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A unary operation *: S—S on a semigroup S is called a special involution if it satisfies
1) (x¥)*=x, (2) (xp)*=y*x* and (3) xx*x=x for all x, yES. It has been shown by [5] that
every special involution in a regular semigroup S is determined by the p-system in S. In this
paper, we shall determine all the p-systems in a generalized inverse semigroup S, and accordingly
all the special involutions in S. Further, we shall investigate the cardinality of the set of
p-systems in S.

§1. Preliminary

A regular semigroup S equipped with a unary operation #: S—S is called a special
x-regular semigroup if it satisfies (1) (x*)*=x, (2) (xy)*=y*x* and (3) xx*x=x for all
x, yeS. The unary operation = is called a special involution in S. If a regular semi-
group S admits at least one special involution, then S is called specially involutive.
We sometimes denote by (S, #) a special *-regular semigroup S equipped with a special
involution #. In the previous paper [5], the concept of a p-system in a regular semi-
group S has been introduced. A subset P of the set E(S) of idempotents of S is called
a p-system in S if P satisfies the following (1)~(3):

(C.1) (1) For any x e S, there exists a unique x* € V(x) (the set of inverses of x) such
that xx*, x*xeP.
(2) For the operation ¥ defined above, x*Px <P for any x e S.
(3) P2cE(S).

It has been shown by [5] that in this case (S, ¥) is a special #-regular semigroup.
Further, it has been proved that a regular semigroup admits a special involution if and .
only if it has at least one p-system. The operation # above is called the special involu-
tion determined by P, and denoted by #p. Conversely, if (S, *) is a special s-regular
semigroup then the set of projections of (S, *), that is, the set P= {ee E(S): e*=e} is a
p-system in S (see [5]). We denote this P by P,. Now, it is easy to see that the set of
projections of a special x-regular semigroup (S, *p), where P is a p-system in S, is P,
and the special involution in S determined by Py, where * is a special involution in S,
is x. Let 2(S) be the set of all p-systems in a regular semigroup S, and #(S) the set
of all possible special involutions in S. It is obvious that 2(S)=o if and only if
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J(S)=o. Letf: 2(S)—»4(S) and g: #(S)->P(S) be the mappings defined by Pf=
*p and =g = P, respectively. Then, since Pfg=P and #gf==, fg and gf are the identity
mappings on 2(S) and #(S) respectively. Hence, |2(S)|=|#(S)| (| | means cardi-
nality). In [5], it has been shown that for a generalized inverse semigroup S, P is a
p-system in S if and only if P is a'p-system in the normal band E(S). Therefore, in this
case |2(S)| =|2(E(S))|=|#(E(S))|=|#(S)|. In the following sections, we shall inves-
tigate the cardinality of £2(S) of a normal band S (hence, a generalized inverse semi-
group S).

Remark. Let S be a generalized inverse semigroup, and #, ¥ special involutions in
S. It has been proved by [2] and [5] that (S, ¥) and (S, #) are s-isomorphic, that is,
there exists an isomorphism f: S— S such that x*f=(xf)* for all xeS.

§2. Normal bands with special involution

Let S be a normal band. By Scheiblich [2] and the author [5], S admits a special
involution if and only if S is isomorphic to the spined product LQ L? of a left normal
band L and its dual semigroup L¢.

Note. That is, L¢=L as set, and for any x, y € L4, xoy =yx (the product of x, y
in L), where o means the multiplication in L9. '

Let Ybe a semilattice, and 4, B bands which are semilattice Y of rectangular bands
{4,: «e Y} and a semilattice Y of rectangular bands {B,: o€ Y} respectively (in this
case, we say that 4, B have the structure decompositions A~2{4,: ae Y} and B~
2{B,: a € Y} respectively). Then, C=2{4,Xx B,: a € Y}, where x means “direct prod-
uct’’ and X means “disjoint sum’’, becomes a subsemigroup of A x B. This C is called
the spined product of 4 and B, and denoted by A®B.

