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Abstract. Let A and B be unital C∗-algebras. In this paper we obtain several
operator inequalities providing upper bounds for the difference∫

T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
,

where f : I → R is a convex function defined on an interval I , (ϕt)t∈T is a
unital field of positive linear mappings ϕt : A → B defined on a locally compact
Hausdorff space T with a bounded Radon measure µ and (xt)t∈T is a bounded
continuous field of selfadjoint elements in A with spectra contained in I. Several
Hermite-Hadamard type inequalities are given. Some examples for convex and
operator convex functions are also provided.

1. Introduction

Let T be a locally compact Hausdorff space and let A be a C∗-algebra. We
say that a field (xt)t∈T of operators in A is continuous if the function t 7→ xt is
norm continuous on T . If in addition µ is a Radon measure on T and the function
t 7→ ‖xt‖ is integrable, then we can form the Bochner integral

∫
T
xtdµ (t), which is

the unique element in A such that

φ

(∫
T

xtdµ (t)

)
=

∫
T

φ (xt) dµ (t)

for every linear functional φ in the norm dual A∗, cf. [13, Section 4.1].
Assume furthermore that there is a field (ϕt)t∈T of positive linear mappings ϕt

: A → B from A to another C∗-algebra B. We say that such a field is continuous if
the function t 7→ ϕt (x) is continuous for every x ∈ A. If the C∗-algebras are unital
and the field t 7→ ϕt (1) is integrable with integral

∫
T
ϕt (1) dµ (t) = 1, we say that

(ϕt)t∈T is unital.
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A continuous function I → R is said to be operator convex if

f ((1− λ)x+ λy) ≤ (1− λ) f (x) + λf (y)

for any selfadjoint elements x, y in A with spectra Sp (x) and Sp (y) contained in
I.

The following Jensen’s integral inequality has been obtained in [12]:

Theorem 1. Let f : I → R be an operator convex function defined on an interval
I , and let A and B be unital C∗-algebras. If (ϕt)t∈T is a unital field of positive
linear mappings ϕt : A → B defined on a locally compact Hausdorff space T with a
bounded Radon measure µ, then the inequality

(1.1) f

(∫
T

ϕt (xt) dµ (t)

)
≤
∫
T

ϕt (f (xt)) dµ (t)

holds for every bounded continuous field (xt)t∈T of selfadjoint elements in A with
spectra contained in I.

The discrete case is as follows [15]:

f

(
n∑

i=1

wiϕi (xi)

)
≤

n∑
i=1

wiϕi (f (xi))

for operator convex functions f defined on an interval I, where ϕi : A → B, i ∈
{1, ..., n} are unital positive linear maps, xi, i ∈ {1, ..., n} are selfadjoint elements
in A with spectra contained in I and wi ≥ 0, i ∈ {1, ..., n} with

∑n
i=1wi = 1.

Also, if f : I → R is operator convex on I and ai ∈ A, i ∈ {1, ..., n} with∑n
i=1 a

∗
i ai = 1, then [13]

f

(
n∑

i=1

a∗ixiai

)
≤

n∑
i=1

a∗i f (xi) ai

where xi, i ∈ {1, ..., n} are selfadjoint elements in A with spectra contained in I.
For various reverse inequalities related to these results see [15], [13], [8] and

[12]. For related inequalities for operator convex functions see [1]-[3], [9]-[11] and
[16]-[20].

It is known that there are convex functions f for which the inequality (1.1) does
not hold, however one can obtain several operator inequalities providing upper
bounds for the difference∫

T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
for any convex function f : I → R, (ϕt)t∈T and (xt)t∈T as in Theorem 1. Several
Hermite-Hadamard type inequalities are given. Some examples for convex and
operator convex functions are also provided.
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2. Some Hermite-Hadamard Type Inequalities

Let T = [0, 1] and µ be the Lebesgue measure on the interval [0, 1] . Assume that
the field (ϕt)t∈[0,1] of positive linear mappings ϕt : A → B is continuous and unital,

i.e.
∫ 1

0
ϕt (1) dt = 1 and x, y selfadjoint elements in A with the spectra in I. Then

by taking xt := (1− t)x+ ty, t ∈ [0, 1] we get from (1.1) that

(2.1) f

(∫ 1

0

ϕt ((1− t)x+ ty) dt

)
≤
∫ 1

0

ϕt (f ((1− t)x+ ty)) dt.

We have ∫ 1

0

ϕt ((1− t)x+ ty) dt =

∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt.

By the operator convexity of f we also have∫ 1

0

ϕt (f ((1− t)x+ ty)) dt ≤
∫ 1

0

ϕt [(1− t) f (x) + tf (y)] dt(2.2)

=

∫ 1

0

[(1− t)ϕt (f (x)) + tϕt (f (y))] dt

=

∫ 1

0

(1− t)ϕt (f (x)) dt+

∫ 1

0

tϕt (f (y)) dt.

