

Title

Comparison of the chest computed tomography findings between patients with pulmonary tuberculosis and those with Mycobacterium avium complex lung disease

Author(s)

Kiyotaka Miura, Megumi Nakamura, Yasuyuki Taooka, Takamasa Hotta, Megumi Hamaguchi, Tamio Okimoto, Yukari Tsubata, Shunichi Hamaguchi, Takashige Kuraki, Takeshi Isobe

Journal Respiratory Investigation vol.58, Issue 3

Published 2020

URL https://doi.org/10.1016/j.resinv.2019.12.006

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

1	
2	
3	
4	Original article (Respiratory Investigation)
5	Comparison of the chest computed tomography findings between patients with pulmonary
6	tuberculosis and those with Mycobacterium avium complex lung disease
7	
8	Word count: 2895
9	
10	Kiyotaka Miura, MD ^{a,b} , Megumi Nakamura, MD, PhD ^e , Yasuyuki Taooka, MD, PhD, FACP,
11	FCCP, FRSM ^d , Takamasa Hotta, MD ^a , Megumi Hamaguchi, MD ^a , Tamio Okimoto, MD, PhD ^a ,
12	Yukari Tsubata, MD, PhD ^a , Shunichi Hamaguchi, MD ^a , Takashige Kuraki, MD, PhD ^b , Takeshi
13	Isobe, MD, PhD ^{a.*}
14	
15	^a Department of Internal Medicine, Division of Medical Oncology & Respiratory
16	Medicine, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
17	^b Department of Respiratory Medicine, Shimane Prefectural Central Hospital, Izumo 693-8555,
18	Japan

19	^c Department of Radiology,	Faculty of Medicine,	Shimane University, I	zumo 693-8501, Japa

20 ^dDepartment of Respiratory Medicine, Medical Corporation JR Hiroshima Hospital, Hiroshima

21 732-0057, Japan

23	*Correspondence to: Department of Internal Medicine, Division of Medical Oncology &
24	Respiratory Medicine, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo,
25	Shimane 693-8501, Japan. Tel.: +81 853 23 2111; Fax: +81 853 20 2581.
26	E-mail addresses: taksan55@gmail.com (K. Miura), margarettoalto0316@gmail.com (M.
27	Nakamura), yasuyukitaooka@yahoo.co.jp (Y. Taooka), takamasa@med.shimane-u.ac.jp (T.
28	Hotta), hs1219@med.shimane-u.ac.jp (M. Hamaguchi), okimoto@med.shimane-u.ac.jp (T.
29	Okimoto), ytsubata@med.shimane-u.ac.jp (Y. Tsubata), shama@med.shimane-u.ac.jp (S.
30	Hamaguchi), t_kuraki@me.com (T. Kuraki), isobeti@med.shimane-u.ac.jp (T. Isobe)
31	
32	

33 Abstract

34	Background: Since the computed tomography (CT) findings of nontuberculous mycobacterial
35	lung disease are similar to those of pulmonary tuberculosis (PTB), we often have difficulty
36	differentiating the two. In this study, we compared the differences in chest CT findings and their
37	locations between cases of PTB and Mycobacterium avium complex lung disease (MACLD).
38	Methods: The subjects were 100 MACLD patients and 42 PTB patients treated at our hospital
39	from May 2005 to August 2015. The CT findings were retrospectively evaluated. Results: PTB
40	more frequently showed lung shadows with calcification inside the lesion, calcification of the
41	mediastinal/hilar lymph node, and pleural effusion on CT than MACLD, while extensive
42	bronchiectasis and granular/large shadows connected to bronchiectasis were more frequently
43	observed with MACLD than PTB. For cavitary lesions, the thinnest part of the cavity wall with
44	MACLD was thinner than that with PTB. Granular shadows, large shadows, and bronchiectasis
45	were typically distributed to the right upper lobe and left upper division in PTB cases vs. the right
46	intermediate lobe and left lingula in MACLD. Conclusions: Chest CT findings would therefore
47	be useful for distinguishing PTB and MACLD when typical findings are observed.

49	Keywords: C	CT findings,	tuberculosis,	Mycobacterium	avium com	plex, differentia	l diagnosis

51	Abbreviations: CT, computed tomography; PTB, pulmonary tuberculosis; MAC,
52	Mycobacterium avium complex; MACLD, Mycobacterium avium complex lung disease; NTMLD,
53	nontuberculous mycobacterial lung disease; RUL, right upper lobe; LUD, left upper division; S,
54	Segment; RIL, right intermediate lobe; LL, left lingula; RS6, right segment 6; LS6, left segment
55	6; RBS, right basal segmental of the lung; LBS, left basal segmental of the lung; BE,
56	bronchiectasis; HRCT, high-resolution computed tomography.
57	