From the above, if a normal band S admits a special involution then we can assume
that S=L®L?, where L is a left normal band and L¢ its dual semigroup. If L is a
semilattice Y of left zero semigroups {L,: a € Y}, that is, if L has the structure decom-
position L~X{L,: « € Y}, then L4 is a right normal band and has the structure decom-
position LY~X{LZ: a €Y}, where L? is the dual semigroup of L, and L®L? is a
semilattice Y of square bands (see [5]) {L,x L3: a e Y}, that is, L®L? has the structure
decomposition LQL~2Z{L,x Li: e Y}. Hereafter, the notion “a band B=Z{B,:
y€ Y;}’ means that B is a band which is a semilattice ¥; of rectangular bands {B,:
yeY;}. Of course, each L, and L above are a left zero semigroup and a right zero
semigroup respectively. Now, let LQL¢=X{L,x Lé: o€ Y} be a normal band which
admits a special involution, where L is a left normal band. Let - and o be the multipli-
cations in L and L? respectively. Then, of course x-y=yox for all x, ye L (hence,
for x, ye L9). Now, it is easy to see that P={(i, i)e L,x L¢: a € Y} is a p-system in
L®L. In general, if F is a p-system in LQL? then F is the set of projections in
(L®LY, #g). Hence, each L-class [each R-class] contains a unique element of F.
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Therefore, there exists a bijection 7: L—L such that L,r=L, for all xe Yand F={(j,
it): ieL, ac Y} (see also [5]). It is easily seen that #p is defined by 7 as follows:
G, jyF=(jz~1, ir). Since F satisfies (C.1), (2), (i,))(u, ut)(je~!, it)e F (where
(u, ut)e Lyx L§n F). Hence, (i-u)r=it-ut, that is, v is an automorphism. Thus,
we have the following:

TaeoreM 1. Let L=X{L,: ac Y} be a left normal band, and S=L®L? the
spined product of L and its dual semigroup L4, Let t: L—L be an automor-
phism of L such that L,x=L, for alla € Y. Then, S is a normal band which admits a
special involution, and F={(i, it): i€ L,, ae Y} is a p-system in S. Further, every
p-system in S is obtained in this way.

Proor. The latter half was seen above. The first half: Let 7 be an automor-
phism of L such that L,r=L, for all xe Y. We need only to show that F={(i, it):
ieL,, oac Y} satisfies (C.1), (1), (2). For all elements (i, j)€ L,x Lia € Y), let (i, H)f=
(jr~1,it). Then, (i, )(jr~4, in)=(, ir)eF and (jr~1, i1)(i, D=(r"L, j) eF.
Hence, (i, /) (i, j)*, (, j)¥(i, j) € F and (i, j)* € V((i, j)). If there exists (u, v)e V((i, )
such that (u, v)(i, j), (i, j)(u, v) € F, then j=ut and v=it. Hence (u, v)=(jz~", i1).
Thus, (C.1), (1) is satisfied. (C.1), (2): For any (i, j)eL,xL¥xeY) and for any
(u, ut)e Lyx LiBe Y), (i, j)(u, ur)(jr~t, i)=(i-u jt=1, jouteit)=(i-u, it-ut)=(i-
u, (i-u)r)eF.

From the result above, the problem of determining all p-systems in S=L®L? is
reduced to that of determining all automorphisms f: L— L satisfying

(C2) L,f=L, for everyaeY.

An automorphism f of L satisfying (C.2) is called a Y-restricted automorphism or more
simply a restricted automorphism on L=2{L,: «e Y}. The set of all restricted auto-
morphisms on L=X{L,: ae Y} is clearly a group with respect to the usual resultant
composition. We denote it by Gy, and call it the group of restricted automorphisms
on L=X{L,: a€Y}.

§3. The restricted automorphisms Gy,

Let L=Z{L,: ae Y} be a left normal band. Then, it is well known that L is a
strong semilattice ¥ of {L,: «€ Y}. Hence, there exists a family of homomorphisms
(¢5: a>=p, a, e Y}, where each ¢f is a homomorphism of L, into L (this is just a
mapping), such that
(C.3) (1) ¢2=the identity mapping on L, for all xe ¥,

Q) dspf=¢ for a>p>v, a, B, €7,
and (3) the multiplication - in L is given by

X-y =(x¢§a)'()’¢ga)=x¢§a for xeL ye L;.
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Hereafter, we shall call {¢5: a>pf, «, €Y} the characteristic family of homomor-
phisms for L=X{L,: a€Y}. ’
Now,

LemMmA 2. Gpat if and only if T is a bijection on L such that
(1) Lgz=L,forallacV, and
(2) t95=agt for all a, fe Y with a>p.

