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In the previous papers [6], [7] and [8], we studied some group actions on sphere bundles over
spheres and proved some non existence theorems. In this paper, we shall study S'-vector
bundle structures on vector bundles over spheres. We shall fix a representation of S! on the
fiber over the north pole.

Section 1 provides some preliminaries and we shall prove some classification theorems for
S'-vector bundles with a designated action on the fibre over the north pole (Theorem 1 and
Theorem 2). . As a corollary, we shall obtain a non existence theorem.

In section 2, we shall construct two kinds of lifting actions. One of them is a lifting of
a linear action on a sphere and the other is a lifting of a quasi linear action.

In the last section, we shall show that some action on a sphere bundle over a sphere can
not be derived from an S!-vector bundle with a specified action on the fibre over the north pole.

§1. Preliminaries

We denote the (n+ 1)-dimensional complex number space by C**! and the real
number field by R respectively. We use symbols pg: and 0y for the standard represen-
tation S1—U(1) and the trivial real representation of S*. Consider the action on
S2n+2 = C*1@R given by a representation aps:@®(2n—2a+3)0g, a<n. Then the
upper and lower hemispheres e?"*2 and e2"+2, contract equivariantly to the north and
south poles 0, O_ respectively. Let C¥—B—S$2"+2 be a complex S'-vector bundle.
By Proposition 1.3 in [9], the portions B|e3"*? yield equivariant isomorphisms, « :
B|e3rt2—e3n*+2 x Ck, where C¥ are S'-modules such that

g(vla-"’ Uk)=(g“(i)l)1,..., gsk(i)”k) )

for ge S, (vy,..., ) € Ck and &,(%),..., §(+) are some integers. Define an S'-action
on U(k) by (g, A)—~D_(g)AD,(g) for geS', AeU(k), where D,(g)=(g*®)x -+ X
(g5®). Consider the commutative diagram

+

ey S CE 8, S CE_,

B|§2n+1 (1)

E'2n+1/ \
\SZn-i-lxcli 8, gan+ xCE/

Define a map y: S2"*1-U(k) by a_cazl(x, v)=(x, x(x)(v)) for (x,v)eS?"+1xC},
then we have y(gx)=D_(g)x(x)Di(g)~ 1. Therefore the map y is S*-equivariant. Let
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Ck—B’'—S82"*2 be another S'-vector bundle. We have another diagram (1) similar
to (1). If an S!'-isomorphism h: B—B' is given, then we obtain a cubic diagram con-
necting (1) with (1'). Define h,: e3**2—Iso (C%, C'¥) by aloho(ay) 1(x, v)=(x,
hy(x)(v)) for xee?**2, veCk, where C'f are S-modules which appear in equivariant
trivializations o} : B'| §2n*1 &, §2n+1x C'k. But we can choose a basis in C’¥ such
that Ci*=C%. By the cubic diagram, we obtain

h_()x(x)=x(x)h(x), xeS8n+1 (2)

The maps h, : e3"*2—>U(k) are equivariantly homotopic to constant maps h4(0.)=
Ai. By(2), ' is equivariantly homotopic to A=!yA4,.. We can normalize maps h. by
(A1)~ th, to obtain y'~y, Sl-homotopic.

Conversely, suppose. that there is an equivariant homotopy H,: S2"*1—U(k) such
that Hy=y and H;=y'. Set h_=HyH7! and h, =I,, which is the unit matrix in
U(k). Then h_ is equivariantly homotopic to the constant map, and we obtain ex-
tended maps h,: e3"*2—>U(k). Clearly, h_y'=H,=yh, on §2*!, Let B’ be an S!-
vector bundle with characteristic map y’. Then we obtain an S!-isomorphism h: B—
B’ such that h|ed*2=(a}) tohyo(as). Set (g,(+),...,5(+))=¢ and denote SI-
equivalence classes of S!'-C*-bundles over S2"*2 with the specified action on the fibre
over 0, by Vectt:(S?"+2). Then we have

THEOREM 1. The set Vect§:(S*"*2) corresponds bijectively to the equivariant
homotopy set [S2"*1, U(k)], where the S'-action on U(k) is given by (g, A)—

D.(9)AD.(9)~".

Proor. Since a<n, O, and O_ can be combined by a curve in the fixed point set,
there exists A € U(k) such that D_(g)=A4-1D,(g)A. From the relation x(gx)D (g)=
D_(g)x(x), we have x(gx)=A"'D,(9)Ax(x)D.(9)~', and (Ax(gx))D.(g)=D.(g)-
(Ax(x)). The S'-bundle e?3"*2x Ck\U ,e2"*2x C% is equivariantly isomorphic to
ei"t2 x Ck\U,e2"+2 x Ck. Thus we obtain the theorem.