1. Introduction

60	The number of pulmonary nontuberculous mycobacterial lung disease (NTMLD) cases has
61	reportedly increased worldwide in recent years [1]. In Japan, the estimated morbidity rate of
62	NTMLD was 5.7 in a population of 100,000 in 2007, increasing to 14.7 in 2014 [2], and
63	Mycobacterium avium complex lung disease (MACLD) caused by infection with Mycobacterium
64	avium or Mycobacterium intracellulare accounts for about 85% of cases of NTMLD [3].
65	Respiratory physicians often encounter MACLD during routine practice, e.g., during medical
66	checkups or cancer screening tests.
67	The morbidity rate of tuberculosis in 2017 was 13.3 per 100,000 persons in Japan [4].
68	While a decreasing trend has been noted, the morbidity rate is still higher in Japan than in other
69	developed countries. When managing pulmonary tuberculosis (PTB) cases, it is necessary to
70	consider airborne infection control; however, this is not necessary in NTMLD cases. Therefore,
71	to first determine the appropriate infection control strategy and therapy, careful evaluation of chest
72	computed tomography (CT) image findings is very important. However, since there are many
73	similarities in CT findings between NTMLD and PTB, clinicians often face difficulty
74	differentiating the two. In Japan, the majority of pulmonary NTMLD cases are MACLD cases;
75	therefore, differentiation of MACLD and PTB is frequently required. Although several reports
76	from Asian countries have compared CT images of NTMLD and PTB [5-7], the proportions of

77	nontuberculous mycobacterium species differ (i.e., the proportion of <i>M. abscessus</i> is high).
78	Although a few papers have compared the chest CT findings in MACLD and PTB [8, 9], over
79	two decades have passed since the most recent publication.
80	Working under the hypothesis that new findings might have become available in recent
81	years and/or that differences in CT findings between MACLD and PTB might now be detectable,
82	we analyzed and compared the differences in chest CT findings and their locations between adult
83	cases of MACLD and PTB. We attempted to evaluate the CT findings as simply and objectively
84	as possible.
85	

87 2. Patients and methods

88 2.1. Subjects and diagnosis criteria

89	This retrospective study included subjects meeting the diagnostic criteria of MACLD or
90	PTB from May 2005 to August 2015 in Shimane University Hospital. Patients with MACLD who
91	met all of the following criteria were included: (1) chest CT images consistent with pulmonary
92	MACLD; (2) other diseases were excluded; (3) sputum culture positive in two or more different
93	specimens, or culture positive from one or more bronchial lavage fluid specimens. All extracted
94	cases with MACLD met the NTMLD diagnostic criteria of the Japanese Respiratory
95	Society/Japanese Society for Tuberculosis [10]. Patients with PTB all showed M. tuberculosis in
96	at least one sputum sample. We excluded patients who did not undergo chest CT at our hospital,
97	had a history of PTB or MACLD treatment, and had a clear association with active lung diseases,
98	such as lung cancer and or bacterial pneumonia.
99	This study was approved on February 28, 2014 by the Shimane University Institutional
100	Committee on Ethics (approval number is 1507), and the requirement for written informed
101	consent was waived because of the retrospective design.
102	
100	

- 103 2.2. CT imaging conditions
- 104 We evaluated the CT images obtained on the day of or the closest date to the diagnosis of

105	MACLD or PTB. CT was performed using any of the following devices: TSX-101A, TSX-
106	301A/2, or TSX-301X (Toshiba Medical Systems, Tokyo, Japan); or Brilliance 40 CT or
107	Brilliance 64 CT (Philips Medical Systems, Amsterdam, Netherlands). The imaging conditions
108	were as follows: lung field condition = window level 600, window width 1600; mediastinal
109	condition = window level +30, window width 300. The slice thickness at our hospital was
110	basically set at 5 mm, with a slice thickness of \leq 2 mm regarded as high-resolution CT (HRCT).
111	
112	2.3. Evaluation of imaging findings
113	Abnormal findings in the lung field were classified as follows: (A) granular shadow,
114	shadow with a major axis of ≤ 1 cm; (B) nodular shadow, oval lesion with a clearly distinguishable
115	boundary and a major axis of >1 cm; (C) large shadow, shadow with a major axis of >1 cm,
116	including adhesive shadow, invasive shadow, and atelectasis; (D) bronchiectasis, when the
117	bronchial lumen is more dilated than the central side, the bronchial lumen is clearly thicker than
118	the diameter of the pulmonary artery running in parallel, or the lumen of bronchus can be clearly
119	observed within 1 cm of the pleura; (E) cavitary lesions; (F) tree-in-bud appearance; (G) granular
120	shadow connected to bronchiectasis; and (H) large shadow connected to bronchiectasis (Figure
121	1).