Proor. To prove “if”’ part, it is need only to show that 7 is a homomorphism.
Let xeL, yeLs Then, (x-y)t=(x¢2)t=x¢%1=x10%=x1d%;  yrdls=x1-yt.
Hence, 7 is a homomorphism. The “only if”” part: For xeL, and ye Ly, (x-y)t=
xt-yt. Hence, (x¢;- y¢§ﬁ)‘c=x1:¢g,,- ytdhs, and accordingly xp3t=x10%5 There-
fore, g2t =102

If a bijection © on L satisfies (1) of Lemma 2, then t is called a restricted bijection
on L=Y{L,: e Y}. If 7 further satisfies (2) of Lemma 2, then 7 is said to be com-
patible with ®={¢§: a>p, a, fe Y}. '

Now, we have the following:

THEOREM 3. Let L=X{L,: a€ Y} be a left normal band, and let S=L®L".
Let @={¢§: a>p, a, B Y} be the characteristic family of homomorphisms for L=
2{L,: e Y}, and Gy the set of all restricted bijections on L=X{L,: o € Y} which are
compatible with ®. Then, Gy is a group, and |2(S)|=|Gy|.

Examples. 1. If L is a left zero semigroup, G, is the group of all bijections on L,

that is, G, is the symmetric group on L. Therefore, S=LQ®LI(=L x L%) is a square
band (see [5]), and 2(S) coincides with the cardinality of the symmetric group on the
set L.
2. Let Y be a semilattice consisting of &, f and 0 such that «f=0 and O is a zero
element. Let L be a left normal band whose structure decomposition is L~X{L,:
¢eY}, where L,={a}, Ly,={b} and Lo={e, f}. Let {¢}: £>1, £, ne Y} be the char-
acteristic family of homomorphisms for L=X{L,: £ € Y}, where L,¢§=e and Lp¢>g =f.
Then, in this case G, =1, and hence L® L? has a unique p-system.

CoOROLLARY 4. Let L=X{L,: a€ Y} be a left normal band. Then, the following

two conditions are equivalent.

(1) A restricted automorphism on L=X{L,: «€ Y} is unique (hence, it is the
identity mapping on L),

(2) A restricted bijection on L which is compatible with the characteristic family
of homomorphisms for L=X{L,: a.€ Y} is unique (hence, it is the identity
mapping on L).

In this case, LQL? has a unique p-system.
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§4. The group of restricted bijections

Let S={S;: ieI} be a collection of sets S, iel, and S=2{S;: iel} the disjoint
sum of all S;. If a bijection f: S—S satisfies S;f=S, for all iel, then f is called a
I-restricted bijection or more simply a restricted bijection on S=X{S;:iel}. The
set G(S) of all restricted bijections on S=2{S;: i e I} forms a group with respect to the
usual resultant composition. Now, let Y be a semilattice, and L, a left zero semigroup
foreachae Y. Let £={L,: aeY}. For each pair (o, f) € Yx Y with a>p, let ¢ be
a mapping (hence, a homomorphism) of L, into L,. If the collection ®= {p5: =B,
o, B e Y} satisfies the conditions (C.3), (1) and (2), then it is well known that L=X{L,:
ae Y} (disjoint sum) becomes a left normal band under the multiplication- defined by

X y=x¢j for xeL,, yeLg.