Therefore by (2.1) we obtain the Hermite-Hadamard type inequality

f

(∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt

)
(2.3)

≤
∫ 1

0

ϕt (f ((1− t)x+ ty)) dt

≤
∫ 1

0

(1− t)ϕt (f (x)) dt+

∫ 1

0

tϕt (f (y)) dt

for x, y selfadjoint elements in A with the spectra in I, the field (ϕt)t∈[0,1] of positive

linear continuous mappings ϕt : A → B with
∫ 1

0
ϕt (1) dt = 1 and the operator

convex function f : I → R.
If we take ϕt = ϕ, t ∈ [0, 1] , a positive linear mapping with ϕ (1) = 1 and since∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt =

(∫ 1

0

(1− t) dt

)
ϕ (x) +

(∫ 1

0

tdt

)
ϕ (y)

=
ϕ (x) + ϕ (y)

2
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and ∫ 1

0

(1− t)ϕt (f (x)) dt+

∫ 1

0

tϕt (f (y)) dt

=

(∫ 1

0

(1− t) dt

)
ϕ (f (x)) +

(∫ 1

0

tdt

)
ϕ (f (y))

=
ϕ (f (x)) + ϕ (f (y))

2
,

then by (2.3) we get

(2.4) f

(
ϕ (x) + ϕ (y)

2

)
≤
∫ 1

0

ϕ (f ((1− t)x+ ty)) dt ≤ ϕ (f (x)) + ϕ (f (y))

2

for x, y selfadjoint elements in A with the spectra in I, the positive linear mapping
ϕ : A → B with ϕ (1) = 1 and the operator convex function f : I → R.
However, this inequality is not as good as the following result obtained for Banach

algebras of operators [7], which can be also stated, with a similar proof, for the
unital C∗-algebras A and B(

f

(
ϕ (x) + ϕ (y)

2

)
≤
)
ϕ

(
f

(
x+ y

2

))
(2.5)

≤ (1− λ)ϕ

(
f

[
(1− λ)x+ (1 + λ) y

2

])
+ λϕ

(
f

[
(2− λ)x+ λy

2

])
≤
∫ 1

0

ϕ (f ((1− t)x+ ty)) dt

≤ 1

2
[ϕ (f ((1− λ)x+ λy)) + (1− λ)ϕ (f (y)) + λϕ (f (x))]

≤ ϕ (f (x)) + ϕ (f (y))

2

for x, y selfadjoint elements in A with the spectra in I, the positive linear mapping
ϕ : A → B with ϕ (1) = 1 and the operator convex function f : I → R.

Let a, b ∈ A with a∗a = b∗b = 1 and define

ϕt (x) = (1− t) a∗xa+ tb∗xb, t ∈ [0, 1] and x ∈ A.

This field (ϕt)t∈[0,1] is of positive linear continuous mappings with∫ 1

0

ϕt (1) dt =

∫ 1

0

[(1− t) a∗1a+ tb∗1b] dt

=

∫ 1

0

[(1− t) a∗a+ tb∗b] dt =
a∗a+ b∗b

2
= 1.

If we use the inequality (1.1) for this filed of positive linear mappings, we get

f

(∫ 1

0

[(1− t) a∗xta+ tb∗xtb] dt

)
≤
∫ 1

0

[(1− t) a∗f (xt) a+ tb∗f (xt) b] dt
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namely

f

(
a∗
(∫ 1

0

(1− t)xtdt

)
a+ b∗

(∫ 1

0

txtdt

)
b

)
(2.6)

≤ a∗
(∫ 1

0

(1− t) f (xt) dt

)
a+ b∗

(∫ 1

0

tf (xt) dt

)
b

for every bounded continuous field (xt)t∈[0,1] of selfadjoint elements in A with spec-
tra contained in I.
If we take xt := (1− t)x+ ty, t ∈ [0, 1] , then∫ 1

0

(1− t)xtdt =

∫ 1

0

(1− t) [(1− t)x+ ty] dt =
1

3
x+

1

6
y,

∫ 1

0

txtdt =

∫ 1

0

t [(1− t)x+ ty] dt =
1

6
x+

1

3
y.

Also, by the operator convexity of f we have

a∗
(∫ 1

0

(1− t) f (xt) dt

)
a = a∗

(∫ 1

0

(1− t) f ((1− t)x+ ty) dt

)
a

≤ a∗
(∫ 1

0

(
(1− t)2 f (x) + (1− t) tf (y)

)
dt

)
a

=
1

3
a∗f (x) a+

1

6
a∗f (y) a

and

b∗
(∫ 1

0

tf (xt) dt

)
b = b∗

(∫ 1

0

tf ((1− t)x+ ty) dt

)
b

≤ b∗
(∫ 1

0

(
(1− t) tf (x) + t2f (y)

)
dt

)
b

=
1

6
b∗f (x) b+

1

3
b∗f (y) b.