We evaluated the findings at each of eight sites: right upper lobe (RUL); left upper division

123	(LUD), Segment (S) 1+2 and S3; right intermediate lobe (RIL); left lingula (LL), S4 and S5; right
124	S6 (RS6); left S6 (LS6); right basal segmental of the lung (RBS), S7 to S10; and left basal
125	segmental of the lung (LBS), S8 to S10. Cavitary lesions were additionally evaluated in terms of
126	the number of cavities, maximum diameter of the cavity, thickest part of the cavity wall, and
127	length of the thinnest part.
128	We also evaluated the calcification of the mediastinal/hilar lymph node, pulmonary
129	emphysema, honeycomb lung, pneumoconiosis, pleural effusion, and calcification inside the
130	shadow within the lung.
131	These findings were evaluated based on discussions between two pulmonologists and one
132	radiologist who were blinded to the patients' clinical information.
133	
134	2.4. Statistical analyses
135	Computer software programs were used for the statistical analyses (IBM SPSS statistics
136	version 20; IBM, New York, United States of America). For comparisons between groups, a t-test
137	was used for the continuous data and the chi-squared test was used for descriptive data. A p-value
138	≤ 0.05 was considered significant.
139	

140 **3. Results**

141 3.1. Patient background and characteristics

142	The study population consisted of 100 MACLD patients and 42 PTB patients. Among the
143	100 patients with MACLD, M. avium was detected in 47 cases, M. intracellulare in 40 cases, and
144	both in 13 cases. Among the subjects with MACLD, chest CT showed the so-called nodular-
145	bronchiectasis type lesions in 67 cases and cavitary-type lesions in 13 patients. However, in 20
146	cases, it was difficult to clearly distinguish due to the coexistence of both lesions. Among the 42
147	patients with PTB, 5 cases were associated with miliary tuberculosis, and 6 were associated with
148	tuberculous pleurisy. HRCT was performed in 99 cases (99%) of MACLD and 38 cases (90.5%)
149	of PTB.
150	The subjects with MACLD included 29 males and 71 females, with the mean age of 71.5

151 \pm 11.0 years, whereas those with PTB included 30 males and 12 females, with the mean age of 152 73.9 ± 16.8 years. The proportion of males was lower in the MACLD cases and greater in the PTB cases (p < 0.001). The immunocompromised patients (those with poorly controlled diabetes, 153 advanced renal impairment, liver failure, lymphocytopenia [<1,000/µL], taking 154 155 immunosuppressive drugs, or receiving anti-cancer drug treatment) included 38 with MACLD 156 and 28 with PTB, indicating a significantly higher incidence of PTB in this population (p = 0.002) 157 (Table 1). All subjects were Japanese citizens living in Shimane Prefecture. There were no cases 158 complicated with human immunodeficiency virus infection or cystic fibrosis in this study.

1	5	9

160	3.2. Characteristics of granular shadow, large shadow, bronchiectasis, and cavities
161	Granular shadows were observed frequently with both diseases (MACLD 95% vs. PTB
162	100%, $p = 0.168$), while nodular shadows were relatively infrequent (MACLD 7% vs. PTB 16.7%,
163	p = 0.076). The frequency of large shadows and cavitary lesions was similar between the two
164	groups (MACLD 67% vs. PTB 76.2%, p = 0.277; MACLD 36% vs. PTB 26.2%, p = 0.257;
165	respectively). Bronchiectasis was significantly more frequently observed with MACLD than with
166	PTB (MACLD 93% vs. PTB 42.9%, $p < 0.001$) (Table 2). Among the patients showing
167	bronchiectasis, when the left upper lobe was counted by dividing it into LUD and LL, the average
168	number of pulmonary lobes showing bronchiectasis was significantly larger in patients with
169	MACLD (3.87 \pm 1.66) than in those with PTB (2.11 \pm 1.53) (p < 0.001) (Table 3).
170	The frequency of granular shadow disseminated in the airway and connected to
171	bronchiectasis was 81% in MACLD cases vs. 26.2% in PTB cases ($p < 0.001$), while that of a
172	large shadow connected to bronchiectasis was 56% in MACLD cases vs. 7.1% in PTB cases (p $<$
173	0.001), with both indicating a significantly higher frequency with MACLD than with PTB. There
174	were no significant differences between the two groups regarding the presence of tree-in-bud
175	signs (MACLD 68% vs. PTB 64.3%, $p = 0.668$). Lesions with calcification inside the lung shadow
176	were significantly more frequently observed with PTB than with MACLD (MACLD 30% vs.

177 PTB 61.9%, p < 0.001) (Table 2).

178	There were no significant differences in the average number of cavities (MACLD 3.06 \pm
179	3.26 vs. PTB 2.73 \pm 1.49; p = 0.749) or the maximum diameter of the cavity (29.6 \pm 21.3 mm vs.
180	34.9 ± 16.7 mm; p = 0.457). The thickest part of the cavity wall tended to thicker in patients with
181	PTB (4.89 \pm 3.07 mm vs. 7.91 \pm 4.95 mm; p = 0.079), while the thinnest part was significantly
182	thinner in patients with MACLD (2.36 ± 1.40 mm vs. 3.64 ± 2.46 mm; $p = 0.034$) (Table 3).
183	
184	3.3. Distribution of granular shadow, large shadow, bronchiectasis, and cavities
185	The frequency at which a granular shadow was observed in the RUL/LUD was
186	significantly higher in patients with PTB (MACLD 78% vs. PTB 92.9%, $p = 0.034$), while that
187	in the RIL/LL was significantly higher in patients with MACLD (MACLD 84% vs. PTB 61.9%,
188	p = 0.004) (Table 4). Similarly, the frequency at which a large shadow was observed in the
189	RUL/LUD was significantly higher in patients with PTB (MACLD 30% vs. PTB 64.3%, $p <$
190	0.001), while that in the RIL/LL tended to be higher in patients with MACLD (MACLD 51% vs.
191	PTB 33.3%, p = 0.054) (Table 5).
192	The frequency at which bronchiectasis was observed was higher in patients with MACLD
193	overall, and especially in the RIL/LL (MACLD 82% vs. PTB 14.3%, $p < 0.001$). The presence of