Of course, L(+) is a strong semilattice Y of {L,: «€ Y} and has {¢§: a>p, a, f € Y} as
its characteristic family. This L(-) is called the left normal s-composition of {L,:
o€ Y} determined by @, and denoted by L(®). The system @ above is called a tran-
sitive system of homomorphisms for ¥ ={L,:aeY}. Let T(Z) be the set of all
transitive systems of homomorphisms for & ={L,: ae Y}. For any 7€ G(#) and any
deT(Z), where d={P§: a>p, o, fc Y}, let O*={t"'Pjr: a>p, «, BeY} (where
x v i¢gr=x(t| L)~ '¢§(t| Ly) (v | L, means the restriction of 7 to L;)). -

THEOREM 5. Let Y be a semilattice, and ¥ ={L,: a€ Y} a collection of left zero
semigroups L,. Let ®={¢j:a>p, o, Be Y} be a transitive system of homomor-
phisms for &£, and © a restricted bijection on L=Z{L,: a€ Y} such that &*=9, then
L becomes a left normal band under the multiplication - defined by x-y=x¢3s for
xeL, yeL, and LQL? is a special *-regular semigroup with respect to the operation
% defined by (i, jy*=(jt~1, it). Further, every specially involutive normal band
L®L? and every special involution % in LQL? can be obtained in this way.

Proor. Obvious from the discussion above.
For any 7 € G(%) above and for any @ € T(%),

LemMA 6. @7 is a transitive system of homomorphisms for {L,: «€ Y}.

ProoF. For any xe L, x(t-1¢2t)=(xt~1)r=x. Hence, 17 1¢st is the identity
mapping on L, Next, for any o, f,yeY with a>p>y and for any xe L,
x(r71pgr) (7 1gh)=xt L pgplr=x(1"1¢%1).  Hence, (r™1¢27) (z7 1phr)=1"1sr.
Thus &*={t"'Pjr: a>p, o, fe Y} is a transitive system of homomorphisms for
{L,: ae Y}. For some 7€ G(#), we have ¢*=9 for all e T(Z). (Of course, if 7
is the identity mapping on L then 1€ G(%) and &*=9). H(ZL)={r1eG(Z): I'=2
for all ® € T(%)} is a subgroup of G(Z).
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Lemma 7. H(Z) is a normal subgroup of G(Z).

Proor. Let ne H(Z) and 1eG(¥). For any de T(¥), & '=((P" "))y =
9" '*=&. Hence, 1~ yre H(¥). Therefore, we can consider the factor group
G(£)=G(#)/H(Z). We shall denote the coset containing 1€ G(#) by 7. For
P e T(Z), we define @* by ¢*=¢&*. It is obvious that this is well defined. If &*=
@° for all ®e T(%), then 7=5. Therefore, we can regard G(&) as a permutation
group on T(&). For any ® e T(%), let Fo(£) be the fixed group of @. Hereafter,
let Y be a semilattice, ¥ ={L,: e Y} a collection of left zero semigroups and L=
2{L,: a € Y} (disjoint sum).

Obviously,

TreorREM 8. If |H(Z)|>1, then LQL? has at least two p-systems for any left
normal s-composition L of {L,: a € Y}.

COROLLARY 9. If |H(Z)||Fo(Z)|>1, then L(®)QL(®)* has at least two p-
systems. In this case, |2(L(®)Q L(D)?)| = |H(L)| |[Fo(L)|.

Hereafter, we consider the case |G(Z)| < and |T(#)| <. Decompose T(Z)
into the systems of transitivity with respect to G(#): T(£)=4,+4,+ -+ 4,, where
each 4; is a system of transitivity and 4 denotes “disjoint sum”. Hence, if @, 4,,
then 4;={®}: 7€ G(¥)}. The length /; of 4; is given by /;=|4,|=|G(Z): Fo(2)|
(the index of Fo(£) in G()). Hence, /,||G(P)| for all i=1, 2,...,r. If /;=|G(2)|
for all i, then r|G(#)|=|T(Z)|. Therefore, |G(Z)|||T(¥). Hence, we have the
following:

THEOREM 10. If |G(L)|X|T(L), then there exists ® e T(¥) such that L(®)®
" L(®)? has at least two p-systems.

Proor. If [H(Z)|> 1, then this theorem follows from Theorem 8. Suppose that
|[H(Z)|=1. Then, G(£)=G(#). Hence, |F,(Z)|>1 for some ®,c4; Therefore,
L(9)®@L(®,)* has at least two p-systems.

