

Title

Oral administration of ethanolamine glycerophospholipid from ascidian viscera improves memory impairment in amyloid β -infused rats

Author(s)

Shinji Yamashita, Michio Hashimoto, Abdul Md Haque, Kiyotaka Nakagawa, Mikio Kinoshita, Osamu Shido, Teruo Miyazawa

Journal Lipids, Volume 52, Issue 7

Published 2017 May 27

URL https://doi.org/10.1007/s11745-017-4260-3

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

Oral administration of ethanolamine glycerophospholipid from ascidian viscera improves memory impairment in amyloid β -infused rats

Journal:	Lipids
Manuscript ID	Draft
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Yamashita, Shinji; Obihiro university of agriculture and veterinary medicine, Food science Hashimoto, Michio; Shimane University Faculty of Medicine, Environmental Physiology Haque, Albdul; Shimane Daigaku Igakubu Igakuka Daigakuin Igakukei Kenkyuka Nakagawa, Kiyotaka; Tohoku University, Biodynamic Chemistry Lab Kinoshita, Mikio; Obihiro Univ., Shido, Osamu; Shimane University Faculty of Medicine, Environmental Physiology Miyazawa, Teruo; Tohoku University, Biodynamic Chemistry Lab;
Keywords:	Phospholipids < Specific Lipids, Docosahexaenoic acid < Specific Lipids
	SCHOLARONE [™] Manuscripts

Oral administration of ethanolamine glycerophospholipid from ascidian viscera improves memory impairment in amyloid β-infused rats

Shinji Yamashita,^{a,c} Michio Hashimoto,^b Abdul Md. Haque,^b Kiyotaka Nakagawa,^c Mikio Kinoshita,^a Osamu Shido,^b Teruo Miyazawa^{*c-e}

Running head: PlsEtn improves memory function in AD rats

^aDepartment of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; ^bDepartment of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Japan; and ^cFood and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, ^dFood and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), and ^eFood and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan

***Corresponding author**. Professor T. Miyazawa, Food and Biotechnology Innovation Project, NICHe, Tohoku University, Sendai 980-8579, Japan. Tel: +81-22-717-8900. Fax: +81-22-717-8905. E-mail: miyazawa@m.tohoku.ac.jp

Keywords: Alzheimer's disease, amyloid- β , plasmalogen, DHA, rats

1 Abstruct

2	Ethanolamine plasmalogen (PlsEtn), a major phospholipid in neuronal membranes (60-
3	90 mol% of ethanolamine glycerophospholipid; EtnGpl), is specifically decreased in
4	brains from patients with Alzheimer's disease (AD).Objective: The present study
5	investigated how PlsEtn administration affects cognitive deficits and lipid composition
6	in an animal model of AD. AD model rats were infused with amyloid- β (A β) into the
7	cerebral ventricle and divided into 3 groups. Control, Egg, and Ascidian groups were
8	then orally administrated vehicle, egg yolk EtnGpl (260 µmol as EtnGpl/kg BW; 10
9	μmol as PlsEtn/kg BW), or ascidian viscera EtnGpl (260 μmol as EtnGpl/kg BW; 209
10	μ mol as PlsEtn/kg BW), respectively. After 4 weeks of dosing, A β -infused rats were
11	tested for learning ability in an 8-arm radial maze. The administration of ascidian
12	viscera EtnGpl improved both reference and working memory-related learning abilities.
13	In lipid analysis, the Ascidian group showed higher levels of PIsEtn species in the
14	plasma, erythrocytes, and liver when compared to other groups. In addition, although
15	there were no differences at levels of total plasmalogen including choline plasmalogen,
16	the Ascidian group had significantly higher levels of 18:0/22:6-PlsEtn in the cerebral
17	cortex. These levels of 18:0/22:6-PlsEtn in the cerebral cortex were correlated with

- 18 working memory-related learning ability. Moreover, 18:0/22:6-PlsEtn levels in the
- 19 cerebral cortex showed positive correlations with those in the erythrocytes and liver. In
- 20 summary, dietary PlsEtn, especially that with 22:6n-3 (docosahexaenoic acid, DHA),
- 21 may ameliorate learning deficiencies in AD by altering lipid composition in the brain.
- esp.

