7.7 Hz, 2H), 7.46 (t, J 

= 7.8 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 7.15 (d, J = 5.4 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.68 (d, J = 7.8 

Hz, 1H), 6.50 (t, J = 7.2 Hz, 1H), 2.20 (s, 3H). 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 159.3, 

152.1, 147.8, 137.6, 132.3, 129.0, 128.4, 125.5, 120.2, 118.6, 116.7, 114.9, 92.5, 12.1. 

Spectroscopic data of 3-methyl-4-((1-methyl-1H-tetrazol-5-yl)thio)-1-phenyl-1H-pyrazol-5-ol (3g).18 

Column chromatography (SiO2, chloroform/methanol = 99/1 to 9/1, v/v) afforded the desired product (170 

mg, 98%) as a pale yellow solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 12.48 (br s, 1H), 7.71 (d, J = 

8.5 Hz, 2H), 7.48 (t, J = 7.9 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 4.05 (s, 3H), 2.24 (s, 3H). 13C{1H} NMR 

(126 MHz, DMSO-d6, 25 °C, δ): 156.8, 153.7, 152.0, 137.7, 129.0, 126.0, 120.8, 83.1, 33.9, 12.3. 

Spectroscopic data of 4-(benzylthio)-3-methyl-1-phenyl-1H-pyrazol-5-ol (3h).18 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded the desired product (126 mg, 

71%) as a pale yellow solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 11.73 (br s, 1H), 7.70 (d, J = 7.8 

Hz, 2H), 7.45 (t, J = 7.9 Hz, 2H), 7.29−7.19 (m, 4H), 7.15 (d, J = 6.7 Hz, 2H), 3.75 (s, 2H), 1.74 (s, 3H). 
13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 155.0, 152.0, 138.5, 138.1, 129.0, 128.9, 128.1, 126.7, 

125.4, 120.6, 89.4, 11.8. 

Spectroscopic data of 3-methyl-1-p-tolyl-4-(p-tolylthio)-1H-pyrazol-5-ol (3j).19 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded the desired product (169 mg, 

91%) as a pale yellow solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 12.01 (br s, 1H), 7.62 (d, J = 8.4 
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Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 2.32 (s, 3H), 2.23 (s, 

3H), 2.11 (s, 3H). 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 154.9, 151.2, 136.0, 135.0, 134.8, 134.3, 

129.6, 129.3, 125.3, 120.9, 86.7, 20.5, 20.4, 12.3. 

Spectroscopic data of 1-(4-chlorophenyl)-3-methyl-4-(p-tolylthio)-1H-pyrazol-5-ol (3k).19 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded the desired product (186 mg, 

94%) as a pale yellow solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 12.35 (br s, 1H), 7.79 (d, J = 8.9 

Hz, 2H), 7.52 (d, J = 8.9 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.1 Hz, 2H), 2.22 (s, 3H), 2.11 (s, 

3H). 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 156.4, 152.3, 137.1, 134.6, 134.4, 129.7, 128.9, 128.3, 

125.3, 122.0, 87.9, 20.4, 12.3. 

 

Spectroscopic data of 1,3-dimethyl-4-((1-methyl-1H-tetrazol-5-yl)thio)-1H-pyrazol-5-ol (3l). Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 10/1, v/v) afforded the desired product (122 mg, 

90%) as a white solid. Mp: 185.6-186.5 ̊ C. IR (KBr, cm–1): 3448, 1559, 1057. 1H NMR (500 MHz, DMSO-

d6, 25 ˚C): δ 3.99 (s, 3H), 3.45 (s, 3H), 2.09 (s, 3H); 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C): δ 155.6, 

154.0, 149.4, 80.0, 33.8, 33.0, 12.1. HRMS (ESI+) (m/z): (M + Na+) calculated for C7H10N6SONa, 

249.0529; found, 249.0527. 

Spectroscopic data of 4-((4-bromophenyl)thio)-1,3-dimethyl-1H-pyrazol-5-ol (3m).20 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 9/1, v/v) afforded the desired product (159 mg, 

89%) as a white solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 11.51 (br s, 1H), 7.43 (d, J = 8.5 Hz, 

2H), 6.93 (d, J = 8.5 Hz, 2H), 3.49 (s, 3H), 1.98 (s, 3H). 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 

155.0, 149.3, 138.9, 131.7, 126.6, 117.4, 83.4, 33.3, 12.1. HRMS (ESI+) (m/z): (M + Na+) calculated for 

C11H11BrN2OSNa, 320.9668; found, 320.9668. 