bronchiectasis in both the RIL and LL was observed with a moderate frequency in MACLD

195	patients, but was only rarely observed in PTB patients (MACLD 58% vs. PTB 2.4%, $p < 0.001$)
196	(Table 6). Bronchiectasis in PTB patients tended to present in the RUL/LUD. No cavitary lesions
197	were observed in the RIL/LL among PTB cases (MACLD 14% vs. PTB 0%, $p = 0.038$) (Table 7).
198	

199 3.4. Other CT findings

200	The frequencies of calcification of the mediastinal/hilar lymph node, pleural effusion, and
201	calcification inside the lung shadow were significantly higher with PTB than with MACLD
202	(MACLD 12% vs. PTB 42.9%, $p < 0.001;$ MACLD 4% vs. PTB 38.1%, $p < 0.001;$ and MACLD
203	30% vs. PTB 61.9%, p < 0.001; respectively). The frequencies of emphysema, honeycomb lung,
204	and pneumoconiosis were similar between the two groups (MACLD 19% vs. PTB 31%, $P=$
205	0.120; MACLD 7% vs. PTB 4.8%, p = 0.471; MACLD 0% vs. PTB 4.8%, p = 0.086; respectively)
206	(Table 2).
207	We compared the frequency of CT findings between normal-immune patients and

immunodeficient, respectively patients with MACLD and those with PTB. The results showed no obvious difference in the frequency of shadows between normal-immune and immunodeficient MACLD patients. However, among PTB patients, the frequency of tree-in-bud signs was higher in normal-immune patients (85.7% of 14 normal-immune patients vs. 53.6% of 28 immunodeficient, p = 0.040), and the frequency of pleural effusion was higher in

- $213 \qquad immunodeficient \ patients \ (7.1\% \ normal-immune \ patients \ vs. \ 53.6\% \ immunodeficient, \ p=0.003).$

4. Discussion

216	Bronchiectasis is an important lesion that is frequently observed in NTMLD cases [11] and
217	is thought to be caused by chronic inflammation mainly in the bronchioles and bronchus [12-14].
218	However, bronchiectasis is also commonly observed in PTB cases [15], where it is thought to be
219	caused by inflammation in the bronchioles, bronchial obstruction, and granulomatous lesions
220	occupying the airway in cases of active infection [16,17]. Furthermore, after healing from PTB,
221	the loss of lung volume causes traction bronchiectasis [18].
222	Previous comparative studies have shown that bronchiectasis is more frequently observed
223	and tends to exist in multiple pulmonary lobes in the CT findings of MACLD in comparison to
224	the findings of PTB [8, 9]. Similarly, in our study, MACLD cases showed more extensive
225	bronchodilation than PTB cases and cases showing bronchiectasis in both the RIL and LL were
226	rarely observed among PTB patients. The CT findings in MACLD have been reported to indicate
227	more centrilobular granular shadows around the areas of bronchodilation [19], with a frequency
228	that is significantly higher than that in PTB patients [9]. In the present study, we evaluated the
229	granular shadows connected to bronchiectasis, and showed that such CT findings were also more
230	frequently observed in MACLD cases than in PTB cases.
231	Findings such as adhesive shadows, consolidation, and atelectasis are commonly

232 observed in the chest CT images of MACLD patients. They are thought to be created due to the

233	enhancement of centrilobular granular shadows over time. In routine practice, these shadows
234	(adhesive shadows, consolidation, and atelectasis), like granular shadows, are often found to be
235	continuous with bronchiectasis, which we suspect to be a characteristic of MACLD. However, no
236	previous reports have compared MACLD to PTB by evaluating the connection of these shadows
237	to bronchiectasis as CT findings. A possible reason for this may be that accurately classifying lung
238	shadow is difficult since the large lung shadows of MACLD patients have a wide variety of
239	characteristics, and the fact that different characteristic patterns may sometimes coexist in a single
240	atypical shadow. In addition, excessive shadow classifications make evaluating shadows a
241	complex process and hamper the detection of statistically significant differences. Accordingly, as
242	a new method, we evaluated abnormal lung shadows with a major axis longer than 1 cm,
243	excluding spherical nodule shadows, as large shadows together. This approach resulted in large
244	shadows connected to bronchiectasis being commonly observed in MACLD but only rarely found
245	in PTB. We therefore believe that this method is a simple and useful approach to rule out a
246	diagnosis of PTB. Incidentally, it should be noted that the air bronchogram due to consolidation
247	is different from bronchiectasis.
248	In this study, there were no significant differences in the number or size of cavitary lesions,
249	but the thinnest part of the cavity wall in cases of MACLD was thinner than that in case of PTB.

