Mem. Fac. Sci., Shimane Univ., 17, pp. 1-8 Dec. 20, 1983

Note on Special Involutions in a Generalized Inverse Semigroup

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan (Received September 3, 1983)

A unary operation $*: S \to S$ on a semigroup S is called a special involution if it satisfies (1) $(x^*)^* = x$, (2) $(xy)^* = y^*x^*$ and (3) $xx^*x = x$ for all $x, y \in S$. It has been shown by [5] that every special involution in a regular semigroup S is determined by the p-system in S. In this paper, we shall determine all the p-systems in a generalized inverse semigroup S, and accordingly all the special involutions in S. Further, we shall investigate the cardinality of the set of p-systems in S.

§1. Preliminary

A regular semigroup S equipped with a unary operation $*: S \rightarrow S$ is called a special *-regular semigroup if it satisfies (1) $(x^*)^* = x$, (2) $(xy)^* = y^*x^*$ and (3) $xx^*x = x$ for all $x, y \in S$. The unary operation * is called a special involution in S. If a regular semigroup S admits at least one special involution, then S is called specially involutive. We sometimes denote by (S, #) a special *-regular semigroup S equipped with a special involution #. In the previous paper [5], the concept of a p-system in a regular semigroup S has been introduced. A subset P of the set E(S) of idempotents of S is called a p-system in S if P satisfies the following (1)-(3):

- (C.1) (1) For any $x \in S$, there exists a unique $x^* \in V(x)$ (the set of inverses of x) such that xx^* , $x^*x \in P$.
 - (2) For the operation \sharp defined above, $x^{\sharp}Px \subset P$ for any $x \in S$.
 - $(3) \quad P^2 \subset E(S).$

It has been shown by [5] that in this case (S, *) is a special *-regular semigroup. Further, it has been proved that a regular semigroup admits a special involution if and only if it has at least one *p*-system. The operation * above is called *the special involution determined by P*, and denoted by $*_P$. Conversely, if (S, *) is a special *-regular semigroup then the set of projections of (S, *), that is, the set $P = \{e \in E(S): e^* = e\}$ is a *p*-system in S (see [5]). We denote this P by P_* . Now, it is easy to see that the set of projections of a special *-regular semigroup $(S, *_P)$, where P is a p-system in S, is P, and the special involution in S determined by P_* , where * is a special involution in S, is *. Let $\mathcal{P}(S)$ be the set of all p-systems in a regular semigroup S, and $\mathcal{I}(S)$ the set of all possible special involutions in S. It is obvious that $\mathcal{P}(S) = \Box$ if and only if

 $\mathscr{I}(S) = \Box$. Let $f: \mathscr{P}(S) \to \mathscr{I}(S)$ and $g: \mathscr{I}(S) \to \mathscr{P}(S)$ be the mappings defined by $Pf = *_{P}$ and $*g = P_{*}$ respectively. Then, since Pfg = P and *gf = *, fg and gf are the identity mappings on $\mathscr{P}(S)$ and $\mathscr{I}(S)$ respectively. Hence, $|\mathscr{P}(S)| = |\mathscr{I}(S)|$ (| | means cardinality). In [5], it has been shown that for a generalized inverse semigroup S, P is a p-system in S if and only if P is a p-system in the normal band E(S). Therefore, in this case $|\mathscr{P}(S)| = |\mathscr{P}(E(S))| = |\mathscr{I}(E(S))| = |\mathscr{I}(S)|$. In the following sections, we shall investigate the cardinality of $\mathscr{P}(S)$ of a normal band S (hence, a generalized inverse semigroup S).

Remark. Let S be a generalized inverse semigroup, and *, # special involutions in S. It has been proved by [2] and [5] that (S, *) and (S, #) are *-isomorphic, that is, there exists an isomorphism $f: S \rightarrow S$ such that $x*f = (xf)^*$ for all $x \in S$.

§2. Normal bands with special involution

Let S be a normal band. By Scheiblich [2] and the author [5], S admits a special involution if and only if S is isomorphic to the spined product $L \otimes L^d$ of a left normal band L and its dual semigroup L^d .

Note. That is, $L^d = L$ as set, and for any $x, y \in L^d$, $x \circ y = yx$ (the product of x, y in L), where \circ means the multiplication in L^d .