Spectroscopic data of 3-tert-butyl-1-phenyl-4-(p-tolylthio)-1H-pyrazol-5-ol (3n).19 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded the desired product (200 mg, 

98%) as a beige solid. 1H NMR (500 MHz, DMSO-d6, 25 °C, δ): 11.91 (br s, 1H), 7.78 (d, J = 7.7 Hz, 2H), 

7.47 (t, J = 7.9 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.08 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 8.1 Hz, 2H), 2.22 

(s, 3H), 1.30 (s, 9H). 13C{1H} NMR (126 MHz, DMSO-d6, 25 °C, δ): 160.6, 156.6, 138.6, 135.6, 133.8, 

129.5, 128.9, 125.8, 124.6, 121.2, 84.4, 33.6, 28.9, 20.4. 

Typical Procedure for Catalytic Sulfenylation of Pyrazoles.  A mixture of 1,3,5-trimethylpyrazole 

(6b, 110 mg, 1.0 mmol), 2a (137 mg, 1.1 mmol), I2 (25.4 mg, 0.10 mmol), 4·TfO (44.9 mg, 0.10 mmol), 

and CH3CN (1.0 mL) was stirred at 80 °C for 12 h under an O2 atmosphere (1 atm). Evaporation of the 

solvent and purification of the residue by column chromatography (SiO2, hexane/chloroform = 1/10, v/v) 
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afforded 7b (201 mg, 87%) as a yellow oil. The results for the sulfenylation of pyrazoles are summarized 

in Table 3. 

Spectroscopic data of 1,3,5-trimethyl-4-(phenylthio)-1H-pyrazole (7a).22 Column chromatography (SiO2, 

hexane/ethyl acetate = 2/1, v/v) afforded the desired product (112 mg, 85%) as a yellow oil. 1H NMR (500 

MHz, CDCl3, 25 °C, δ): 7.19 (t, J = 7.7 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 7.4 Hz, 2H), 3.80 

(s, 3H), 2.25 (s, 3H), 2.20 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3, 25 °C, δ): 151.9, 144.0, 138.9, 128.9, 

125.3, 124.8, 103.8, 36.8, 12.0, 10.2. 

Spectroscopic data of 1,3,5-trimethyl-4-(p-tolylthio)-1H-pyrazole (7b). Column chromatography (SiO2, 

hexane/chloroform = 1/10, v/v) afforded the desired product (201 mg, 87%) as a yellow oil. IR (neat, cm-

1): 2922, 1492, 1384, 1084, 805. 1H NMR (500 MHz, CDCl3, 25 °C, δ): 7.00 (d, J = 8.1 Hz, 2H), 6.89 (d, 

J = 8.2 Hz, 2H), 3.78 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H), 2.20 (s, 3H).13C{1H} NMR (126 MHz, CDCl3, 

25 °C, δ): 151.7, 143.8, 135.2, 134.6, 129.6, 125.6, 104.2, 36.7, 20.9, 12.0, 10.1. HRMS (ESI+) (m/z): 

(M + H+) calculated for C13H17N2S, 233.1107; found, 233.1111. 

Spectroscopic data of 4-(4-chlorophenylthio)-1,3,5-trimethyl-1H-pyrazole (7c). Column 

chromatography (SiO2, hexane/ethyl acetate = 2/1, v/v) afforded the desired product (134 mg, 88%) as a 

yellow oil. IR (neat, cm-1): 2925, 1474, 1090, 1010, 815. 1H NMR (500 MHz, CDCl3, 25 °C, δ): 7.12 (d, J 

= 8.7 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 3.76 (s, 3H), 2.21 (s, 3H), 2.16 (s, 3H). 13C{1H} NMR (126 MHz, 

CDCl3, 25 °C, δ): 151.6, 143.8, 137.5, 130.5, 128.9, 126.4, 103.3, 36.7, 11.9, 10.0. HRMS (ESI+) (m/z): 

(M + H+) calculated for C12H14ClN2S, 253.0561; found, 253.0566. 

Spectroscopic data of 3,5-dimethyl-1-phenyl-4-(p-tolylthio)-1H-pyrazole (7d).23 Column 

chromatography (SiO2, chloroform/methanol = 100/0 to 99/1, v/v) afforded the desired product (145 mg, 

82%) as a yellow oil. 1H NMR (500 MHz, CDCl3, 25 °C, δ): 7.52-7.45 (m, 4H), 7.42-7.36 (m, 1H), 7.06 

(d, J = 8.2 Hz, 2H), 7.00 (d, J = 8.2 Hz, 2H), 2.36 (s, 3H), 2.32 (s, 3H), 2.30 (s, 3H). 13C{1H} NMR (126 

MHz, CDCl3, 25 °C, δ): 153.2, 144.0, 139.8, 134.8, 134.7, 129.7, 129.2, 127.8, 125.8, 124.7, 106.8, 20.9, 

12.1, 11.6. 