250This result is similar to several previous studies [6, 7]. Although these cavity findings may aid in

251	the differential diagnosis, caution should be practiced when ruling out PTB, because PTB with
252	cavitary lesions is thought to carry a high infection risk [20, 21].
253	Regarding the distribution of lung shadows, the present study showed that the frequency
254	of granular shadows in the RIL/LL was significantly higher with MACLD, while the frequency
255	of granular shadows and large shadows in the RUL/LUD was significantly higher with PTB [9,
256	12, 22]. It is considered that the RIL/LL bronchi anatomically diverge at an acute angle and are
257	oppressed by the anterior thoracic wall and heart with a low airway clearance, resulting in a
258	tendency for MAC bacteria fixation to occur [23]. PTB in adults often manifests as secondary
259	tuberculosis, and these lesions appear mainly in the pulmonary apex lesion and S6 of the lung
260	[24], possibly because pathogens hematogenously and lymphogenously migrating from the
261	primary infected lesion into the lung are fixed and proliferate in the apex area or S6 due to a low
262	ventilator perfusion ratio and relatively high oxygen concentration [25]. Bronchiectasis in PTB
263	cases seemed to show a tendency to appear in the RUL/LUD, which may indicate a site of
264	inflammation. Although various CT findings tended to co-exist in both MACLD and PTB cases,
265	the distribution (i.e., the segments or lobes in which granular shadows/large
266	shadows/bronchiectasis are present) is considered useful for the differential diagnosis.
267	Regarding other findings, pleural effusion was significantly more frequent in cases of PTB
268	than in MACLD. Furthermore, among PTB patients, pleural effusion was significantly more

269	frequent in immunodeficient cases than in normal-immune cases. The presence of pleural effusion
270	is rare with MACLD, so this lesion suggests a diagnosis of PTB, especially in immunodeficient
271	cases. According to previous reports, the thickness of the interlobular septa is typically greater
272	with PTB than with MACLD [9]. These differences in CT findings are considered due to PTB has
273	greater pathogenicity than MACLD, thereby causing more acute and stronger lymphatic
274	inflammation.
275	Several limitations associated with the present study warrant mention. First, the results
276	were based on a retrospective analysis of data from a single facility. Second, since MACLD
277	patients were diagnosed based on the identification of the pathogen through routine clinical
278	practice, there may have been a tendency to select severe cases. Third, the proportion of
279	immunodeficient patients differed between PTB cases and MACLD cases, which may have
280	affected the CT findings. To rule out the possibility of bias, a prospective study should be
281	conducted in the future.
282	
283	
284	5. Conclusion
285	Extensive bronchiectasis, cavity lesions with a thin wall, and granular/large shadows
286	connected to bronchiectasis were more frequently observed in cases of MACLD than in PTB.

287	Granular shadows, large shadows, and bronchiectasis were generally distributed to the RUL/LUD		
288	in PTB cases. Therefore, chest CT findings would be useful for distinguishing PTB and MACLD		
289	when typical findings are observed.		
290			
291	Acknowledgments		コメントの追加 [A1]: Collate acknowledgements in a
292	None.		separate section at the end of the article before the references and do not, therefore, include them on the
293			title page, as a footnote to the title or otherwise. List here those individuals who provided help during the
294	Conflicts of interest		research (e.g., providing language help, writing
295	Yukari Tsubata received personal fees from AstraZeneca, Chugai Pharmaceutical and Daiichi-	/	assistance or proof reading the article, etc.). 書式変更: インデント : 最初の行 : 0 字
296	Sankyo, outside of the submitted work. Takeshi Isobe received personal fees from AstraZeneca,		
297	Pfizer and Boehringer Ingelheim, outside of the submitted work. The remaining authors declare		
298	no conflict of interest.		

299 References

300 [1] Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous

301 mycobacteria: a review. Clin Chest Med 2015;36:13-34.

- 302 [2] Namkoong H, Kurashima A, Morimoto K, Hoshino Y, Hasegawa N, Ato M, et al.
- 303 Epidemiology of Pulomonary Nontuberuculous Mycobacterial Disease, Japan. Emerg Infect