From (2.6) we get

f

(
a∗
(
1

3
x+

1

6
y

)
a+ b∗

(
1

6
x+

1

3
y

)
b

)
≤ a∗

(∫ 1

0

(1− t) f ((1− t)x+ ty) dt

)
a+ b∗

(∫ 1

0

tf ((1− t)x+ ty) dt

)
b

≤ 1

3
a∗f (x) a+

1

6
a∗f (y) a+

1

6
b∗f (x) b+

1

3
b∗f (y) b
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namely

f

(
1

2

[
a∗
(
2x+ y

3

)
a+ b∗

(
x+ 2y

3

)
b

])
(2.7)

≤ a∗
(∫ 1

0

(1− t) f ((1− t)x+ ty) dt

)
a+ b∗

(∫ 1

0

tf ((1− t)x+ ty) dt

)
b

≤ 1

2

[
a∗
(
2f (x) + f (y)

3

)
a+ b∗

(
f (x) + 2f (y)

3

)
b

]
,

where f is operator convex on I, a, b ∈ A with a∗a = b∗b = 1 and x, y are
selfadjoint elements with spectra in I.

3. Main Results

The following result provides an operator inequality that generalizes the scalar
version obtained in [6]. In the formulation below it was obtained in [14]:

Theorem 2. Let f : I → R be a continuous convex function defined on an interval
I and let A and B be unital C∗-algebras. If (ϕt)t∈T is a unital field of positive
linear mappings ϕt : A → B defined on a locally compact Hausdorff space T with a
bounded Radon measure µ, then∫

T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.1)

≤
f ′
− (M)− f ′

+ (m)

M −m

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1

for every bounded continuous field (xt)t∈T of selfadjoint elements in A with spectra
contained in a closed subinterval [m,M ] of I.

Proof. We use the following inequality for convex functions f : [m,M ] → R that
was obtained in [4]:

0 ≤ (M − t) f (m) + (t−m) f (M)

M −m
− f (t)(3.2)

≤ (M − t) (t−m)
f ′
− (M)− f ′

+ (m)

M −m
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]

for any t ∈ [m,M ] .
If the lateral derivatives f ′

− (M) and f ′
+ (m) are finite, then the second inequality

and the constant 1/4 are sharp.
Utilising the continuous functional calculus for a selfadjoint element y with 0 ≤

y ≤ 1 and the convexity of f on [m,M ] , we have

(3.3) f (m (1− y) +My) ≤ f (m) (1− y) + f (M) y

in the operator order.
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Let t ∈ T. If we take in (3.3)

0 ≤ y =
xt −m1

M −m
≤ 1,

then we get

f

(
m

(
1− xt −m1

M −m

)
+M

xt −m1

M −m

)
(3.4)

≤ f (m)

(
1− xt −m1

M −m

)
+ f (M)

xt −m1

M −m
.

Observe that

m

(
1− xt −m1

M −m

)
+M

xt −m1

M −m
=

m (M1− xt) +M (xt −m1)

M −m
= xt

and

f (m)

(
1− xt −m1

M −m

)
+ f (M)

xt −m1

M −m
=

f (m) (M1− xt) + f (M) (xt −m1)

M −m

and by (3.4) we get the following inequality of interest

(3.5) f (xt) ≤
f (m) (M1− xt) + f (M) (xt −m1)

M −m

for all t ∈ T.
If we take the functional ϕt in (3.5) we get

(3.6) ϕt (f (xt)) ≤
f (m) (Mϕt (1)− ϕt (xt)) + f (M) (ϕt (xt)−mϕt (1))

M −m

for all t ∈ T.
If we take the integral

∫
T
in (3.6) we get∫

T

ϕt (f (xt)) dµ (t)(3.7)

≤ 1

M −m

[
f (m)

(
M

∫
T

ϕt (1) dµ (t)−
∫
T

ϕt (xt) dµ (t)

)
+f (M)

(∫
T

ϕt (xt) dµ (t)−m

∫
T

ϕt (1) dµ (t)

)]
=

1

M −m

[
f (m)

(
M1−

∫
T

ϕt (xt) dµ (t)

)
+f (M)

(∫
T

ϕt (xt) dµ (t)−m1

)]
.
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Therefore, by (3.7) we obtain∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.8)

≤
f (m)

(
M1−

∫
T
ϕt (xt) dµ (t)

)
+ f (M)

(∫
T
ϕt (xt) dµ (t)−m1

)
M −m

− f

(∫
T

ϕt (xt) dµ (t)

)
.

Using the inequality (3.2) and the functional calculus, we get

f (m)
(
M1−

∫
T
ϕt (xt) dµ (t)

)
+ f (M)

(∫
T
ϕt (xt) dµ (t)−m1

)
M −m

(3.9)

− f

(∫
T

ϕt (xt) dµ (t)

)
≤

f ′
− (M)− f ′

+ (m)

M −m

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1.

By utilising (3.8) and (3.9) we derive (3.1).

Corollary 1. With the assumptions of Theorem 2 and if f is operator convex on
I, then we have the following reverse of (1.1)

0 ≤
∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.10)

≤
f ′
− (M)− f ′

+ (m)

M −m

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1.

We also have the norm inequalities∥∥∥∥∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)∥∥∥∥(3.11)

≤
f ′
− (M)− f ′

+ (m)

M −m

∥∥∥∥(M1−
∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)∥∥∥∥
≤

f ′
− (M)− f ′

+ (m)

M −m

∥∥∥∥M1−
∫
T

ϕt (xt) dµ (t)

∥∥∥∥∥∥∥∥∫
T

ϕt (xt) dµ (t)−m1

∥∥∥∥
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
.