Let Y be a semilattice, and A, B bands which are semilattice Y of rectangular bands $\{A_{\alpha}: \alpha \in Y\}$ and a semilattice Y of rectangular bands $\{B_{\alpha}: \alpha \in Y\}$ respectively (in this case, we say that A, B have the structure decompositions $A \sim \Sigma\{A_{\alpha}: \alpha \in Y\}$ and $B \sim \Sigma\{B_{\alpha}: \alpha \in Y\}$ respectively). Then, $C = \Sigma\{A_{\alpha} \times B_{\alpha}: \alpha \in Y\}$, where \times means "direct product" and Σ means "disjoint sum", becomes a subsemigroup of $A \times B$. This C is called the spined product of A and B, and denoted by $A \otimes B$.

From the above, if a normal band S admits a special involution then we can assume that $S = L \otimes L^d$, where L is a left normal band and L^d its dual semigroup. If L is a semilattice Y of left zero semigroups $\{L_{\alpha}: \alpha \in Y\}$, that is, if L has the structure decomposition $L \sim \Sigma\{L_{\alpha}: \alpha \in Y\}$, then L^d is a right normal band and has the structure decomposition $L^d \sim \Sigma\{L_{\alpha}^d: \alpha \in Y\}$, where L_{α}^d is the dual semigroup of L_{α} , and $L \otimes L^d$ is a semilattice Y of square bands (see [5]) $\{L_{\alpha} \times L_{\alpha}^d: \alpha \in Y\}$, that is, $L \otimes L^d$ has the structure decomposition $L \otimes L^d \sim \Sigma\{L_{\alpha} \times L_{\alpha}^d: \alpha \in Y\}$. Hereafter, the notion "a band $B \equiv \Sigma\{B_{\gamma}: \gamma \in Y_1\}$ " means that B is a band which is a semilattice Y_1 of rectangular bands $\{B_{\gamma}: \gamma \in Y_1\}$. Of course, each L_{α} and L_{α}^d above are a left zero semigroup and a right zero semigroup respectively. Now, let $L \otimes L^d = \Sigma\{L_{\alpha} \times L_{\alpha}^d: \alpha \in Y\}$ be a normal band which admits a special involution, where L is a left normal band. Let \cdot and \circ be the multiplications in L and L^d respectively. Then, of course $x \cdot y = y \circ x$ for all $x, y \in L$ (hence, for $x, y \in L^d$). Now, it is easy to see that $P = \{(i, i) \in L_{\alpha} \times L_{\alpha}^d: \alpha \in Y\}$ is a p-system in $L \otimes L^d$. In general, if F is a p-system in $L \otimes L^d$ then F is the set of projections in $(L \otimes L^d, *_F)$. Hence, each L-class [each R-class] contains a unique element of F.

Therefore, there exists a bijection $\tau: L \to L$ such that $L_{\alpha}\tau = L_{\alpha}$ for all $\alpha \in Y$ and $F = \{(i, i\tau): i \in L_{\alpha}, \alpha \in Y\}$ (see also [5]). It is easily seen that $*_F$ is defined by τ as follows: $(i, j)^{*F} = (j\tau^{-1}, i\tau)$. Since F satisfies (C.1), (2), $(i, j)(u, u\tau)(j\tau^{-1}, i\tau) \in F$ (where $(u, u\tau) \in L_{\beta} \times L_{\beta}^{\beta} \cap F$). Hence, $(i \cdot u)\tau = i\tau \cdot u\tau$, that is, τ is an automorphism. Thus,

THEOREM 1. Let $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$ be a left normal band, and $S = L \otimes L^{d}$ the spined product of L and its dual semigroup L^{d} . Let $\tau : L \rightarrow L$ be an automorphism of L such that $L_{\alpha}\tau = L_{\alpha}$ for all $\alpha \in Y$. Then, S is a normal band which admits a special involution, and $F = \{(i, i\tau) : i \in L_{\alpha}, \alpha \in Y\}$ is a p-system in S. Further, every p-system in S is obtained in this way.