23 Abbreviations

24	Αβ	amyloid-β
25	AA	arachidonic acid (20:4n-6)
26	AD	Alzheimer's disease
27	ALA	α-linolenic acid (18:3n-3)
28	ALT	alanine aminotransferase
29	AST	aspartate aminotransferase
30	DHA	docosahexaenoic acid (22:6n-3)
31	DMA	dimethyl acetal
32	DPAn-3	docosapentaenoic acid (22:5n-3)
33	EPA	eicosapentaenoic acid (20:5n-3)
34	EtnGpl	ethanolamine glycerophospholipid
35	FAME	fatty acid methyl esters
36	γ -GTP	γ-glutamyltranspeptidase
37	HDL	high density lipoprotein
38	HPLC	high-performance liquid chromatography
39	LNA	linoleic acid (18:2n-6)

40	PlsEtn	ethanolamine plasmalogen or
41	1-O-alkenyl-2-a	cyl-sn-glycero-3-phosphoethanolamine
42	PtdCho	phosphatidylcholine or 1,2-diacyl-sn-glycero-3-phosphocholine
43	PtdEtn	1,2-diacyl-sn-glycero-3-phosphoethanolamine
44	PUFA	polyunsaturated fatty acid(s)
45	RBC	red blood cell(s)
46	ROS	reactive oxygen species
47	RME	reference memory error(s)
48	TBARS	thiobarbituric acid-reactive substances
49	WME	working memory error(s)
50		

51 Introduction

J_{2} = Emandramine Envertophosphonipla (Europh) is a major class of Envertophosphon	or class of glycerophospholipid
--	---------------------------------

- 53 found in biological membranes. EtnGpl exists in three forms with alkyl, alkenyl, or acyl
- 54 linkages at the sn-1 position of the glycerol moiety:
- 55 1-O-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine,
- 56 1-O-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine (PlsEtn), and
- 57 1,2-diacyl-sn-glycero-3-phosphoethanolamine (PtdEtn), respectively. The alkenylacyl
- 58 form is called plasmalogen. The aliphatic moiety at the sn-1 position of PlsEtn consists
- of C16:0 (palmitoyl), C18:0 (stearoyl), or C18:1 (oleoyl) carbon chains, whereas the
- 60 sn-2 position mainly consists of polyunsaturated fatty acids (PUFA) such as 22:6n-3
- 61 (DHA) and 20:4n-6 (ARA). PUFA released from PlsEtn can be metabolized to
- 62 eicosanoids and docosanoids, which exhibit various bioactivities [1]. PlsEtn is
- distributed in most mammalian tissues and cells, and its concentration in the nervous
- 64 system is high [2]. Further, owing to its hexagonal phase formation propensity, PlsEtn
- are involved in membrane fusion during synaptic transmission [3]. PlsEtn can also
- 66 prevent cell death by scavenging reactive oxygen species (ROS) such as singlet oxygen
- $(^{1}O_{2})$ and superoxide (O^{2-}) at its alkenyl (vinyl ether) linkages [4, 5].

68	Alzheimer's disease (AD) presents with brain atrophy caused by neuronal loss as a
69	prominent pathological feature. The neuronal loss in AD occurs through apoptosis [6, 7],
70	and amyloid- β (A β) peptide, the major component of senile plaques in the AD brain,
71	was reported to induce neuronal apoptosis [7]. Infusion of $A\beta$ into the cerebral ventricle
72	induced brain atrophy and cognitive deficits in rats [8, 9].
73	On the other hand, PlsEtn levels were reported to be specifically decreased in
74	postmortem brains from patients with AD [10]. In our previous study, we showed that
75	PlsEtn from bovine brains suppresses neuronal cell death [11]. Moreover, PlsEtn species
76	with DHA showed the strongest suppression of neuronal apoptosis when compared to
77	other PlsEtn species and other EtnGpl with DHA [12]. These observations suggested
78	that PlsEtn is involved in AD, and the maintenance or increase in PlsEtn level,
79	especially that containing DHA, in the brain may prevent the pathogenesis and
80	progression of AD via suppression of neuronal apoptosis.
81	Although bovine brain has been the primary PlsEtn resource, outbreaks of bovine
82	spongiform encephalopathy made its use difficult. However, in our previous studies,
83	some marine invertebrates, especially ascidian viscera, were found to be resources of

84 PlsEtn species with DHA, and preparation and analytical methods were developed

85 [13-15].

