Mem. Fac. Sci., Shimane Univ., 17, pp. 37–38 Dec. 20, 1983

A Duality Scheme with the Quark-Model Hadron Spectrum and the $\partial(980)$ and S^* (975) Scalar Mesons

Taketoshi INO

Department of Physics, Shimane University, Matsue 690 (Received September 3, 1983)

The scalar mesons $\delta(980)$ and $S^*(975)$, as $q\bar{q}$ systems, are discussed in a duality scheme with the harmonic-oscillator spectrum of $SU(6) \otimes O(3)_L$ multiplets.

The scalar mesons $\delta(980)$ and $S^*(975)$ were a cause of problems in the scalar SU(3) nonet. The near mass-degeneracy between them was difficult to understand. Similarly, the mass difference $m(\kappa(1350)) - m(\delta)$ was ununderstandable. Such problems have, however, now solved by the unitarized quark model.¹⁾ In spite of their unconventional experimental properties, the scalar mesons $\delta(980)$, $\varepsilon(1300)$, $\kappa(1350)$ and $S^*(975)^{2}$ can be understood as the unitarized remnants of conventional $q\bar{q}$ states.

The scalar mesons δ , ε , κ and S^* are interesting objects also in the recently proposed duality scheme with the quark-model hadron spectrum (the harmonic-oscillator spectrum of $SU(6) \otimes O(3)_L$ multiplets).³) We discussed the scalar mesons in this scheme in an early work,⁴) on the viewpoint that the $\delta'(\sim 1300)^{5}$ and $\varepsilon'(\sim 1550)^{6}$) in addition to the ε and κ were components of a scalar nonet,^{*}) and the lower-mass and narrow δ and S^* were assumed to be $q\bar{q}q\bar{q}$ mesons, according to Jaffe.⁷) In this note, we discuss the δ and S^* , as $q\bar{q}$ mesons, in the duality scheme.

Now, we consider the $K^-K^0 \rightarrow K^-K^0$ scattering, where the *u*-channel is exotic. The duality relation, which is taken as the working hypothesis here, is

$$\sum_{a \in N} R_a^{(s)}(t)|_{t=m_N^2} = \sum_{b \in N'} R_b^{(t)}(s)|_{s=m_N^2}, \qquad N, N' = 0, 1, 2, \dots$$
(1)

Here N(N') is the s-(t-)channel resonance family with a fixed total number of quanta of oscillator excitations, N(N'), (denoted by the total number, for economy of notations). $R_a^{(s)}(t)(R_b^{(t)}(s))$ is the residue of the contribution of s-(t-)channel resonance a(b) to the scattering amplitude, in the narrow-resonance approximation. And $m_N^2(m_{N'}^2)$ is defined to be the average squared-mass of N(N'). The duality constraint (1) is for s > 0 and t > 0, where the contributions of poles dominate and the effects of Regge cuts are small.⁸⁾ Therefore the duality (1) will be worth-while to study the partial decay widths

^{*)} As for the δ' and ε' , none of them is established with certainty.

or the corresponding coupling constants, though it can not explain the unconventional features of m_{δ} and m_{S^*} .

The $[A_2, \delta] = [\phi]$, which is the relation (1) in the case (N, N') = (1, 0), gives a restriction on the $g_{\delta K\bar{K}}^2$, defined as in Ref. 4), when observed $\Gamma_{A_2K\bar{K}}$ and $\Gamma_{\phi K\bar{K}}$ are taken as input in addition to relevant masses. The $[\rho] = [f', (\varepsilon, S^*)]$, the relation in the case (N, N') = (0, 1), provides us with a restriction on the $(\Gamma_{\varepsilon K\bar{K}}/q_1 + g_{S^*K\bar{K}}^2 m_{S^*}^2/m_{\varepsilon}^2)$ similarly, where $q_1 = \sqrt{m_{\varepsilon}^2 - 4m_{K}^2}/2$. The average squared-masses of $\{A_2, \delta\}$ and $\{f', (\varepsilon, S^*)\}$ are taken as $m_{A_2}^2$ and $m_{f'}^2$ respectively, as the A_2 dominates in the left-hand side of the relation $[A_2, \delta] = [\phi]$ and the f' does in the right-hand side of $[\rho] = [f', (\varepsilon, S^*)]$.

With experimental data²⁾ of Γ_{A_2KK} , $\Gamma_{\phi KK}$, $\Gamma_{f'KK}$, m_{A_2} , $m_{f'}$, m_{δ} , m_{ε} , m_{S^*} , m_{ϕ} , m_{ρ} and m_K , the predicted $g^2_{\delta KK}$ and $(\Gamma_{\varepsilon KK}/q_1 + g^2_{S^*KK}m^2_{S^*}/m^2_{\varepsilon})$ from these duality relations are

$$g_{\delta K\bar{K}}^2 = 0.70 \pm 0.50, \qquad (\Gamma_{\epsilon K\bar{K}}/q_1 + g_{S^*K\bar{K}}^2 m_{S^*}^2/m_{\epsilon}^2) = -3.5 \sim 0.55.$$
 (2)

It is noted that the information on the $f_{\rho KK}^2$, needed to the $[\rho] = [f', (\varepsilon, S^*)]$, is obtained from the $[\rho] = [\phi]$, the relation of (1) in the case (N, N') = (0, 0), which is found to be in good agreement with experiments.⁹

The value of $g_{\delta KK}^2$ in Eq. (2) gives

$$g_8^2 = 1.17 \pm 0.83$$
, (3)

if the $SU(3) 0^+ \rightarrow 0^- 0^-$ coupling is assumed. And this value of Eq. (3) implies

$$\Gamma_{\delta n\pi} = 150 \pm 110 \text{ MeV}.$$
 (4)

The prediction (4), ~150 MeV, is consistent with that from the unitarized quark model,¹⁾ which is asserted to be larger than apparent peak width. While, the latter in Eq. (2) is meaningful only when small $\Gamma_{I'KK}$ is established.

References

- 1) N. A. Törnqvist, Phys. Rev. Letters 49 (1982), 624.
- 2) Particle Data Group Tables 1982, Phys. Letters 111B (1982), 1.
- 3) T. Ino, Prog. Theor. Phys. 62 (1979), 1177; 61 (1979), 1863.
- 4) T. Ino, Memoirs of the Faculty of Science, Shimane University Vol. 13 (1979), 71.
- 5) A. D. Martin et al., Phys. Letters 74B (1978), 417.
- 6) P. Estabrooks: "Where and What are the Scalar Mesons," Contributed paper (No. 1051) to the 19th International Conference on High Energy Physics, Tokyo, 1978.
- 7) R. L. Jaffe, Phys. Rev. D15 (1977), 267.
- 8) G. F. Chew and C. Rosenzweig, Nucl. Phys. B104 (1976), 290.
- 9) T. Ino, Memoirs of the Faculty of Science, Shimane University Vol. 13 (1979), 59.