PROOF. The latter half was seen above. The first half: Let τ be an automorphism of L such that $L_{\alpha}\tau = L_{\alpha}$ for all $\alpha \in Y$. We need only to show that $F = \{(i, i\tau): i \in L_{\alpha}, \alpha \in Y\}$ satisfies (C.1), (1), (2). For all elements $(i, j) \in L_{\alpha} \times L_{\alpha}^{d}(\alpha \in Y)$, let $(i, j)^{*} = (j\tau^{-1}, i\tau)$. Then, $(i, j)(j\tau^{-1}, i\tau) = (i, i\tau) \in F$ and $(j\tau^{-1}, i\tau)(i, j) = (j\tau^{-1}, j) \in F$. Hence, $(i, j)(i, j)^{*}$, $(i, j)^{*}(i, j) \in F$ and $(i, j)^{*} \in V((i, j))$. If there exists $(u, v) \in V((i, j))$ such that (u, v)(i, j), $(i, j)(u, v) \in F$, then $j = u\tau$ and $v = i\tau$. Hence $(u, v) = (j\tau^{-1}, i\tau)$. Thus, (C.1), (1) is satisfied. (C.1), (2): For any $(i, j) \in L_{\alpha} \times L_{\alpha}^{d}(\alpha \in Y)$ and for any $(u, u\tau) \in L_{\beta} \times L_{\beta}^{d}(\beta \in Y)$, $(i, j)(u, u\tau)(j\tau^{-1}, i\tau) = (i \cdot u \cdot j\tau^{-1}, j \circ u\tau \circ i\tau) = (i \cdot u, i\tau \cdot u\tau) = (i \cdot u, (i \cdot u)\tau) \in F$.

From the result above, the problem of determining all p-systems in $S = L \otimes L^d$ is reduced to that of determining all automorphisms $f: L \rightarrow L$ satisfying

(C.2) $L_{\alpha}f = L_{\alpha}$ for every $\alpha \in Y$.

we have the following:

An automorphism f of L satisfying (C.2) is called a Y-restricted automorphism or more simply a restricted automorphism on $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$. The set of all restricted automorphisms on $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$ is clearly a group with respect to the usual resultant composition. We denote it by G_L , and call it the group of restricted automorphisms on $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$.

§3. The restricted automorphisms G_L

Let $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$ be a left normal band. Then, it is well known that L is a strong semilattice Y of $\{L_{\alpha} : \alpha \in Y\}$. Hence, there exists a family of homomorphisms $(\phi_{\beta}^{\alpha} : \alpha \geq \beta, \alpha, \beta \in Y\}$, where each ϕ_{β}^{α} is a homomorphism of L_{α} into L_{β} (this is just a mapping), such that

(C.3) (1) $\phi_{\alpha}^{\alpha} =$ the identity mapping on L_{α} for all $\alpha \in Y$,

(2) $\phi_{\beta}^{\alpha}\phi_{\gamma}^{\beta} = \phi_{\gamma}^{\alpha}$ for $\alpha \ge \beta \ge \gamma, \alpha, \beta, \gamma \in Y$,

and (3) the multiplication \cdot in L is given by

$$x \cdot y = (x \phi_{\xi \delta}^{\xi}) \cdot (y \phi_{\xi \delta}^{\delta}) = x \phi_{\xi \delta}^{\xi} \quad \text{for} \quad x \in L_{\xi}, \ y \in L_{\delta}.$$

3

Hereafter, we shall call $\{\phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\}$ the characteristic family of homomorphisms for $L \equiv \Sigma \{L_{\alpha}: \alpha \in Y\}$.

Now,

LEMMA 2. $G_L \ni \tau$ if and only if τ is a bijection on L such that

(1) $L_{\alpha}\tau = L_{\alpha}$ for all $\alpha \in Y$, and

(2) $\tau \phi^{\alpha}_{\beta} = \phi^{\alpha}_{\beta} \tau$ for all $\alpha, \beta \in Y$ with $\alpha \ge \beta$.

PROOF. To prove "if" part, it is need only to show that τ is a homomorphism. Let $x \in L_{\alpha}$, $y \in L_{\beta}$. Then, $(x \cdot y)\tau = (x\phi_{\alpha\beta}^{\alpha})\tau = x\phi_{\alpha\beta}^{\alpha}\tau = x\tau\phi_{\alpha\beta}^{\alpha} = x\tau\phi_{\alpha\beta}^{\alpha} \cdot y\tau\phi_{\alpha\beta}^{\beta} = x\tau \cdot y\tau$. Hence, τ is a homomorphism. The "only if" part: For $x \in L_{\alpha}$ and $y \in L_{\beta}$, $(x \cdot y)\tau = x\tau \cdot y\tau$. Hence, $(x\phi_{\alpha\beta}^{\alpha} \cdot y\phi_{\alpha\beta}^{\beta})\tau = x\tau\phi_{\alpha\beta}^{\alpha} \cdot y\tau\phi_{\alpha\beta}^{\beta}$, and accordingly $x\phi_{\alpha\beta}^{\alpha}\tau = x\tau\phi_{\alpha\beta}^{\alpha}$. Therefore, $\phi_{\alpha\beta}^{\alpha}\tau = \tau\phi_{\alpha\beta}^{\alpha}$.