- 86 The present study investigated whether administration of PlsEtn from marine ascidian
- 87 viscera would affect cognitive deficits and lipid composition in an animal model of AD.
- 88

89 Materials and methods

90 Materials and reagents

91 Ascidian and hen eggs were respectively purchased from a fishing harbor and local

92 supermarkets in Sendai, Japan; phospholipids (Phospholipid Kit) were purchased from

93 Doosan Serdary Research Laboratories (Toronto, ON). Supplies of 18:0/22:6-PlsEtn,

94 18:0/20:4-PlsEtn, and 18:0/18:1-PlsEtn were purchased from Avanti Polar Lipids

95 (Alabaster, AL), and 18:0/20:5-PlsEtn was purified according to the methods reported

96 previously [14]. Fatty acid methyl esters (FAME) GLC-68A were purchased from

97 NU-CHEK-PREP (Elysian, MN), and fatty acids EPA and DPAn-3 were purchased from

- 98 Cayman Chemical Co. (Ann Arbor, MI) and methylated. Hexadecanal dimethyl acetal
- 99 (DMA), octadecanol, and 23:0 were purchased from Sigma Chemical Co. (St. Louis,
- 100 MO). Octadec-9-enol was purchased from Wako Pure Chemical (Osaka, Japan);

101	octadecanal DMA and octadec-9-enal DMA were prepared from octadecanol and
102	octadec-9-enol, respectively [14]. A β_{1-40} was purchased from Peptide Inst. (Osaka,
103	Japan), and an Alzet 2002 mini-osmotic pump was purchased from Durect Co.
104	(Cupertino, CA).
105	Purification of EtnGpl from egg yolk and ascidian viscera
106	EtnGpl was prepared by a modification of our previous method [14]. Briefly, neutral
107	lipids were removed from freeze-dried ascidian viscera and egg yolk with acetone. After
108	the residue was prepared according to the method described by Folch et al. [16], neutral
109	lipids and sphingolipids were removed with acetone and diethylether. The crude
110	glycerophospholipid fraction was subjected to silica gel column chromatography with
111	the following solvent systems: chloroform-methanol (95:5, v/v), chloroform-methanol
112	(4:1, v/v), and chloroform-methanol (3:2, v/v).
113	Animals and diet
114	All animal experiments were performed according to the Guide for Care and Use of
115	Laboratory Animals at Shimane University Faculty of Medicine compiled from the
116	Guidelines for Animal Experimentation of the Japanese Association for Laboratory
117	Animal Science. Wistar rats (generation 1, G1) (Jcl: Wistar; Clea Japan) were housed in

118	a room under controlled temperature ($23 \pm 2^{\circ}$ C), relative humidity ($50 \pm 10\%$), and
119	light-dark cycles (light: 08:00 to 20:00; dark: 20:00 to 08:00). Rats consumed a fish
120	oil-deficient but an ALA-rich diet (F-1®; Funabashi Farm), the ingredients and fatty
121	acid composition of which have been described in a previous study,45 and water ad
122	libitum. Experiments were performed on the inbred 4th generation male rats ($n = 24$; 12
123	weeks old; 324.4 \pm 5.2 g body weight) fed the same F-1 diet.
124	Preparation of Aβ-infused rats
125	Preparation of A β -infused rats was performed as described previously [9, 17]. This
126	procedure greatly improved the reproducibility and reliability of this animal model of
127	AD, rats with impaired memory. Briefly, 2 holes (right and left, relative to the bregma;
128	0.8 mm posterior, 1.4 mm lateral) were drilled in the rats' skulls according to the atlas of
129	Paxinos and Watson [18]. To facilitate aggregation of A β peptide, 0.5 µg AlCl ₃ was
130	injected through a 3.5 mm cannula into the right ventricle. A mini-osmotic pump
131	containing A β_{1-40} solution (4.9–5.5 nmol) was quickly implanted in the back of the rat.
132	The outlet of the pump was inserted 3.5 mm into the left ventricle and attached to the
133	skull with screws and dental cement. A β_{1-40} solution was infused for 2 weeks via the
134	osmotic pump.