For S'-maps y, y': §2"*1>U(k), we define a product by (yoy’)(x)=y(x)-y'(x),
x € 8271, Then the set [S?"+1, U(k)] admits a group structure.

Now consider the case a=1. Then S2"*2 is an S!-manifold, where the action is
given by the representation ps:@®(2n+1)0g. The fixed point set is the 2n-sphere S2*
and the orbit space is a (2n+1)-disc D?"*!, We have an equivariant decomposition
§2m*2=DP2 x §2n | S x D?n+1, where D2 x S2" is an equivariant tublar neighborhood
of the fixed point set. Let p: S'x $2% —§2» be the projection onto the second factor
and 7: §2"*2—D2n+1 be the orbit map. S2"*2 is a special S!-manifold ([3]). The
image n(S! x S2") is a 2n-sphere S2" in D?"*! with the same center as the one of D?7+1,
Consider the commutative diagram
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Stx s or, S .
ln ' ’ l ~ the identity map
S%n p’ S2n, .' ‘ v

where p’ is the map induced from p. For an S'-vector bundle C"—)B—->S2"+2 its data
(cf. 83 in [S]'is

. B|S2n r*P ‘s 1*p'#(B] SZn)' a 'Sgn x Ck= D21 x Ck,

where r* denotes the forgetful map and « is an isomorphism of vector bundles. We
have an S'-isomorphism B|S2"=e3"x Ck\ e2"x Ck. Since S(C"*'@®R)>S5(C®
R)30,, it follows from Proposition 1.3 in [9], that there exists A € U(k) such that
D_=A"'D,A. From the relation D_ f (x)D3t=f(x), we have D+(Af (x))D3t=Af(x)
for xeSZ" 1. Suppose that & =---=¢,, Emy 41" T Emyenes Emgoyp1=" #gms;sk.
By the proof of Theorem 1, we can assume that f: S2" 1> U@my) x -+ % U(m,). Let
ig: Mo 1(U(my) x -« x U(m ))—>7z2,, 1(U(k)) be the homomorphlsm 1nduced from the
inclusion map i: U(ml)x - x.U(my)—U(k). By the trivialization o, [ f] ekernel i*,

Let ay: r*p™*(B|5?")—52"x Ck<=D*** x C*¥ be another tr1v1allzat1on Then o001
determines an element of ,,(U(k)). Conversely, for a fixed «, each element of
nz,,(U (k)) glves a homotopy class of tr1v1ahzat1ons By the theorem 2 in [5], we have

THEOREM 2. ‘We have a bz]ectzon
S Veet(527*2) — (kernel i* x my (UG)/(~),

where ~ denotes equivalences of data (Deﬁmtlon 1in [57).
Let ‘I/# Vectgq(Sz"+ 2)—> Vect"(Sz"“) be the forgetful homomorphlsm Then we
have ‘

COROLLARY. If k<2n, then the image ¥, is a finite subgroup of Vect*(52"+2).

PrROOF. 7,,(U(k)) is a finite group, and if m;=n, then m;<n for j#i.. Therefore
the kernel i, is a finite subgroup of 7,,_((U(m)x -+- X U(ms)) Thus- we have the
corollary.

If n+1=k<2n, then the image ¥, is trivial.

§ 2, Constructlon of llftmg group actions

Con51der an S'-action on SZ"+2 given by the representation psi€|-)(2n+1)9R
Let Ck—»B—S2"*2 be -an  Sl-vector bundle. Define WYg: S*x(B|S?")—->Stx
(r*p'*(B|S2") by Wa(x, v)=(x, x~1v) for (x,v)eS'x(B|S?"). Then Y5 is an
equivariant isomorphism. Consider the composite isomorphism

Sl X (B | SZn) ¥st Sl X (7’* '*(B | Sln)) I1sixe Sl X SZn X Ck
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Set Pau(x, v)=(x, n(v), f(x~v)). We can define ¢: S>"—>Hom (S, U(k)) by
S(x7)=¢,,)(x)f(v). Now suppose that k=2n. Then we have a unique homotopy
class [a] of a trivialization. Since BxD2x (B|S?")\U, St x D?"*1x Ck, where &
denotes (151 x &)o%s1, the bundle B is determined by the homotopy class [¢] up to
St-isomorphism.

Let I be a compact connected Lie group. For ae Hom (SY, I'), yeI', we define
a? e Hom (S, I') by a*(x)=ya(x)y~1, xeS!, and denote the set {a?; yel} by of.
Then af is included in the connected component Hom (S, I'), of «. The next propo-

sition is due to H. Toda.
Proposition 1. Hom (S!, I'),=al.