Remark 1. Let f : I → R be a continuous convex function defined on an interval
I and let A and B be unital C∗-algebras. Assume that the field (ϕt)t∈[0,1] of positive

linear mappings ϕt : A → B is continuous and unital, i.e.
∫ 1

0
ϕt (1) dt = 1 and
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x, y selfadjoint elements in A with the spectra in [m,M ] ⊂ I. Then by taking
xt := (1− t)x+ ty, t ∈ [0, 1] we get from (3.1) that

∫ 1

0

ϕt (f ((1− t)x+ ty)) dt− f

(∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt

)
(3.12)

≤
f ′
− (M)− f ′

+ (m)

M −m

(
M1−

∫ 1

0

(1− t)ϕt (x) dt−
∫ 1

0

tϕt (y) dt

)
×
(∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt−m1

)
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1.

If f is operator convex, then the first term in (3.12) is also nonnegative in the
operator order.

For x, y selfadjoint elements in A with the spectra in I, the positive linear map-
ping ϕ : A → B with ϕ (1) = 1 and the convex function f : I → R, we have

∫ 1

0

ϕ (f ((1− t)x+ ty)) dt− f

(
ϕ (x) + ϕ (y)

2

)
(3.13)

≤
f ′
− (M)− f ′

+ (m)

M −m

(
M1− ϕ (x) + ϕ (y)

2

)(
ϕ (x) + ϕ (y)

2
−m1

)
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1.

If f is operator convex, then the first term in (3.12) is also nonnegative in the
operator order.

For A = B and ϕ (x) = x, then by (3.13) we get

∫ 1

0

f ((1− t)x+ ty) dt− f

(
x+ y

2

)
(3.14)

≤
f ′
− (M)− f ′

+ (m)

M −m

(
M1− x+ y

2

)(
x+ y

2
−m1

)
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1.

If f is operator convex, then the first term in (3.14) is also nonnegative in the
operator order.

Let a, b ∈ A with a∗a = b∗b = 1 and a bounded continuous field (xt)t∈[0,1] of
selfadjoint elements in A with spectra contained in [m,M ] ⊂ I. If f is convex on
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I, then by (3.1) we get

a∗
(∫ 1

0

(1− t) f (xt) dt

)
a+ b∗

(∫ 1

0

tf (xt) dt

)
b(3.15)

− f

(
a∗
(∫ 1

0

(1− t)xtdt

)
a+ b∗

(∫ 1

0

txtdt

)
b

)
≤

f ′
− (M)− f ′

+ (m)

M −m

(
M1− a∗

(∫ 1

0

(1− t)xtdt

)
a− b∗

(∫ 1

0

txtdt

)
b

)
×
(
a∗
(∫ 1

0

(1− t)xtdt

)
a+ b∗

(∫ 1

0

txtdt

)
b−m1

)
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1.

If f is operator convex, then the first term in (3.15) is also nonnegative in the
operator order.

If f is convex on I, a, b ∈ A with a∗a = b∗b = 1 and x, y are selfadjoint elements
with spectra in [m,M ] ⊂ I, then

a∗
(∫ 1

0

(1− t) f ((1− t)x+ ty) dt

)
a+ b∗

(∫ 1

0

tf ((1− t)x+ ty) dt

)
b(3.16)

− f

(
1

2

[
a∗
(
2x+ y

3

)
a+ b∗

(
x+ 2y

3

)
b

])
≤

f ′
− (M)− f ′

+ (m)

M −m

(
M1− 1

2

[
a∗
(
2x+ y

3

)
a+ b∗

(
x+ 2y

3

)
b

])
×
(
1

2

[
a∗
(
2x+ y

3

)
a+ b∗

(
x+ 2y

3

)
b

]
−m1

)
≤ 1

4
(M −m)

[
f ′
− (M)− f ′

+ (m)
]
1.

If f is operator convex, then the first term in (3.16) is also nonnegative in the
operator order.

Further, we also have the following result that provides an operator inequality
that generalizes the scalar version obtained in [6].

Theorem 3. Let f : I → R be a continuous convex function defined on an interval
I and let A and B be unital C∗-algebras. If (ϕt)t∈T is a unital field of positive
linear mappings ϕt : A → B defined on a locally compact Hausdorff space T with a
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bounded Radon measure µ, then∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.17)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
f (m) + f (M)

2
− f

(
m+M

2

)]
for every bounded continuous field (xt)t∈T of selfadjoint elements in A with spectra
contained in a closed subinterval [m,M ] of I.