135 Radial maze-learning ability and EtnGpl administration

136	The rats were tested for learning ability 2 weeks after the implantation of the
137	mini-osmotic pump to verify memory impairment. Learning-related behavior was
138	assessed using an 8-arm radial maze (Toyo Sangyo Co. Ltd., Toyama, Japan) [17].
139	Briefly, the rats were trained to acquire a reward (food-pellet) at the end of each of 4
140	arms of an 8-arm radial maze. The performance involved 2 parameters of memory
141	function, i.e., RME, entry into unbaited arms; and WME, repeated entry into arms that
142	had already been visited within a trial. The $A\beta$ -infused rats were divided into 3 groups
143	of equal learning ability. The Egg and Ascidian groups were then orally administrated
144	egg yolk EtnGpl (260 µmol EtnGpl/kg BW; 10 µmol as PlsEtn/kg BW) or ascidian
145	viscera EtnGpl (260 µmol EtnGpl/kg BW; 209 µmol as PlsEtn/kg BW) dissolved in
146	palm kernel oil; the Control groups were administrated an equal volume of vehicle
147	alone. All groups were administrated 500 μ L of 5% sodium bicarbonate solution before
148	administration of sample because the alkenyl linkage of PlsEtn is hydrolyzed by acids.
149	Four weeks after starting the administration of EtnGpl, rats were tested again for
150	learning ability using an 8-arm radial maze to assess the effect of EtnGpl on the
151	impairment of learning ability. Each rat was given 12 trials for 2 weeks.

152 Blood and tissue preparation

153	After completing the behavioral studies, rats were anesthetized with sodium
154	pentobarbital (65 mg/kg BW, i.p.). Blood, freshly collected from the abdominal aorta in
155	tubes with EDTA-2Na, was subjected to low-speed centrifugation (15 min, 1,000 \times g,
156	4°C) to separate the RBC from the plasma. The precipitated RBC were immediately
157	washed three times with 0.15 M NaCl and lipid extraction was then conducted. The
158	cerebral cortex, hippocampus, and liver were separated as described [9]. The plasma
159	and tissues were stored at -80°C by flash-freezing in liquid N_2 until use. The tissues
160	were homogenized in ice-cold saline using a Polytron PCU 2-110 homogenizer
161	(Kinematica, Luzern, Switzerland).
162	Lipid extraction and assay
163	RBC lipids were extracted from washed RBC with a mixture of 2-propanol and
164	chloroform to protect from hem-iron contamination [19]. Lipids of plasma and tissue
165	homogenates were extracted according to the method of Folch et al. [16]. Phospholipid
166	content was determined according to the method described by Rouser et al [20]. EtnGpl
167	content was analyzed by high-performance liquid chromatography (HPLC) with
168	evaporative light-scattering detection [13]. The average molecular weight was 769 for