304 Dis 2016;22:1116-7.

- 305 [3] Morimoto K, Iwai K, Uchimura K, Okumura M, Yoshiyama T, Yoshimori K, et al. A steady
- 306 increase in nontuberculous mycobacteriosis mortality and estimated prevalence in Japan.
- 307 Ann Am Thorac Soc 2014;11:1-8.
- 308 [4] Tuberculosis Surveillance Center (2018). Tuberculosis in Japan annual report 2018.
- 309 Department of Epidemiology and Clinical Research, the Research Institute of Tuberculosis:
- 310 Tokyo, japan. <u>https://jata.or.jp/english/dl/pdf/TB in Japan 2018.pdf</u>. [Accessed 1 June
- 311 2019]
- 312 [5] Yuan MK, Chang CY, Tsai PH, Lee YM, Huang JW, Chang SC. Comparative chest computed
 313 tomography findings of non-tuberculous mycobacterial lung diseases and pulmonary
 314 tuberculosis in patients with acid fast bacilli smear-positive sputum. BMC Pulm Med
- 315 2014;14:65.
- 316 [6] Chu HQ, Li B, Zhao L, Huang DD, Zhang ZM, Xu JF, et al. Chest imaging comparison

- 317 between non-tuberculous and tuberculosis mycobacteria in sputum acid fast bacilli smear-
- 318 positive patients. Eur Rev Med Pharmacol Sci 2015;19:2429-39.
- 319 [7] Kim C, Park SH, Oh SY, Kim SS, Jo KW, Shim TS, et al. Comparison of chest CT findings
- 320 in nontuberculous mycobacterial diseases vs. Mycobacterium tuberculosis lung disease in
- 321 HIV-negative patients with cavities. PLoS One 2017;12:e0174240.
- 322 [8] Lynch DA, Simone PM, Fox MA, Bucher BL, Heinig MJ. CT features of pulmonary
- 323 Mycobacterium avium complex infection. J Comput Assist Tomogr 1995;19:353-60.
- 324 [9] Primack SL, Logan PM, Hartman TE, Lee KS, Müller NL. Pulmonary tuberculosis and
- Mycobacterium avium-intracellulare: a comparison of CT findings. Radiology
 1995;194:413-7.
- 1995,194.415-7.
- 327 [10] The Nontuberculous Mycobacteriosis Control Committee of the Japanese Society for
- 328 Tuberculosis and The Scientific Assembly for Infection and Tuberculosis of the Japanese
- 329 Respiratory Society. Guidelines for the diagnosis of pulmonary nontuberculous
- 330 mycobacterial disease-2008. Kekkaku 2011;86:37-9.
- 331 [11] Koh WJ, Lee KS, Kwon OJ, Jeong YJ, Kwak SH, Kim TS. Bilateral bronchiectasis and
- 332 bronchiolitis at thin-section CT: diagnostic implications in nontuberculous mycobacterial
- 333 pulmonary infection. Radiology 2005;235:282-8.
- 334 [12] Moore EH. Atypical mycobacterial infection in the lung: CT appearance. Radiology

225	1002-107-777-02
335	1993;187:777-82.

- computed tomography in patients with Mycobacterium avium-intracellulare complex.
 Respir Med 1999;93:11-5.
- 339 [14] Fujita J, Ohtsuki Y, Suemitsu I, Shigeto E, Yamadori I, Obayashi Y, et al. Pathological and
- 340 radiological changes in resected lung specimens in Mycobacterium avium intracellulare
- 341 complex disease. Eur Respir J 1999;13:535-40.
- 342 [15] Hatipoğlu ON, Osma E, Manisali M, Uçan ES, Balci P, Akkoçlu A, et al. High resolution
- 343 computed tomographic findings in pulmonary tuberculosis. Thorax 1996;51:397-402.
- 344 [16] Ko JM, Kim KJ, Park SH, Park HJ. Bronchiectasis in active tuberculosis. Acta Radiol

345 2013;54:412-7.

- 346 [17] Im JG, Itoh H, Shim YS, Lee JH, Ahn J, Han MC, et al. Pulmonary tuberculosis: CT findings-
- -early active disease and sequential change with antituberculous therapy. Radiology
 1993;186:653-60.
- 349 [18] Milliron B, Henry TS, Veeraraghavan S, Little BP. Bronchiectasis: Mechanisms and Imaging
- 350 Clues of Associated Common and Uncommon Diseases. Radiographics 2015;35:1011-30.
- 351 [19] Swensen SJ, Hartman TE, Williams DE. Computed tomographic diagnosis of
- 352 Mycobacterium avium-intracellulare complex in patients with bronchiectasis. Chest

353 1994;105:49-52.

354 [2	0] Matsuoka S.	Uchiyama K,	, Shima H, Suzuki 🛛	K, Shimura A,	Sasaki Y, et al.	Relationship
--------	----------------	-------------	---------------------	---------------	------------------	--------------

- 355 between CT findings of pulmonary tuberculosis and the number of acid-fast bacilli on
- 356 sputum smears. Clin Imaging 2004;28:119-23.
- 357 [21] Palaci M, Dietze R, Hadad DJ, Ribeiro FK, Peres RL, Vinhas SA, et al. Cavitary disease and
- 358 quantitative sputum bacillary load in cases of pulmonary tuberculosis. J Clin Microbiol
- 359 2007;45:4064-6.
- 360 [22] Ellis SM, Hansell DM. Imaging of Non-tuberculous (Atypical) Mycobacterial Pulmonary
- 361 Infection. Clin Radiol 2002;57:661-9.
- 362 [23] Reich JM, Johnson RE. Mycobacterium avium complex pulmonary disease presenting as an
- 363 isolated lingular or middle lobe pattern. The Lady Windermere syndrome. Chest

364 1992;101:1605-9.