Proor. Let {¢,e Hom (S, I')} be a homotopy of a=a, The image a(S?) is
contained in a maximal torus T of I" and there is s € T such that o,(S!)=sTs~1. The
circle group S?! is topologically generated by a generator g. Since I' is connected,
there is a curve ¢(t) in I" such that ¢(0)=a,(g9) and c(1)=s"1a,(g)se T. The curve
a(g)oc(t) connects ao(g) with s~1a,(g)s. We have n;(I'/T)=0. Therefore the curve
a(g)oc(7) is deformable into a curve in T. Thus we have ay(g)=s"1a,(g)s and a, =
s-a-s~1, which proves the proposition. :

Now let I' be U(k). Then Hom (S, U(k)),=aV®. We consider the case k=2n
and o(x)=D,(x) x D,(x)~!, where D,(x) denotes the n-dimensional diagonal matrix
with x as diagonal entries. Let C, be the set {y € U(2n); y- a(x)=a(x) -y for any x € S'}.
Then C,=U(n)x U(n). By the correspondence yC,—(yCuyC,)~!, the space al(®
can be identified with the grassmannian U(2n)/C,=G,,,. The composite map G,,,—
alCm =Hom (S, U(2n)),= 2,U(2n) is just the Bott map f in §8 of [2], where €,
denotes the component of « in the loop space QU(2n). By the consideration above,
a map ¢: S?"—»Hom (S, U(2n)), corresponds to a map ¢': S2"—G,,,. By §8 in [2],
we have fy7,,(G2, ) =27,,(R,(U(2n))) = 2n,, . (U(2n)). Thus we have proved

THEOREM 3. If a C?"-bundle B over S?"*2 has the homotopy class of character-
istic maps in 2m,, . (U(2n)), then the S'-action ps:®(2n+1)0g on S?**2 can be lifted
to an action on B.

Next we construct another bundle lifting of a quasi linear action on the sphere
S§2nt2 where we mean by a quasi linear action a smooth action which is topologically
equivalent to a linear action. We refer the construction of difference bundles due to
Atiyah-Bott-Shapiro (§9 in [1]). Let y,: S2"~1—U(n) be a representative for a gener-
ator of 7,,_((U(n)). Define §,: D>*—M,(C), the complex n X n matrices, by ,(sx)=
sp.(x) for (s, x) € [0, 1]x S2*~1. Then we have a complex of vector bundles

$u: D?*x Ct — D2"x C3,

which is given by 7,(x, v)=(x, 7,(x)(v)). In the case n=1, §, is given by §,(x, v,)=
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(%, xv,) and its adjoint 7§(x, vo)=(x, Xv,). We give an S'-action on the complex
71 by

D2x Cl S(X, vl)_) (gx> vl)esz C13

D2 x Cy3(x, vg) — (9%, gvo) € D> X Cy,

where g € S!. Then 7, is Sl-equivariant. We use the same notations as the ones in
§9 of [1]. Thus p*(¢¥)~1d(7,) gives a generator of K(52") and d is an Euler character-
istic (p. 22 ibid.). Now #, gives a complex S'-line bundle and represents a generator
of K(8?). We consider the product of complexes ¥; and ,:

Far1: (D2x D2 x (Co®@CIDC,@CE) — (D> x D*) x (Co®CEDC,@CY),

where

_ Il®')7n(y) ?l(x)®1n l)_’n(y) x'In
?n+1(~x’ y)= = )

PRI, —LeT*) ) \ %I, —7*»)

and I, denotes the unit matrix of k-dimension. For a boundary point (x, y) € d(D? x

D), (1//IXP+ [y[7n+1(x, y) € U(2n), where | || denotes the norm, and we denotes
. this by ¥,4+1(x, y). For ge S, we have

gvo Wy

7n+1(gxa y)<

Ta(¥) gx@®I, ®
) =<1/\/——|x|2+uyu2>< )( g8 )

vy Wy gx-I, —y5(y) v ®@wo

Therefore ,41(g%, ¥)=(D(9) X L)¥u+1(%, ¥)(Pg)xI,)~1. We denote the n-fold
product of the unit interval [0, 1] by I" and its boundary by oI". Define a map @,:
(I, 0I7)~>(D", §*1) by ®,(p)=(max {|t], i=L,..., n}/[pl)-p, where p=(ty,..., 1,) #
(,...,0) and @,0,...,0)=(0,...,0). Then @, is a homeomorphism. Consider the
composite map h=0,,,,o(P;! x $3}): D>x D**—~I?>x [>"—D?***2, Then the re-
striction to the boundary h: 6(D? x D?")—0D?"*2 js a homeomorphism. By Theorem
M due to Smale ([10], p. 394), there exists a diffeomorphism /: D2 x D2"— D2"*2 with
h(d(D? x D?%))=S2"*1. We define an S'-action on D*"*? by gx=ho(gh~1(x)) for
geSt, xeD?**2, Hence the map fPu41=7,4+ 8" 1: S>"*1>0d(D?>x D*")»U(2n) sat-
isfies the relation