If a bijection τ on L satisfies (1) of Lemma 2, then τ is called *a restricted bijection* on $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$. If τ further satisfies (2) of Lemma 2, then τ is said to be compatible with $\Phi = \{\phi_{\beta}^{\alpha} : \alpha \geq \beta, \alpha, \beta \in Y\}$.

Now, we have the following:

THEOREM 3. Let $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$ be a left normal band, and let $S = L \otimes L^d$. Let $\Phi = \{\phi_{\beta}^{\alpha} : \alpha \geq \beta, \alpha, \beta \in Y\}$ be the characteristic family of homomorphisms for $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$, and G_L the set of all restricted bijections on $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$ which are compatible with Φ . Then, G_L is a group, and $|\mathscr{P}(S)| = |G_L|$.

Examples. 1. If L is a left zero semigroup, G_L is the group of all bijections on L, that is, G_L is the symmetric group on L. Therefore, $S = L \otimes L^d (= L \times L^d)$ is a square band (see [5]), and $\mathcal{P}(S)$ coincides with the cardinality of the symmetric group on the set L.

2. Let Y be a semilattice consisting of α , β and 0 such that $\alpha\beta=0$ and 0 is a zero element. Let L be a left normal band whose structure decomposition is $L \sim \Sigma\{L_{\xi}: \xi \in Y\}$, where $L_{\alpha} = \{a\}, L_{\beta} = \{b\}$ and $L_{0} = \{e, f\}$. Let $\{\phi_{\eta}^{\xi}: \xi \geq \eta, \xi, \eta \in Y\}$ be the characteristic family of homomorphisms for $L \equiv \Sigma\{L_{\xi}: \xi \in Y\}$, where $L_{\alpha}\phi_{0}^{\alpha} = e$ and $L_{\beta}\phi_{0}^{\beta} = f$. Then, in this case $G_{L} = 1$, and hence $L \otimes L^{d}$ has a unique p-system.

COROLLARY 4. Let $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$ be a left normal band. Then, the following two conditions are equivalent.

- (1) A restricted automorphism on $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$ is unique (hence, it is the identity mapping on L),
- (2) A restricted bijection on L which is compatible with the characteristic family of homomorphisms for $L \equiv \Sigma \{L_{\alpha} : \alpha \in Y\}$ is unique (hence, it is the identity mapping on L).

In this case, $L \otimes L^d$ has a unique p-system.

4

§4. The group of restricted bijections

Let $S = \{S_i: i \in I\}$ be a collection of sets S_i , $i \in I$, and $S = \Sigma\{S_i: i \in I\}$ the disjoint sum of all S_i . If a bijection $f: S \to S$ satisfies $S_i f = S_i$ for all $i \in I$, then f is called a *I*-restricted bijection or more simply a restricted bijection on $S = \Sigma\{S_i: i \in I\}$. The set G(S) of all restricted bijections on $S = \Sigma\{S_i: i \in I\}$ forms a group with respect to the usual resultant composition. Now, let Y be a semilattice, and L_{α} a left zero semigroup for each $\alpha \in Y$. Let $\mathscr{L} = \{L_{\alpha}: \alpha \in Y\}$. For each pair $(\alpha, \beta) \in Y \times Y$ with $\alpha \ge \beta$, let ϕ_{β}^{α} be a mapping (hence, a homomorphism) of L_{α} into L_{β} . If the collection $\Phi = \{\phi_{\beta}^{\alpha}: \alpha \ge \beta, \alpha, \beta \in Y\}$ satisfies the conditions (C.3), (1) and (2), then it is well known that $L = \Sigma\{L_{\alpha}: \alpha \in Y\}$ (disjoint sum) becomes a left normal band under the multiplication.

$$x \cdot y = x \phi_{\beta}^{\alpha}$$
 for $x \in L_{\alpha}, y \in L_{\beta}$.