Proof. We also have the following scalar inequality of interest:

2min {t, 1− t}
[
f (m) + f (M)

2
− f

(
m+M

2

)]
(3.18)

≤ (1− t) f (m) + tf (M)− f ((1− t)m+ tM)

≤ 2max {t, 1− t}
[
f (m) + f (M)

2
− f

(
m+M

2

)]
,

where f : [m,M ] → R be a convex function on [m,M ] and t ∈ [0, 1] .
The proof follows, for instance, by Corollary 1 from [5] for n = 2, p1 = 1 − t,

p2 = t, t ∈ [0, 1] and x1 = m, x2 = M.
We have from (3.18) that

2

(
1

2
−
∣∣∣∣t− 1

2

∣∣∣∣) [f (m) + f (M)

2
− f

(
m+M

2

)]
(3.19)

≤ (1− t) f (m) + tf (M)− f ((1− t)m+ tM)

≤ 2

(
1

2
+

∣∣∣∣t− 1

2

∣∣∣∣) [f (m) + f (M)

2
− f

(
m+M

2

)]
,

for all t ∈ [0, 1] .
Utilising the continuous functional calculus for a selfadjoint element y with 0 ≤

y ≤ 1 we get from (3.19) that

2

[
f (m) + f (M)

2
− f

(
m+M

2

)](
1

2
1−

∣∣∣∣y − 1

2
1

∣∣∣∣)(3.20)

≤ (1− y) f (m) + yf (M)− f ((1− y)m+ yM)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)](
1

2
1+

∣∣∣∣y − 1

2
1

∣∣∣∣) ,

in the operator order.
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Now, if x is selfadjoint with Sp (x) ⊂ [m,M ] , then m1 ≤ x ≤ M1. If we take in
(3.20)

0 ≤ y =
x−m1

M −m
≤ 1,

then, we get

2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
(3.21)

×
(
1

2
(M −m)1−

∣∣∣∣x− 1

2
(m+M)1

∣∣∣∣)
≤ f (m) (M1− x) + f (M) (x−m1)

M −m
− f (x)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣x− 1

2
(m+M)1

∣∣∣∣) .

From (3.8) we get∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.22)

≤
f (m)

(
M1−

∫
T
ϕt (xt) dµ (t)

)
+ f (M)

(∫
T
ϕt (xt) dµ (t)−m1

)
M −m

− f

(∫
T

ϕt (xt) dµ (t)

)
.

Using the inequality (3.21), we also have

f (m)
(
M1−

∫
T
ϕt (xt) dµ (t)

)
+ f (M)

(∫
T
ϕt (xt) dµ (t)−m1

)
M −m

(3.23)

− f

(∫
T

ϕt (xt) dµ (t)

)
≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∣∣∣∣) .

By utilising (3.22) and (3.23) we obtain the first part of (3.17).
If u ∈ [m,M ] , then

∣∣u− m+M
2

∣∣ ≤ 1
2
(M −m) and by the continuous functional

calculus we have
∣∣x− 1

2
(m+M)1

∣∣ ≤ 1
2
(M −m)1 if x is a selfadjoint element

with Sp (x) ⊂ [m,M ] .
Since m1 ≤ ϕt (xt) ≤ M1 then m1 ≤

∫
T
ϕt (xt) dµ (t) ≤ M1, which proves the

last part of (3.17).
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Corollary 2. With the assumptions of Theorem 2 and if f is operator convex on
I, then we have the following reverse of (1.1)

0 ≤
∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.24)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
f (m) + f (M)

2
− f

(
m+M

2

)]
1.

We have the norm inequalities∥∥∥∥∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)∥∥∥∥(3.25)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
∥∥∥∥12 (M −m)1+

∣∣∣∣∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∣∣∣∣∥∥∥∥
≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m) +

∥∥∥∥∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∥∥∥∥)
≤ 2 (M −m)

[
f (m) + f (M)

2
− f

(
m+M

2

)]
.

Remark 2. Let f : I → R be a continuous convex function defined on an interval
I and let A and B be unital C∗-algebras. Assume that the field (ϕt)t∈[0,1] of positive

linear mappings ϕt : A → B is continuous and unital, i.e.
∫ 1

0
ϕt (1) dt = 1 and

x, y selfadjoint elements in A with the spectra in [m,M ] ⊂ I. Then by taking
xt := (1− t)x+ ty, t ∈ [0, 1] we get from (3.17) that∫ 1

0

ϕt (f ((1− t)x+ ty)) dt− f

(∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt

)
(3.26)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt−
1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
f (m) + f (M)

2
− f

(
m+M

2

)]
.

If f is operator convex, then the first term in (3.26) is also nonnegative in the
operator order.
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For x, y selfadjoint elements in A with the spectra in I, the positive linear map-
ping ϕ : A → B with ϕ (1) = 1 and the convex function f : I → R, we have∫ 1

0

ϕ (f ((1− t)x+ ty)) dt− f

(
ϕ (x) + ϕ (y)

2

)
(3.27)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣ϕ (x) + ϕ (y)

2
− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
f (m) + f (M)

2
− f

(
m+M

2

)]
1.

If f is operator convex, then the first term in (3.27) is also nonnegative in the
operator order.

For A = B and ϕ (x) = x, then by (3.27) we get∫ 1

0

f ((1− t)x+ ty) dt− f

(
x+ y

2

)
(3.28)

≤ 2

[
f (m) + f (M)

2
− f

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣x+ y

2
− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
f (m) + f (M)

2
− f

(
m+M

2

)]
1.

If f is operator convex, then the first term in (3.28) is also nonnegative in the
operator order.