16	59	EtnGpl. PlsEtn content was determined by the 2,4-dinitrophenylhydrazine method [21].
17	70	Fatty acid and aldehyde composition were determined by gas chromatography [22].
17	71	MS/MS analysis
17	72	PlsEtn species were analyzed by HPLC with a 4000 QTRAP quadrupole/linear ion-trap
17	73	tandem mass spectrometer (AB SCIEX, Tokyo, Japan) [14]. To quantify PlsEtn species,
17	74	multiple reaction monitoring of the transition of parent ions to product ions was
17	75	performed. Quantification of PlsEtn was performed for four molecular species:
17	76	18:0/18:1-PlsEtn, 18:0/20:4-PlsEtn, 18:0/20:5-PlsEtn, and 18:0/22:6-PlsEtn. Due to
17	77	limited hippocampal tissue, we could not quantify PlsEtn species in the hippocampus.
17	78	Other analytical methods
17	79	Plasma and liver α -tocopherols were measured by HPLC with fluorescence detection
18	30	[23]. TBARS were measured according to the method by Ohkawa et al. [24]. Plasma
18	81	levels of AST, ALT, γ -GTP, total cholesterol, and HDL-cholesterol were measured with
18	82	a TBA-120FR autoanalyzer (Toshiba Medical System Corp., Tochigi, Japan). The non
18	83	HDL-cholesterol concentration was calculated by total cholesterol subtracted by
18	84	HDL-cholesterol.
18	35	Statistical analysis

186	The data are expressed as means \pm SEM. Behavioral data were analyzed by two-way
187	factorial ANOVA followed by Fisher's PLSD for post hoc comparisons, and other
188	parameters were tested by one-way ANOVA followed by Scheffe's F-test. For
189	correlation analyses, Pearson's correlation coefficient test for normal data or
190	Spearman's rank correlation coefficient test for nonparametric data were used.
191	
192	Results
193	EtnGpl fraction from egg yolk and ascidian viscera
194	The EtnGpl fraction from egg yolk was 70 wt% EtnGpl. The PlsEtn level of egg yolk
195	was 4 mol% of EtnGpl. The prominent acyl moieties were 18:0 and 16:0 (Table 1). The
196	four PlsEtn species that were investigated were not detected. Conversely, the EtnGpl
197	fraction from ascidian viscera was 66 wt% EtnGpl. The PlsEtn level in ascidian viscera
198	was 80 mol% EtnGpl. The alkenyl moiety consisted mostly of 18:0, and the prominent
199	acyl moieties were 20:5n-3 (EPA) and DHA, which are n-3 PUFA. The ratios of n-3/n-6
200	and DHA/ARA were markedly higher than those of egg yolk. This ascidian viscera
201	EtnGpl consisted of 18:0/18:1-, 18:0/20:4-, 18:0/20:5-, and 18:0/22:6-PlsEtn (4.8, 5.5,
202	31.2, and 24.4 mol%, respectively).

203 Animal condition

204	A ft and a function in the state of the second	1 1 1		1		1
204	After administration and	i benavioral e	xperiments.	body and live	r weights ai	a not aiffer

- among the groups (Table 2). Moreover, there were also no differences in blood
- biochemical parameters (i.e., AST, ALT, γ -GTP, and cholesterols) and levels of
- 207 α-tocopherol and thiobarbituric acid-reactive substances (TBARS) indicative of
- 208 oxidative conditions.
- 209 Effect of EtnGpl administration on radial-maze learning ability
- 210 The effect of EtnGpl administration on reference (Fig. 1A) and working (Fig. 1B)
- 211 memory-related learning ability was expressed as the mean number of reference
- 212 memory error (RME) and working memory error (WME) for each group, with the data
- averaged over blocks of 2 trials. After 4 weeks of EtnGpl administration, both RME and
- 214 WME scores for blocks of the radial maze tasks undergone by Ascidian group were
- 215 lower than those of the Control and Egg groups. Conversely, the administration of egg
- 216 yolk EtnGpl did not attenuate memory impairment in AD model rats.