Of course, $L(\cdot)$ is a strong semilattice Y of $\{L_{\alpha}: \alpha \in Y\}$ and has $\{\phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\}$ as its characteristic family. This $L(\cdot)$ is called the left normal s-composition of $\{L_{\alpha}: \alpha \in Y\}$ determined by Φ , and denoted by $L(\Phi)$. The system Φ above is called a transitive system of homomorphisms for $\mathcal{L} = \{L_{\alpha}: \alpha \in Y\}$. Let $T(\mathcal{L})$ be the set of all transitive systems of homomorphisms for $\mathcal{L} = \{L_{\alpha}: \alpha \in Y\}$. For any $\tau \in G(\mathcal{L})$ and any $\Phi \in T(\mathcal{L})$, where $\Phi = \{\Phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\}$, let $\Phi^{\tau} = \{\tau^{-1}\phi_{\beta}^{\alpha}\tau: \alpha \geq \beta, \alpha, \beta \in Y\}$ (where $x \tau^{-1}\phi_{\beta}^{\alpha}\tau = x(\tau \mid L_{\alpha})^{-1}\phi_{\beta}^{\alpha}(\tau \mid L_{\beta})$ ($\tau \mid L_{\xi}$ means the restriction of τ to L_{ξ})).

THEOREM 5. Let Y be a semilattice, and $\mathscr{L} = \{L_{\alpha} : \alpha \in Y\}$ a collection of left zero semigroups L_{α} . Let $\Phi = \{\phi_{\beta}^{\alpha} : \alpha \geq \beta, \alpha, \beta \in Y\}$ be a transitive system of homomorphisms for \mathscr{L} , and τ a restricted bijection on $L = \Sigma\{L_{\alpha} : \alpha \in Y\}$ such that $\Phi^{\tau} = \Phi$, then L becomes a left normal band under the multiplication defined by $x \cdot y = x\phi_{\alpha\beta}^{\alpha}$ for $x \in L_{\alpha}, y \in L_{\alpha}$, and $L \otimes L^{d}$ is a special *-regular semigroup with respect to the operation * defined by $(i, j)^{*} = (j\tau^{-1}, i\tau)$. Further, every specially involutive normal band $L \otimes L^{d}$ and every special involution * in $L \otimes L^{d}$ can be obtained in this way.

PROOF. Obvious from the discussion above. For any $\tau \in G(\mathcal{L})$ above and for any $\Phi \in T(\mathcal{L})$,

LEMMA 6. Φ^{τ} is a transitive system of homomorphisms for $\{L_{\alpha} : \alpha \in Y\}$.

PROOF. For any $x \in L_{\alpha}$, $x(\tau^{-1}\phi_{\alpha}^{\alpha}\tau) = (x\tau^{-1})\tau = x$. Hence, $\tau^{-1}\phi_{\alpha}^{\alpha}\tau$ is the identity mapping on L_{α} . Next, for any $\alpha, \beta, \gamma \in Y$ with $\alpha \ge \beta \ge \gamma$ and for any $x \in L_{\alpha}$, $x(\tau^{-1}\phi_{\beta}^{\alpha}\tau)(\tau^{-1}\phi_{\beta}^{\beta}\tau) = x\tau^{-1}\phi_{\beta}^{\alpha}\phi_{\gamma}^{\beta}\tau = x(\tau^{-1}\phi_{\gamma}^{\alpha}\tau)$. Hence, $(\tau^{-1}\phi_{\gamma}^{\alpha}\tau)(\tau^{-1}\phi_{\beta}^{\beta}\tau) = \tau^{-1}\phi_{\gamma}^{\alpha}\tau$. Thus $\Phi^{\tau} = \{\tau^{-1}\phi_{\beta}^{\alpha}\tau : \alpha \ge \beta, \alpha, \beta \in Y\}$ is a transitive system of homomorphisms for $\{L_{\alpha}: \alpha \in Y\}$. For some $\tau \in G(\mathscr{L})$, we have $\Phi^{\tau} = \Phi$ for all $\Phi \in T(\mathscr{L})$. (Of course, if τ is the identity mapping on L then $\tau \in G(\mathscr{L})$ and $\Phi^{\tau} = \Phi$). $H(\mathscr{L}) = \{\tau \in G(\mathscr{L}): \Phi^{\tau} = \Phi$ for all $\Phi \in T(\mathscr{L})\}$ is a subgroup of $G(\mathscr{L})$.

LEMMA 7. $H(\mathcal{L})$ is a normal subgroup of $G(\mathcal{L})$.