We also have [4]:

Lemma 1. Assume that f : [m,M ] → R is C1 on [m,M ]. If f ′ is K-Lipschitzian
on [m,M ], then

|(1− t) f (m) + tf (M)− f ((1− t)m+ tM)|(3.29)

≤ 1

2
K (M − t) (t−m) ≤ 1

8
K (M −m)2

for all t ∈ [0, 1] .
The constants 1/2 and 1/8 are the best possible in (3.19).

Remark 3. If f : [m,M ] → R is twice differentiable and f ′′ ∈ L∞ [m,M ] , then

|(1− t) f (m) + tf (M)− f ((1− t)m+ tM)|(3.30)

≤ 1

2
‖f ′′‖[m,M ],∞ (M − t) (t−m) ≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 ,

where ‖f ′′‖[m,M ],∞ := essupt∈[m,M ] |f ′′ (t)| < ∞. The constants 1/2 and 1/8 are the

best possible in (3.20).
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The following result also holds:

Theorem 4. Let f : I → R be a twice differentiable convex function defined on
an interval I and let A and B be unital C∗-algebras. If (ϕt)t∈T is a unital field of
positive linear mappings ϕt : A → B defined on a locally compact Hausdorff space
T with a bounded Radon measure µ, then∫

T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.31)

≤ 1

2
‖f ′′‖[m,M ],∞

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 1

for every bounded continuous field (xt)t∈T of selfadjoint elements in A with spectra
contained in a closed subinterval [m,M ] of I.

Proof. From (3.30), the convexity of f and the continuous functional calculus, we
get

0 ≤ f (m) (M1− x) + f (M) (x−m1)

M −m
− f (x)(3.32)

≤ 1

2
‖f ′′‖[m,M ],∞ (M1− x) (x−m1) ≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 1,

where x is a selfadjoint element with the spectrum Sp (x) ⊂ [m,M ] .
Since ∫

T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.33)

≤
f (m)

(
M1−

∫
T
ϕt (xt) dµ (t)

)
+ f (M)

(∫
T
ϕt (xt) dµ (t)−m1

)
M −m

− f

(∫
T

ϕt (xt) dµ (t)

)
and, by (3.32) for x =

∫
T
ϕt (xt) dµ (t) ,

0 ≤
f (m)

(
M1−

∫
T
ϕt (xt) dµ (t)

)
+ f (M)

(∫
T
ϕt (xt) dµ (t)−m1

)
M −m

(3.34)

− f

(∫
T

ϕt (xt) dµ (t)

)
≤ 1

2
‖f ′′‖[m,M ],∞

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 1,

hence by (3.33) and (3.34) we derive (3.31).
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Corollary 3. With the assumptions of Theorem 4 and if f is operator convex on
I, then we have the following reverse of (1.1)

0 ≤
∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)
(3.35)

≤ 1

2
‖f ′′‖[m,M ],∞

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 1.

We also have the norm inequalities

∥∥∥∥∫
T

ϕt (f (xt)) dµ (t)− f

(∫
T

ϕt (xt) dµ (t)

)∥∥∥∥(3.36)

≤ 1

2
‖f ′′‖[m,M ],∞

∥∥∥∥(M1−
∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)∥∥∥∥
≤
∥∥∥∥M1−

∫
T

ϕt (xt) dµ (t)

∥∥∥∥∥∥∥∥∫
T

ϕt (xt) dµ (t)−m1

∥∥∥∥
≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 .

Remark 4. Let f : I → R be a twice differentiable convex function defined on an
interval I and let A and B be unital C∗-algebras. Assume that the field (ϕt)t∈[0,1] of

positive linear mappings ϕt : A → B is continuous and unital, i.e.
∫ 1

0
ϕt (1) dt = 1

and x, y selfadjoint elements in A with the spectra in [m,M ] ⊂ I. Then by taking
xt := (1− t)x+ ty, t ∈ [0, 1] we get from (3.1) that

∫ 1

0

ϕt (f ((1− t)x+ ty)) dt− f

(∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt

)
(3.37)

≤ 1

2
‖f ′′‖[m,M ],∞

(
M1−

∫ 1

0

(1− t)ϕt (x) dt−
∫ 1

0

tϕt (y) dt

)
×
(∫ 1

0

(1− t)ϕt (x) dt+

∫ 1

0

tϕt (y) dt−m1

)
≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 1.

If f is operator convex, then the first term in (3.37) is also nonnegative in the
operator order.

For x, y selfadjoint elements in A with the spectra in [m,M ] ⊂ I, the positive
linear mapping ϕ : A → B with ϕ (1) = 1 and the convex function f : I → R, we
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have ∫ 1

0

ϕ (f ((1− t)x+ ty)) dt− f

(
ϕ (x) + ϕ (y)

2

)
(3.38)

≤ 1

2
‖f ′′‖[m,M ],∞

(
M1− ϕ (x) + ϕ (y)

2

)(
ϕ (x) + ϕ (y)

2
−m1

)
≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 1.

If f is operator convex, then the first term in (3.38) is also nonnegative in the
operator order.