5.

- 365 [24] Krysl J, Korzeniewska-Kosela M, Müller NL, FitzGerald JM. Radiologic features of
- 366 pulmonary tuberculosis: an assessment of 188 cases. Can Assoc Radiol J 1994;45:101-7.
- 367 [25] Goodwin RA, Des Prez RM. Apical localization of pulmonary tuberculosis, chronic
- 368 pulmonary histoplasmosis, and progressive massive fibrosis of the lung. Chest 1983;83:801-
- 369
- 370

371 Figure caption

373	Fig. 1 – Typical CT image. (A) Granular shadow: aggregation of small nodule shadows sized 1
374	cm or less (55-year-old female, MACLD). (B) Nodular shadow: spherical nodule shadow
375	exceeding 1 cm with a clear boundary (81-year-old female, MACLD). (C) Large shadow: ill-
376	defined massive shadow exceeding 1 cm (88-year-old male, PTB). (D) Bronchiectasis:
377	bronchiectasis noted on imaging and mucus stagnation in the lumen (73-year-old, MACLD). (E)
378	Cavitary lesion: a cavitary lesion with a thick wall (66-year-old male, PTB). (F) Tree-in-bud signs
379	(82-year-old, PTB). (G) Granular shadows connected to bronchiectasis (76-year-old female,
380	MACLD). (H) Large shadow connected to bronchiectasis (77-year-old female, MACLD). (I)
381	Schematic illustration ©. Granular shadow connected to bronchiectasis (black arrow). Large
382	shadow connected to bronchiectasis (white arrow).
383	

384 Table 1 – Patient characteristics

	MACLD	PTB	p-value
	(n = 100)	(n = 42)	
Mean age ± standard deviation	71.5 ± 11.0	73.9 ± 16.8	0.400
Sex			
Male (%)	29 (29.0%)	30 (71.4%)	
Wale (70)	2) (2).070)	50 (71.470)	< 0.001
Female (%)	71 (71.0%)	12 (28.6%)	
Immunocompromised* (%)	38 (38.0%)	28 (66.7%)	0.002

385 * Immunocompromised refers to poorly controlled diabetes, advanced renal impairment, liver failure,

386 lymphocytopenia, taking immunosuppressive drugs, or receiving anti-cancer drug treatment.

387 MACLD, Mycobacterium avium complex lung disease; PTB, pulmonary tuberculosis.

388

390 Table 2 – Comparison of chest CT findings

	MACLD (n = 100)	PTB (n = 42)	p-value
Granular shadow (≤1 cm)	95 (95.0%)	42 (100%)	0.168
Nodular shadow (>1 cm)	7 (7.0%)	7 (16.7%)	0.076
Large shadow (>1 cm)	67 (67.0%)	32 (76.2%)	0.277
Bronchiectasis	93 (93.0%)	18 (42.9%)	< 0.001
Cavitary lesion	36 (36.0%)	11 (26.2%)	0.257
Tree-in-bud sign	68 (68.0%)	27 (64.3%)	0.668
Granular shadow connected to BE	81 (81.0%)	11 (26.2%)	< 0.001
Large shadow connected to BE	56 (56.0%)	3 (7.1%)	< 0.001
Calcification of the mediastinal/hilar lymph node	12 (12.0%)	18 (42.9%)	< 0.001
Emphysema	19 (19.0%)	13 (31.0%)	0.120
Honeycomb lung	7 (7.0%)	2 (4.8%)	0.471
Pneumoconiosis	0 (0%)	2 (4.8%)	0.086
Pleural effusion	4 (4%)	16 (38.1%)	< 0.001
Calcification inside the lung shadow	30 (30.0%)	26 (61.9%)	< 0.001

391 CT, computed tomography; MACLD, Mycobacterium avium complex lung disease; PTB, pulmonary

392 tuberculosis; BE, bronchiectasis.

393

395 Table 3 – Number of lobes with BE and number of cavity lesions

		MACLD	РТВ	p-value
With BE		n = 93	n = 18	
	Number of lobes with BE*	3.87±1.66	2.11±1.53	< 0.001
With cavitary lesions		n = 36	n = 11	
	Number of lesions	3.06±3.26	2.73±1.49	0.749
	Maximum lesion size (mm)	29.6±21.3	34.9±16.7	0.457
	Maximum size of cavity wall (mm)	4.89±3.07	7.91±4.95	0.079
	Minimum size of cavity wall (mm)	2.36±1.40	3.64±2.46	0.034

396 Data are presented as the mean±standard deviation.

397 * The number was counted dividing the left upper lobe into left upper division and lingula.