217 Alteration of levels of acyl and alkenyl moieties of blood and livers

- 218 After EtnGpl administration for 6 weeks, plasma DHA level was significantly higher in
- both the Egg and Ascidian groups than in the Control group, resulting in a significantly

220	higher DHA/ARA ratio (Table 3). In the Ascidian group, moreover, levels of EPA and
221	22:5n-3 (DPAn-3), which are n-3 PUFA, were also higher. The alkenyl moiety
222	expressed plasmalogens including PlsEtn and choline plasmalogen. The levels of total
223	and 18:0 plasmalogens were higher in the Ascidian group than in the Control group.
224	Alkenyl 18:0, DHA, and EPA were the prominent moieties in the ascidian viscera
225	EtnGpl.
226	In red blood cells (RBC), the DHA/ARA ratio was higher in the Ascidian group than in
227	the Control group (Table 4). Levels of 18:2n-6 (LNA), EPA, DPAn-3, and DHA in the
228	liver were higher in the Ascidian group than in the Control group. Total and 18:1
229	plasmalogen levels in the liver were higher in the Ascidian group than in the Control
230	group.
231	Alteration of levels of acyl and alkenyl moieties of brains
232	Table 5 shows carbon chain levels in the cerebral cortex and hippocampus of
233	A β -infused rats. There were no differences in plasmalogen and fatty acid levels between
234	three groups, except decreases in palmitate and DPAn-3 levels of Egg group. The
235	DHA/ARA ratio in the hippocampus was significantly higher in the Ascidian group than
236	in the Control group. The mol% of DPAn-3 in carbon chains in the cerebral cortex

237	(Control group: 0.11 ± 0.01 mol%, Egg group: 0.08 ± 0.01 mol%, Ascidian group: 0.15
238	\pm 0.01 mol%) and hippocampus (Control group: 0.10 \pm 0.01 mol%, Egg group: 0.08 \pm
239	0.01 mol%, Ascidian group: 0.13 ± 0.01 mol%) were significantly higher in the
240	Ascidian group than in the Control group.
241	Alteration of PlsEtn species levels of blood and tissues in Aβ-infused rats
242	In the blood and liver, levels of 18:0/20:5 and 18:0/22:6-PlsEtn, which are major
243	components in ascidian viscera EtnGpl, were higher in the Ascidian group than the
244	Control group (Table 6). The cerebral cortex level of 18:0/22:6-PlsEtn was significantly
245	higher in the Ascidian group than the Control group. There were no differences in the
246	levels of other PlsEtn species or total EtnGpl in the cerebral cortex between the three
247	groups (total EtnGpl Control group: 123.7 ± 7.2 nmol/mg protein, Egg group: $118.5 \pm$
248	14.7 nmol/mg protein, Ascidian group: 129.8 ± 8.8 nmol/mg protein).
249	Relationship between learning ability and PlsEtn levels
250	Plasma 18:0/22:6-PlsEtn levels had a negative correlation with RME in A β -infused rats
251	(Table 7). In addition, 18:0/22:6-PlsEtn levels in the cerebral cortex had a negative
252	correlation with WME. There were no correlations between RME or WME scores and

253 levels of other PlsEtn species or fatty acids including DHA (data not shown).

254 Relationship between levels of 18:0/22:6-PlsEtn in blood and tissues

- 255 The levels of 18:0/22:6-PlsEtn in the cerebral cortex were positively correlated with
- those in the RBC and liver (Table 7). Liver 18:0/22:6-PlsEtn levels were positively
- correlated with those in the plasma and RBC.
- 258

259 **Discussion**

- 260 PlsEtn has an important role for neurotransmission and the maintenance of membrane
- function on brain [3, 25], and its level is specifically decreased in brains from patients
- with AD [10]. In addition, PlsEtn level continues to decrease in the brain as AD
- advances [26], and the level of PlsEtn, especially PlsEtn bearing DHA, is decreased in
- the plasma and RBC of patients with AD [27]. Our group found that extrinsic PlsEtn
- suppressed neuronal apoptosis in vitro [11]. In this study, we investigated whether oral
- administration of EtnGpl containing high concentrations of PlsEtn would affect spatial
- 267 cognition learning ability and lipid composition in Aβ-infused rats produced by infusing
- 268 A β peptide into the brain.
- 269 In behavioral experiments, administration of ascidian viscera EtnGpl, which is rich in
- 270 PlsEtn, improved both reference and working memory-related learning ability in