PROOF. Let $\eta \in H(\mathscr{L})$ and $\tau \in G(\mathscr{L})$. For any $\Phi \in T(\mathscr{L})$, $\Phi^{\tau^{-1}\eta\tau} = ((\Phi^{\tau^{-1}})^{\eta})^{\tau} = \Phi^{\tau^{-1}\tau} = \Phi$. Hence, $\tau^{-1}\eta\tau \in H(\mathscr{L})$. Therefore, we can consider the factor group $\overline{G(\mathscr{L})} = G(\mathscr{L})/H(\mathscr{L})$. We shall denote the coset containing $\tau \in G(\mathscr{L})$ by $\overline{\tau}$. For $\Phi \in T(\mathscr{L})$, we define $\Phi^{\overline{\tau}}$ by $\Phi^{\overline{\tau}} = \Phi^{\tau}$. It is obvious that this is well defined. If $\Phi^{\overline{\tau}} = \Phi^{\overline{\delta}}$ for all $\Phi \in T(\mathscr{L})$, then $\overline{\tau} = \overline{\delta}$. Therefore, we can regard $\overline{G(\mathscr{L})}$ as a permutation group on $T(\mathscr{L})$. For any $\Phi \in T(\mathscr{L})$, let $\overline{F_{\Phi}(\mathscr{L})}$ be the fixed group of Φ . Hereafter, let Y be a semilattice, $\mathscr{L} = \{L_{\alpha} : \alpha \in Y\}$ a collection of left zero semigroups and $L = \Sigma\{L_{\alpha} : \alpha \in Y\}$ (disjoint sum).

Obviously,

THEOREM 8. If $|H(\mathcal{L})| > 1$, then $L \otimes L^d$ has at least two p-systems for any left normal s-composition L of $\{L_{\alpha} : \alpha \in Y\}$.

COROLLARY 9. If $|H(\mathcal{L})| |\overline{F_{\phi}(\mathcal{L})}| > 1$, then $L(\Phi) \otimes L(\Phi)^d$ has at least two psystems. In this case, $|\mathcal{P}(L(\Phi) \otimes L(\Phi)^d)| = |H(\mathcal{L})| |\overline{F_{\phi}(\mathcal{L})}|$.

Hereafter, we consider the case $|\overline{G(\mathscr{L})}| < \infty$ and $|T(\mathscr{L})| < \infty$. Decompose $T(\mathscr{L})$ into the systems of transitivity with respect to $\overline{G(\mathscr{L})}$: $T(\mathscr{L}) = \Delta_1 + \Delta_2 + \cdots + \Delta_r$, where each Δ_i is a system of transitivity and + denotes "disjoint sum". Hence, if $\Phi_i \in \Delta_i$, then $\Delta_i = \{\Phi_i^{\overline{i}} : \overline{\tau} \in \overline{G(\mathscr{L})}\}$. The length ℓ_i of Δ_i is given by $\ell_i = |\Delta_i| = |\overline{G(\mathscr{L})}: \overline{F_{\Phi_i}(\mathscr{L})}|$ (the index of $\overline{F_{\Phi_i}(\mathscr{L})}$ in $\overline{G(\mathscr{L})}$). Hence, $\ell_i ||\overline{G(\mathscr{L})}|$ for all i=1, 2, ..., r. If $\ell_i = |\overline{G(\mathscr{L})}|$ for all i, then $r|\overline{G(\mathscr{L})}| = |T(\mathscr{L})|$. Therefore, $|\overline{G(\mathscr{L})}| ||T(\mathscr{L})|$. Hence, we have the following:

THEOREM 10. If $|G(\mathcal{L})|/|T(\mathcal{L})|$, then there exists $\Phi \in T(\mathcal{L})$ such that $L(\Phi) \otimes L(\Phi)^d$ has at least two p-systems.

PROOF. If $|H(\mathscr{L})| > 1$, then this theorem follows from Theorem 8. Suppose that $|H(\mathscr{L})| = 1$. Then, $\overline{G(\mathscr{L})} = G(\mathscr{L})$. Hence, $|\overline{F_{\Phi_i}(\mathscr{L})}| > 1$ for some $\Phi_i \in \Delta_i$. Therefore, $L(\Phi_i) \otimes L(\Phi_i)^d$ has at least two p-systems.