398 MACLD, *Mycobacterium avium* complex lung disease; PTB, pulmonary tuberculosis; BE, bronchiectasis.

399

Table 4 – Distribution of granular shadows

	MACLD (n = 100)	PTB (n = 42)	p-value
RUL/LUD	78.0%	92.9%	0.034
RUL	69.0%	81.0%	0.145
LUD	52.0%	76.2%	0.007
Both RUL and LUD	43.0%	64.3%	0.021
RIL/LL	84.0%	61.9%	0.004
RIL	79.0%	52.4%	0.001
LL	65.0%	42.9%	0.015
Both RIL and LL	60.0%	33.3%	0.004
Segment 6	55.0%	59.5%	0.620
RS6	40.0%	47.6%	0.402
LS6	36.0%	40.5%	0.615
Both RS6 and LS6	21.0%	28.6%	0.330
Basilar Segment	72.0%	54.8%	0.046
RBS	58.0%	47.6%	0.257
LBS	57.0%	38.1%	0.040
Both RBS and LBS	43.0%	31.0%	0.180

MACLD, Mycobacterium avium complex lung disease; PTB, pulmonary tuberculosis; RUL, right upper

lobe; LUD, left upper division; RIL, right intermediate lobe; LL, left lingula; RS6, right segment 6; LS6,

left segment 6; RBS, right basilar segment; LBS, left basilar segment.

407 Table 5 – Distribution of large shadows

	MACLD (n = 100)	PTB (n = 42)	p-value
RUL/LUD	30.0%	64.3%	< 0.001
RUL	24.0%	45.2%	0.012
LUD	11.0%	23.8%	0.050
Both RUL and LUD	5.0%	4.8%	0.659
RIL/LL	51.0%	33.3%	0.054
RIL	37.0%	19.0%	0.036
LL	27.0%	14.3%	0.102
Both RIL and LL	13.0%	0%	0.008
Segment 6	16.0%	23.8%	0.272
RS6	10.0%	14.3%	0.319
LS6	9.0%	11.9%	0.400
Both RS6 and LS6	3.0%	2.4%	0.660
Basilar Segment	24.0%	33.3%	0.252
RBS	17.0%	19.0%	0.770
LBS	10.0%	19.0%	0.139
Both RBS and LBS	3.0%	4.8%	0.464

408 MACLD, Mycobacterium avium complex lung disease; PTB, pulmonary tuberculosis; RUL, right upper

409 lobe; LUD, left upper division; RIL, right intermediate lobe; LL, left lingula; RS6, right segment 6; LS6,

410 left segment 6; RBS, right basilar segment; LBS, left basilar segment.

411

413 Table 6 – Distribution of bronchiectasis

	MACLD (n = 100)	PTB (n = 42)	p-value
RUL/LUD	76.0%	35.7%	< 0.001
RUL	74.0%	28.6%	< 0.001
LUD	48.0%	21.4%	0.003
Both RUL and LUD	46.0%	14.3%	< 0.001
RIL/LL	82.0%	14.3%	< 0.001
RIL	78.0%	11.9%	< 0.001
LL	62.0%	4.8%	< 0.001
Both RIL and LL	58.0%	2.4%	< 0.001
Segment 6	45.0%	11.9%	< 0.001
RS6	36.0%	9.5%	0.001
LS6	28.0%	4.8%	0.002
Both RS6 and LS6	19.0%	2.4%	0.009
Basilar Segment	52.0%	9.5%	< 0.001
RBS	50.0%	7.1%	< 0.001
LBS	31.0%	7.1%	0.002
Both RBS and LBS	29.0%	4.8%	0.001

414 MACLD, Mycobacterium avium complex lung disease; PTB, pulmonary tuberculosis; RUL, right upper

415 lobe; LUD, left upper division; RIL, right intermediate lobe; LL, left lingula; RS6, right segment 6; LS6,

416 left segment 6; RBS, right basilar segment; LBS, left basilar segment.

417

Table 7 – Distribution of cavitary lesions

	MACLD (n=100)	PTB (n=42)	p-value
RUL/LUD	23.0%	21.4%	0.838
RUL	19.0%	11.9%	0.303
LUD	6.0%	11.9%	0.193
Both RUL and LUD	2.0%	2.4%	0.654
RIL/LL	14.0%	0%	0.006
RIL	9.0%	0%	0.038
LL	7.0%	0%	0.081
Both RIL and LL	2%	0%	0.494
Segment 6	7.0%	14.3%	0.146
RS6	6.0%	7.1%	0.529
LS6	4.0%	7.1%	0.341
Both RS6 and LS6	3.0%	0%	0.346
Basilar Segment	10.0%	9.5%	0.600
RBS	9.0%	7.1%	0.503
LBS	4.0%	2.4%	0.536
Both RBS and LBS	3.0%	0%	0.346

MACLD, Mycobacterium avium complex lung disease; PTB, pulmonary tuberculosis; RUL, right upper

lobe; LUD, left upper division; RIL, right intermediate lobe; LL, left lingula; RS6, right segment 6; LS6, left segment 6; RBS, right basilar segment; LBS, left basilar segment.