Put 1(@X) =T s 1h~2g%) =¥ s 1A~ hgh=1(x)
=Fs1(0R 1) =(Ds(9) X L)V s 1(R~1(x)) (Dulg) X I) ™1
=) %N DX L)

Here we give an St-action on U(2n) by (g, A)—(D,(9) x I,)A(D,(g9)xI,)~. Then
9,+1 is Sl-equivariant. Thus we obtain an S!-C?"-bundle over §?"*2. By the Bott
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periodicity, 9, gives a generator of K(S27*2),

§3. Non lifting actions

The sphere S27+2 js an SO(2)-manifold by the repersentation Pso2)®(2n+1)0g.
Suppose that 2n+2=0mod 8. We want to construct a lifting action on R?"+2-bundle
over S2"*2 where the action is compatible with the action on the structure group
SO(2n+2) given by (g, A)—(Dy(g) x I 2,,)A(Dz(g)xI )L Let R2"+2—>E-+SZ"+2 be
an SO(2)-bundle with the lifting action. Denote the portion of E on the ﬁxed point
set by B. Then the data (§3 in [5]) is given by

B , r*p’*B Sf" X R2n+2 CD§n+1 X R2n+2 .

Let oy, ay: r*p'*B—S2" x R?"*2 be two trivializations. Then the composite o,o0;!
determines an element of 7,,(SO(2n + 2)), which is trivial by the assumption. We have
[S33=1, SO(2n+2)] =[S?"~1, SO(2) x SO(2n)], which is a cyclic group generated by
the class {r,,} of the tangent bundle of S2*. Then B=B(kt,,)®R*(g), where B(kt,,)
denotes the bundle with the class {kz,,} of chracteristic maps and R%(g) denotes the
product bundle with the standard S'-action on fibres. Hence the classification theorem
(§3 in [5]) shows that image (¥': [S3:*1, SO(2n+2)] =74, 1(SO(2n+2))) is a subgroup
{kt34+ 2} generated by the class of the tangent bundle of $2#*2, Denote by ¢ the one of
generators of T20+1(SO(2n+2)) which gives rise to a generator of the stable group
Ton+1(SO).  Let E(t,, 4 +2mo) be the sphere bundle over $27+2 with the class {t,, »+
2mo} of characteristic maps. By §5 in [4], E(t,,4,+2mo) is diffeomorphic to the
connected sum E(tap+2)#m?2, where Z is a homotopy sphere. When m is divided by
the order of the group 0,,,; of homotopy 4n+3 spheres, E(75,,,+2mo) is dlffeo-
morphic to the tangent sphere bundle E(‘cz,,+2), which admits a lifting actlon By our
cons1derat10n above, the derlved action on E(tz,,“ +2ma) is not a hftmg actlon

References '

[1] M.F. Atlyah R. Bott and A, Shapiro, Clifford modules, Topology, 1. Suppl 1 (1964), 3-38.

[2] R. Bott, The space of loops on a Lie group, Mlchlgan Math. J., 5 (1958), 35-61.

[3] F. Hirzebruch and K. H. Mayer, O(n)-Manmgfaltxgkelten Exotische Spharen und Singu-
larititen, Lecture Notes in Math. No. 57, Springer, 1968. : L

[4] A.Kosinski, On the inertia group of z-manifolds, Amer.J. Math. 89 (1967), 227—248

[5] H. Matsunaga, :Kg-groups and invariant vector fields on special G-manifolds, Osaka J.
Math. 9 (1972), 143-157.

[6] H. Matsunaga, .S'-actions on sphere bundles over spherés, Mem. Fac. Sci. Shimane Univ.
15 (1981), 9-16. ) ,

[7] H. Matsunaga, Group actions on sphete bundles over 'spheres, Kodai Math. J. 5 (1982),

<7 495-502, o S SRS ‘ o ’ :



S-Actions on Vector Bundles over Spheres 21

[8] H. Matsunaga, Classical Lie group actions on r-manifolds, Publ. Res. Inst. Math. Sci.
(vol. 20 (1)), to appear. )

[9] G.B.Segal, Equivariant K-theory, Publ. Math. IHES (Paris), 34 (1968), 129-151.

[10] S.Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math.
74 (2), (1961), 391-406.