In particular, let us consider the case $|T(\mathcal{L})| < |G(\mathcal{L})|$. In this case, for any $\Phi \in T(\mathcal{L})$ there exist at least two-different $\tau_1, \tau_2 \in G(\mathcal{L})$ such that $\Phi^{\tau_1} = \Phi^{\tau_2}$. Then, $\Phi^{\tau_1 \tau_2^{-1}} = \Phi$ and $\tau_1 \tau_2^{-1} \neq 1$ (the identity of $G(\mathcal{L})$). Therefore, $L(\Phi) \otimes L(\Phi)^d$ has at least two p-systems. Thus, we have the following results:

COROLLARY 11. If $|T(\mathcal{L})| < |G(\mathcal{L})|$, then $L(\Phi) \otimes L(\Phi)^d$ has at least two p-systems for any $\Phi \in T(\mathcal{L})$.

COROLLARY 12. If $L(\Phi) \otimes L(\Phi)^d$ has a unique p-system for every $\Phi \in T(\mathcal{L})$, then $|G(\mathcal{L})| ||T(\mathcal{L})|$.

COROLLARY 13. If $|G(\mathcal{L})| ||T(\mathcal{L})|$, $|H(\mathcal{L})| = 1$ and $G(\mathcal{L})$ is a transitive group, then $L(\Phi) \otimes L(\Phi)^d$ has a unique p-system for every $\Phi \in T(\mathcal{L})$. **Remark.** It is obvious that $|G(\mathcal{L})|$ can be evaluated as follows: Let $|L_{\alpha}| = n_{\alpha}$ for $\alpha \in Y$. Then, $|G(\mathcal{L})| = \prod_{\alpha \in Y} (n_{\alpha}!)$.

Examples. Let $Y = \{\alpha, \beta, 0\}$ be a semilattice such that $\alpha\beta = \beta\alpha = 0$ and 0 is the zero element.

1. Let $L_{\alpha} = \{a, b\}$, $L_{\beta} = \{c, d\}$ and $L_{0} = \{e, f\}$ be left zero semigroups. Put $\mathscr{L} = \{L_{\xi}: \xi \in Y\}$, and $L = \Sigma\{L_{\xi}: \xi \in Y\}$. In this case, $|T(\mathscr{L})| = 16$ and $|G(\mathscr{L})| = 8$. Hence $|G(\mathscr{L})| ||T(\mathscr{L})|$. Now, consider the transitive system $\Phi = \{\phi_{\alpha}^{\alpha}, \phi_{\beta}^{\beta}, \phi_{0}^{0}, \phi_{\alpha}^{\alpha}, \phi_{\beta}^{\beta}\}$ such that $\phi_{0}^{\alpha}: \{a, b\} \rightarrow e, \phi_{0}^{\beta}: \{c, d\} \rightarrow e$. Then, for $\tau \in G(\mathscr{L})$ such that $a\tau = b, b\tau = a, c\tau = d, d\tau = c, e\tau = e$ and $f\tau = f, \Phi^{\tau} = \Phi$. The bijection τ is clearly not an identity mapping. Hence, $L(\Phi) \otimes L(\Phi)^{d}$ has at least two p-systems.

2. Let $L_{\alpha} = \{a\}$, $L_{\beta} = \{b\}$ and $L_{0} = \{e, f\}$ be left zero semigroups. Put $\mathscr{L} = \{L_{\alpha}, L_{\beta}, L_{0}\}$, and $L = \Sigma \{L_{\xi}: \xi \in Y\}$. Then, $|T(\mathscr{L})| = 4$ and $|G(\mathscr{L})| = 2$. Hence, $|G(\mathscr{L})| | |T(\mathscr{L})|$. In this case, it is easy to see that $\tau \in G(\mathscr{L})$ and $\Phi^{\tau} = \Phi$ for $\Phi \in T(\mathscr{L})$ imply $\tau = 1$ (the identity of $G(\mathscr{L})$). Therefore, $L(\Phi) \otimes L(\Phi)^{d}$ has a unique p-system for every $\Phi \in T(\mathscr{L})$.