For A = B and ϕ (x) = x, then by (3.38) we get

∫ 1

0

f ((1− t)x+ ty) dt− f

(
x+ y

2

)
(3.39)

≤ 1

2
‖f ′′‖[m,M ],∞

(
M1− x+ y

2

)(
x+ y

2
−m1

)
≤ 1

8
‖f ′′‖[m,M ],∞ (M −m)2 1.

If f is operator convex, then the first term in (3.39) is also nonnegative in the
operator order.

4. Some Examples

Let A and B be unital C∗-algebras and (ϕt)t∈T be a unital field of positive linear
mappings ϕt : A → B defined on a locally compact Hausdorff space T with a
bounded Radon measure µ.

We consider the exponential function f (x) = exp (αx) with α ∈ R \ {0} . This
function is convex but not operator convex on R, see for instance [8, p. 17]. Then
by (3.1), (3.17) and (3.31) we get

∫
T

ϕt (exp (αxt)) dµ (t)− exp

(
α

∫
T

ϕt (xt) dµ (t)

)
(4.1)

≤ α
exp (αM)− exp (αm)

M −m

×
(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

4
α (M −m) [exp (αM)− exp (αm)]1,
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∫
T

ϕt (exp (αxt)) dµ (t)− exp

(
α

∫
T

ϕt (xt) dµ (t)

)
(4.2)

≤ 2

[
exp (m) + exp (M)

2
− exp

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
exp (m) + exp (M)

2
− exp

(
m+M

2

)]
and ∫

T

ϕt (exp (αxt)) dµ (t)− exp

(
α

∫
T

ϕt (xt) dµ (t)

)

≤ 1

2
α2

 exp (αM) if α > 0

exp (αm) if α < 0

×
(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)

≤ 1

8
α2 (M −m)2

 exp (αM) if α > 0

exp (αm) if α < 0
× 1

for every bounded continuous field (xt)t∈T of selfadjoint elements in A with spectra
contained in a closed subinterval [m,M ] of R.

The function f (x) = − lnx, x > 0 is operator convex on (0,∞) . Then by (3.10),
(3.24) and (3.35) we get

0 ≤ ln

(∫
T

ϕt (xt) dµ (t)

)
−
∫
T

ϕt (ln (xt)) dµ (t)(4.3)

≤ 1

mM

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

4mM
(M −m)2 1,

0 ≤ ln

(∫
T

ϕt (xt) dµ (t)

)
−
∫
T

ϕt (ln (xt)) dµ (t)(4.4)

≤ 2 ln

(
m+M

2
√
mM

)
×
(
1

2
(M −m)1+

∣∣∣∣∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m) ln

(
m+M

2
√
mM

)
1
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and

0 ≤ ln

(∫
T

ϕt (xt) dµ (t)

)
−
∫
T

ϕt (ln (xt)) dµ (t)(4.5)

≤ 1

2m2

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

8m2
(M −m)2 1

for every bounded continuous field (xt)t∈T of selfadjoint elements in A with spectra
contained in a closed subinterval [m,M ] of (0,∞) .

We observe that if M > 2m then the bound in (4.3) is better than the one from
(4.5). If M < 2m, then the conclusion is the other way around.
For x, y selfadjoint elements in A with the spectra in [m,M ] ⊂ (0,∞) , we have

the Hermite-Hadamard type inequalities

0 ≤ ln

(
x+ y

2

)
−
∫ 1

0

ln ((1− t)x+ ty) dt(4.6)

≤ 1

mM

(
M1− x+ y

2

)(
x+ y

2
−m1

)
≤ 1

4mM
(M −m)2 1,

0 ≤ ln

(
x+ y

2

)
−
∫ 1

0

ln ((1− t)x+ ty) dt(4.7)

≤ 2 ln

(
m+M

2
√
mM

)(
1

2
(M −m)1+

∣∣∣∣x+ y

2
− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m) ln

(
m+M

2
√
mM

)
1

and

0 ≤ ln

(
x+ y

2

)
−
∫ 1

0

ln ((1− t)x+ ty) dt(4.8)

≤ 1

2m2

(
M1− x+ y

2

)(
x+ y

2
−m1

)
≤ 1

8m2
(M −m)2 1.

The function f (x) = x lnx, x > 0 is operator convex on (0,∞) . Then by (3.10),
(3.24) and (3.35) we get

0 ≤
∫
T

ϕt (xt ln (xt)) dµ (t)−
(∫

T

ϕt (xt) dµ (t)

)
ln

(∫
T

ϕt (xt) dµ (t)

)
(4.9)

≤ ln (M)− ln (m)

M −m

×
(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

4
(M −m) [ln (M)− ln (m)]1,
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0 ≤
∫
T

ϕt (xt ln (xt)) dµ (t)−
(∫

T

ϕt (xt) dµ (t)

)
ln

(∫
T

ϕt (xt) dµ (t)

)
(4.10)

≤ 2

[
m ln (m) +M ln (M)

2
−
(
m+M

2

)
ln

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
m ln (m) +M ln (M)

2
−
(
m+M

2

)
ln

(
m+M

2

)]
1

and

0 ≤
∫
T

ϕt (xt ln (xt)) dµ (t)−
(∫

T

ϕt (xt) dµ (t)

)
ln

(∫
T

ϕt (xt) dµ (t)

)
(4.11)

≤ 1

2m

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

8m
(M −m)2 1

for every bounded continuous field (xt)t∈T of selfadjoint elements in A with spectra
contained in a closed subinterval [m,M ] of (0,∞) .