271	A β -infused rats, while administration of egg yolk EtnGpl, which is poor in PlsEtn, did
272	not. In addition, administration of ascidian viscera EtnGpl increased levels of PlsEtn
273	species in the blood and tissues of A β -infused rats (Table 6). Levels of PlsEtn bearing
274	DHA were increased in the cerebral cortex, and the concentration had a negative
275	correlation with the WME scores, which indicated short-term memory impairment as an
276	AD character (Table 7). Our previous studies showed that the addition of PlsEtn with
277	DHA strongly suppressed neuronal apoptosis and destabilized A β fibrils in vitro [12, 27].
278	These results suggested that the increase in PlsEtn bearing DHA levels in the cerebral
279	cortex improved spatial cognition learning ability.
280	The administration of ascidian viscera EtnGpl also increased in DHA, DPAn-3, and EPA
281	levels in the plasma and liver (Table 3 and 4) but not in the RBC and brain (Table 4 and
282	5). Their fatty acid levels were reflected by absorption, elongation, and desaturation of
283	the C20 over n-3 PUFA in EtnGpl because all groups had been fed an α -linolenic acid
284	(ALA)-rich diet. Tissues, especially brain tissues have homeostasis, and thereby do not
285	markedly alter the levels of fatty acids and lipid classes [28, 29]. However, the lipid
286	levels in the RBC and brain markedly alter in case of extreme nutrient limitation for
287	long term[30] and certain disorders such as cognitive impairment [10, 31]. Decreases in

288	the lipid levels of tissues may be complemented by the administration of the lipid or the
289	precursor. Therefore, it will be more important to quantify lipid molecular species than
290	fatty acid composition.
291	$A\beta$ is deposited in the form of plaques in patients with AD, inducing oxidative stress
292	and chronic inflammation in the brain and resulting in AD pathologies [32, 33].
293	Excessive oxidative stress causes the activation of phospholipase A ₂ (PLA ₂), including
294	PlsEtn-selective PLA ₂ , to decrease brain PlsEtn level [2]. DHA released from PlsEtn is
295	metabolized to docosanoids (e.g., docosatrienes and resolvins), which have
296	anti-apoptotic and anti-inflammatory effects [34]. Moreover, PlsEtn acts as an
297	antioxidant and a chelation agent to protect neuronal cells from ROS- and iron-induced
298	oxidative injures [4, 35]. Thus, PlsEtn is sacrificed for the protection of neuronal cells.
299	However, decreases in neuronal cell PlsEtn activate γ -secretase, which produces A β
300	from Aβ protein precursor [36]. PlsEtn lack impairs intracellular cholesterol distribution,
301	affecting plasma membrane function and structural changes in the endoplasmic
302	reticulum and Golgi cisternae [37]. Increases in the cholesterol level of membrane rafts
303	also enhance A β production [38]. Taken together, PlsEtn degradation is important due to

304	its protective effect on neuronal cells, and the neuronal cells in which the amount of
305	PlsEtn is decreased become stress-prone.
306	Conversely, the activation of cytosolic PLA ₂ , which catalyzes phosphatidylcholine
307	(PtdCho), is also a key step in the AD brain [39]. ARA released from PtdCho is
308	metabolized to eicosanoids, which show apoptotic and inflammatory effects, through
309	the cyclooxygenase pathway [40, 41]. In addition, lyso-PtdCho from PtdCho is released
310	to initiate astrogliosis, neuroinflammation, and subsequent neurodegeneration [42].
311	PlsEtn and DHA reduce cytosolic PLA ₂ and cyclooxygenase activities, suppressing
312	neuronal apoptosis [12, 43]. Therefore, increases in the PlsEtn bearing DHA level and
313	DHA/ARA ratio are thought to moderate oxidative conditions in the brain. The
314	administration of DHA ethyl ester has been reported to ameliorate learning deficiencies
315	in A β -infused rats due to increased DHA/ARA ratios and suppressed ROS generation
316	[17]. The DHA/ARA ratio may possibly indirectly alter level of PlsEtn with DHA due
317	to be a storage depot of DHA.
318	In the present study, plasma levels of PlsEtn with DHA had a negative correlation with
319	RME scores, indicating long-term memory impairment (Table 7). Other researchers
320	have reported that cognitive impairment increased in patients with AD having low