3. Let $L_{\alpha} = \{a, b\}$, $L_{\beta} = \{c\}$ and $L_0 = \{e, f\}$ be left zero semigroups. Put $\mathscr{L} = \{L_{\alpha}, L_{\beta}, L_0\}$, and $L = \Sigma \{L_{\xi} : \xi \in Y\}$. Then, $|T(\mathscr{L})| = 8$ and $|G(\mathscr{L})| = 4$. Hence, $|G(\mathscr{L})| ||T(\mathscr{L})|$. Now, consider the transitive system $\Phi_1 = \{\phi_{\alpha}^{\alpha}, \phi_{\beta}^{\beta}, \phi_0^{0}, \phi_0^{\alpha}, \phi_0^{\beta}\}$ such that $a\phi_0^{\alpha} = e, b\phi_0^{\alpha} = f$ and $c\phi_0^{\beta} = e$. Then, $L(\Phi_1) \otimes L(\Phi_2)$ has a unique p-system. On the other hand, consider the transitive system $\Phi_2 = \{\psi_{\alpha}^{\alpha}, \psi_{\beta}^{\beta}, \psi_0^{0}, \psi_0^{\alpha}, \psi_0^{\beta}\}$ such that $a\psi_0^{\alpha} = e, b\psi_0^{\alpha} = e$ and $c\psi_0^{\beta} = e$. Take the bijection $\tau \in G(\mathscr{L})$ such that $a\tau = b, b\tau = a, e\tau = e$ and $f\tau = f$. Then, $\Phi_2^{\tau} = \Phi_2$ and τ is not the identity mapping on L. Therefore, $L(\Phi_2) \otimes L(\Phi_2)^d$ has at least two p-systems.

As was seen in the examples above, in case where $|G(\mathcal{L})| ||T(\mathcal{L})|$, there exist the following both cases:

1. For some $\Phi \in T(\mathcal{L})$, there exists $\tau \in G(\mathcal{L})$ such that $\tau \neq 1$ and $\Phi^{\tau} = \Phi$.

2. $\Phi^{\tau} = \Phi, \tau \in G(\mathcal{L}), \Phi \in T(\mathcal{L}) \text{ imply } \tau = 1.$

Now, we easily obtain the following from the group theory:

THEOREM 14. Let $|G(\mathcal{L})| ||T(\mathcal{L})|$, and $T_{\Phi}(\mathcal{L})$ the system of transitivity (of $T(\mathcal{L})$ with respect to $\overline{G(\mathcal{L})}$) which contains Φ . Then, $H(\mathcal{L}) = 1$ and $|T_{\Phi}(\mathcal{L})| = |G(\mathcal{L})|$ for all $\Phi \in T(\mathcal{L})$ if and only if $L(\Phi) \otimes L(\Phi)^d$ has a unique p-system for all $\Phi \in T(\mathcal{L})$.

Further,

THEOREM 15. If $\Phi_1^{\tau} = \Phi_2$ for Φ_1 , $\Phi_2 \in T(\mathcal{L})$ and for $\tau \in G(\mathcal{L})$, $L(\Phi_1) \otimes L(\Phi_1)^d$ and $L(\Phi_2) \otimes L(\Phi_2)^d$ have the same number of p-systems.

PROOF. Both Φ_1 and Φ_2 are contained in the same system of transitivity. Hence, $T_{\Phi_1}(\mathscr{L}) = T_{\Phi_2}(\mathscr{L})$. Therefore, $|T_{\Phi_1}(\mathscr{L})| = |\overline{G(\mathscr{L})}: \overline{F_{\Phi_1}(\mathscr{L})}| = |\overline{G(\mathscr{L})}: \overline{F_{\Phi_2}(\mathscr{L})}| = |T_{\Phi_2}(\mathscr{L})|$. Thus, $|\overline{F_{\Phi_1}(\mathscr{L})}| = |\overline{F_{\Phi_2}(\mathscr{L})}|$. Let \mathscr{P}_1 and \mathscr{P}_2 be the sets of p-systems in $L(\Phi_1) \otimes L(\Phi_1)^d$

7

and in $L(\Phi_2) \otimes L(\Phi_2)^d$ respectively. Then, it follows from Theorem 8 that $|\mathscr{P}_1| = |H(\mathscr{L})| |\overline{F_{\Phi_1}(\mathscr{L})}| = |H(\mathscr{L})| |\overline{F_{\Phi_2}(\mathscr{L})}| = |\mathscr{P}_2|.$

References

- [1] Nordahl, T. E. and H. E. Scheiblich, Regular * semigroups, Semigroup Forum 16 (1978), 369-377.
- [2] Scheiblich, H. E., Generalized inverse semigroups with involution, Rocky Mountain J. Math. 12 (1982), 205-211.
- [3] Yamada, M., Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392.
- [4] —, On a regular semigroup in which the idempotents form a band, Pacific J. Math. 33 (1970), 261-272.
- [5] —, P-systems in regular semigroups, Semigroup Forum 24 (1982), 173-187.