For x, y selfadjoint elements in A with the spectra in [m,M ] ⊂ (0,∞) , we have
the Hermite-Hadamard type inequalities

0 ≤
∫ 1

0

((1− t)x+ ty) ln ((1− t)x+ ty) dt−
(
x+ y

2

)
ln

(
x+ y

2

)
(4.12)

≤ ln (M)− ln (m)

M −m

(
M1− x+ y

2

)(
x+ y

2
−m1

)
≤ 1

4
(M −m) [ln (M)− ln (m)]1,

0 ≤
∫ 1

0

((1− t)x+ ty) ln ((1− t)x+ ty) dt−
(
x+ y

2

)
ln

(
x+ y

2

)
(4.13)

≤ 2

[
m ln (m) +M ln (M)

2
−
(
m+M

2

)
ln

(
m+M

2

)]
×
(
1

2
(M −m)1+

∣∣∣∣x+ y

2
− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
m ln (m) +M ln (M)

2
−
(
m+M

2

)
ln

(
m+M

2

)]
1

and

0 ≤
∫ 1

0

((1− t)x+ ty) ln ((1− t)x+ ty) dt−
(
x+ y

2

)
ln

(
x+ y

2

)
(4.14)

≤ 1

2m

(
M1− x+ y

2

)(
x+ y

2
−m1

)
≤ 1

8m
(M −m)2 1.
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Consider the power function f (x) = xr, x ∈ (0,∞) and r a real number. If
r ∈ (−∞, 0]∪ [1,∞), then f is convex and for r ∈ [−1, 0]∪ [1, 2] is operator convex.
If we use the inequalities (3.1), (3.17) and (3.31) we have for r ∈ (−∞, 0] ∪ [1,∞)
that ∫

T

ϕt (x
r
t ) dµ (t)−

(∫
T

ϕt (xt) dµ (t)

)r

(4.15)

≤ r
M r−1 −mr−1

M −m

(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)
≤ 1

4
r (M −m)

(
M r−1 −mr−1

)
1,

∫
T

ϕt (x
r
t ) dµ (t)−

(∫
T

ϕt (xt) dµ (t)

)r

(4.16)

≤ 2

[
mr +M r

2
−
(
m+M

2

)r]
×
(
1

2
(M −m)1+

∣∣∣∣∫
T

ϕt (xt) dµ (t)− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
mr +M r

2
−
(
m+M

2

)r]
and ∫

T

ϕt (x
r
t ) dµ (t)−

(∫
T

ϕt (xt) dµ (t)

)r

(4.17)

≤ 1

2
r (r − 1)

 M r−2 for r ≥ 2

mr−2 for r ∈ (−∞, 0] ∪ [1, 2)

×
(
M1−

∫
T

ϕt (xt) dµ (t)

)(∫
T

ϕt (xt) dµ (t)−m1

)

≤ 1

8
r (r − 1) (M −m)2

 M r−2 for r ≥ 2

mr−2 for r ∈ (−∞, 0] ∪ [1, 2)
× 1

for every bounded continuous field (xt)t∈T of selfadjoint elements in A with spectra
contained in a closed subinterval [m,M ] of (0,∞) .

If r ∈ [−1, 0] ∪ [1, 2] , then we also have

0 ≤
∫
T

ϕt (x
r
t ) dµ (t)−

(∫
T

ϕt (xt) dµ (t)

)r

in the inequalities (4.15)-(4.17).
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For x, y selfadjoint elements in A with the spectra in [m,M ] ⊂ (0,∞) , and if
r ∈ [−1, 0] ∪ [1, 2] , then we have the Hermite-Hadamard type inequalities

0 ≤
∫ 1

0

((1− t)x+ ty)r dt−
(
x+ y

2

)r

(4.18)

≤ r
M r−1 −mr−1

M −m

(
M1− x+ y

2

)(
x+ y

2
−m1

)
≤ 1

4
r (M −m)

(
M r−1 −mr−1

)
1,

0 ≤
∫ 1

0

((1− t)x+ ty)r dt−
(
x+ y

2

)r

(4.19)

≤ 2

[
mr +M r

2
−
(
m+M

2

)r]
×
(
1

2
(M −m)1+

∣∣∣∣x+ y

2
− 1

2
(m+M)1

∣∣∣∣)
≤ 2 (M −m)

[
mr +M r

2
−
(
m+M

2

)r]
and

0 ≤
∫ 1

0

((1− t)x+ ty)r dt−
(
x+ y

2

)r

(4.20)

≤ 1

2
r (r − 1)

 M r−2 for r ≥ 2

mr−2 for r ∈ (−∞, 0] ∪ [1, 2)

×
(
M1− x+ y

2

)(
x+ y

2
−m1

)

≤ 1

8
r (r − 1) (M −m)2

 M r−2 for r ≥ 2

mr−2 for r ∈ (−∞, 0] ∪ [1, 2)
× 1.
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