In particular, let us consider the case |T(%)|<|G(%)|. In this case, for any
@ e T(Z) there exist at least two-different 7, 7, € G(#) such that =@ Then,
97%'=® and 7,7;'# 1 (the identity of G(%)). Therefore, L(®)QL(P)’ has at
least two p-systems. Thus, we have the following results:

CoroLLARY 11.  If |T(2)|<|G(£)|, then L(®)R@L(®)* has at least two p-systems
Jor any ®e T(Z).

COROLLARY 12. If I(®)QL(P)? has a unique p-system for every ® e T(¥), then
|G T(Z).

CoroLLARY 13.  If |G(D)||IT(Z), |H(Z)|=1 and G(&) is a transitive group,
then L(®)QL(®P)* has a unique p-system for every ® € T(Z).
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Remark. It is obvious that |G(%)| can be evaluated as follows: Let |L,|=n, for
acY. Then, |G(&)=T1@,D.
aeY

Examples. Let Y={a, B, 0} be a semilattice such that «f=fu=0 and 0 is the zero
element.

1. Let L,={a, b}, Ly={c, d} and Lo={e, f} be left zero semigroups. Put =
{L;: (€Y}, and L=2{L,: (e Y}. In this case, |T(#)|=16 and [G(Z)|=8. Hence
|G(2)|||IT(£)|. Now, consider the transitive system @={¢3, 4, B3, P, ¢5} such
that ¢&: {a, b}—e, ¢4: {c, d}—~e. Then, for 1€ G(Z) such that at=b, br=a, c1= d,
dr=c, et=e and fr=f, @ =®. The bijection 7 is clearly not an identity mapping.
Hence, L(@)® L(®)¢ has at least two p-systems.

2. Let L,={a}, Ly={b} and Lo={e, f} be left zero semigroups. Put & ={L,,
Ly, Lo}, and L=2{L,: (€ Y}. Then, |T(#)|=4 and |G(£)|=2. Hence, |G(Z)|
|T(Z)|. In this case, it is easy to see that 1€ G(&) and &*=d for PeT(¥) imply
t=1 (the identity of G(#)). Therefore, L(®)® L(P)? has a unique p-system for every
e T(L).

3. Let L,={a, b}, Ly={c} and Ly={e, f} be left zero semigroups. Put &=
{L, Ly, Lo}, and L=Z{L.:¢eY}. Then, |T(£) =8 and |G(£)|=4. Hence,
|G(2)|||IT(£)|. Now, consider the transitive system @,={¢g, ¢ﬁ, 9, 98, P5} such
that agg=e, bpg=f and cpf=e. Then, L(®;)QL(P,) has a unique p-system. On
the other hand, consider the transitive system @,={y2, V4, 3, y§, ¥4} such that
- ayg=e, bYg=cand cyj=e. Take the bijection 7 € G(&) such that at=b, br=a, et=e
and ft=f. Then, ®;=®, and 7 is not the identity mapping on L. Therefore, L(®,)®
L(®,)* has at least two p-systems.

As was seen in the examples above, in case where |G(Z)|||T(Z)|, there exist the
following both cases:

1. For some @ € T(.%#), there exists 7€ G(%) such that t#1 and ¢*=

2. =0, 1€G(&), PeT(ZL) imply 7=1.

Now, we easily obtain the following from the group theory:

THEOREM 14. Let |G(2)|||T(L)|, and Ty(L) the system of transitivity (of T(Z)
with respect to G(£)) which contains ®. Then, H(£)=1 and |To(£)|=1G(£)| for all
@ e T(Z) if and only if L(®)QL(®)* has a unique p-system for all @ € T(Z).

Further,

THEOREM 15. If 1=, for &, D, € T(Z) and for 1€ G(ZL), L(¢1)®L(¢I>l)" and
L(®,)QL(®,)¢ have the same number of p-systems.

Proor. Both @, and &, are contained in the same system of transitivity. Hence,
To(2L)=To,(£). Therefore, |To,(£)|=|G(L): Fo (£)|=|G(L): Fo,(L)|=|To (L)l
Thus, |[Fe (£)|=|Fs,(£)|. Let 2, and 2, be the sets of p-systems in L(®,)QL(P,)?
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and in L(®,)QL(P,)? respectively. Then, it follows from Theorem 8 that |2,|=
|[H(Z) |Fo (£)|=|H(Z)||Fp (L) =|2,]|.
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