Spectroscopic data of 3,5-dimethyl-4-(p-tolylthio)-1H-pyrazole (7e). 23 Column chromatography (SiO2, 

chloroform/methanol = 95/5, v/v) afforded the desired product (107 mg, 82%) as a pale yellow solid. 1H 

NMR (500 MHz, CDCl3, 25 °C, δ): 10.55 (br s, 1H), 7.04 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 

2.33 (s, 6H), 2.29 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3, 25 °C, δ): 148.8, 135.0, 134.7, 129.7, 125.7, 

104.4, 20.9, 11.2.  

Spectroscopic data of 3,5-dimethyl-4-((1-methyl-1H-tetrazol-5-yl)thio)-1-phenyl-1H-pyrazole (7f). 

Column chromatography (SiO2, hexane/ethyl acetate = 2/1, v/v) afforded the desired product (150 mg, 



 13 

88%) as a yellow oil. IR (neat, cm-1): 2927, 1597, 1505, 1388, 1022. 1H NMR (500 MHz, CDCl3, 25 °C, 

δ): 7.47-7.39 (m, 4H), 7.36 (tt, J = 1.7, 7.0 Hz, 1H), 4.00 (s, 3H), 2.37 (s, 3H), 2.31 (s, 3H). 13C{1H} NMR 

(126 MHz, CDCl3, 25 °C, δ): 153.5, 152.4, 144.8, 139.4, 129.2, 128.2, 124.9, 99.8, 33.8, 12.2, 11.7. 

HRMS (ESI+) (m/z): (M + H+) calculated for C13H15N6S, 287.1073; found, 287.1074. 

Spectroscopic data of 4-(1-methyl-tetrazol-5-ylthio)-3,5-dimethyl-1H-pyrazole (7g).24 Column 

chromatography (SiO2, hexane/ethyl acetate = 1/5, v/v) afforded the desired product (102 mg, 81%) as a 

white solid. 1H NMR (500 MHz, CDCl3, 25 °C, δ): 4.01 (s, 3H), 2.25 (s, 6H). 13C{1H} NMR (126 MHz, 

CDCl3, 25 °C, δ): 154.6, 148.9, 96.7, 33.8, 11.2. 

 

Typical Procedure for Catalytic Sulfenylation of Electron-Rich Benzenes.  A mixture of 8a (202 mg, 

1.2 mmol), 2a (74.9 mg, 0.60 mmol), I2 (15.2 mg, 0.060 mmol), 4·TfO (13.4 mg, 0.030 mmol), and 

pyridine (0.60 mL) was stirred at 100 °C for 24 h under an O2 atmosphere (1 atm). Evaporation of the 

solvent and purification of the residue by column chromatography (SiO2, hexane/ethyl acetate = 8/1 to 4/1, 

v/v) afforded p-tolyl(2,4,6-trimethoxyphenyl)sulfane (9a, 160 mg, 91%) as a white solid. The results for 

the sulfenylation of benzenes are summarized in Scheme S1. 

Spectroscopic data of p-tolyl(2,4,6-trimethoxyphenyl)sulfane (9a).25 1H NMR (500 MHz, CDCl3, 25 °C, 

δ): 7.00−6.92 (m, 4H), 6.21 (s, 2H), 3.86 (s, 3H), 3.80 (s, 6H), 2.25 (s, 3H). 13C{1H} NMR (126 MHz, 

CDCl3, 25 °C, δ): 162.9, 162.6, 135.2, 134.2, 129.4, 126.1, 99.5, 91.3, 56.4, 55.5, 21.0. 

Spectroscopic data of 4-(methylthio)-2-(p-tolylthio)aniline (9b).25 Column chromatography (SiO2, 

hexane/ethyl acetate = 8/1 to 4/1, v/v) afforded the desired product (135 mg, 86%) as a brown oil. 1H 

NMR (500 MHz, CDCl3, 25 °C, δ): 7.48 (d, J = 2.3 Hz, 1H), 7.24 (dd, J = 2.3, 8.4 Hz, 1H), 7.09−7.03 

(m, 4H), 6.72 (d, J = 8.3 Hz, 1H), 4.27 (s, 2H), 2.43 (s, 3H), 2.30 (s, 3H). 13C{1H} NMR (126 MHz, 

CDCl3, 25 °C, δ): 147.1, 137.7, 135.8, 132.5, 129.9, 127.3, 126.0, 116.3, 116.0, 21.0, 18.7. 
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