321	levels of serum PlsEtn with DHA after a year [44]. Decreases in PlsEtn level have been
322	reported in the serum of patients with Parkinson's disease (PD) as a neurodegenerative
323	disease [45]. Administration of PlsEtn precursor increased levels of serum PlsEtn
324	bearing DHA in monkeys with dyskinesias caused by treatment of PD, improving
325	dyskinesia symptoms [46]. Moreover, PlsEtn with DHA/total PlsEtn ratios were
326	inversely correlated with dyskinesia symptoms. Plasma or serum PlsEtn levels may be
327	associated with brain PlsEtn level and central nervous system function. On the other
328	hand, administration of PlsEtn precursor increased plasma and heart levels of PlsEtn
329	and choline plasmalogen in atherosclerosis model mice that were deficient in ApoE or
330	ApoE/glutathione peroxidase-1, attenuating atherosclerosis [47]. Therefore,
331	improvement in the circulatory system may indirectly attenuate cognitive impairments.
332	As described above, it is thought that the level of PlsEtn having DHA in brain is
333	associated with brain functions. On the other hand, a number of studies on animals and
334	humans have reported that DHA administration has the potential to suppress the
335	incidence of AD in animals as well as in human [9, 17, 48]. Recently, it was reported
336	that in AD model mice (Tg2576), DHA supplementation for 1 year increases in the
337	brain PlsEtn with DHA [49]. Therefore, PlsEtn with DHA in the brain is emphasized as

338	an important factor for cognitive functions. However, there is a question whether the
339	administration of fatty acid DHA or PlsEtn with DHA is more effective for increasing in
340	the brain PlsEtn containing DHA. In AD brain, alkenyl chain and ethanolamine as well
341	as DHA are insufficient [10]. It has been reported that the EtnGpl level is strictly
342	managed by homeostasis [29], and the PtdEtn administration improves age-related
343	spatial memory deterioration [50]. Moreover, PlsEtn or the precursor has been reported
344	to pass the blood-brain barrier [51]. Further studies including clinical trials are required
345	to determine the availability of the administration of DHA and PlsEtn.
346	PlsEtn bearing DHA levels in RBC were correlated with the levels in the cerebral cortex
347	(Table 7). In our previous study, levels of RBC PlsEtn with DHA were decreased in
348	patients with AD compared to healthy subjects [27]. The levels of RBC PlsEtn having
349	DHA were correlated with the brain volumes of patients with AD and healthy subjects
350	(unpublished observation). The level of RBC PlsEtn with DHA may thus reflect brain
351	condition. The use of brain amyloid imaging [52] and A β levels in the cerebrospinal
352	fluid [53] as biomarkers of AD is limited due to cost and safety factors. Therefore,
353	identification of AD biomarkers in the blood would significantly improve patient safety

354	and reduce AD diagnostic costs. Levels of RBC PlsEtn with DHA could be potential
355	candidates for blood-based biomarkers of AD.
356	Dietary PlsEtn has a low absorption rate [54]. Therefore, PlsEtn precursors have been
357	used to increase PlsEtn levels in vivo [47, 51]. However, PlsEtn levels in the blood and
358	liver could be markedly increased by ingestion of PlsEtn over a fixed term, and the
359	increase in brain PlsEtn with DHA is very important. Administration of ascidian viscera
360	EtnGpl increased brain PlsEtn with DHA in this study although it is not clear whether
361	administered PlsEtn could directly transfer into the brain. Moreover, ascidian viscera
362	EtnGpl contains PlsEtn with EPA, which is metabolized and exhibits various
363	bioactivities [15, 55], and administration of ascidian viscera EtnGpl increased the brain
364	mol% of DPAn-3, a DHA precursor. Taken together, these findings suggest that intake
365	of PlsEtn from marine invertebrates is preferable for the purposes of increase in brain
366	PlsEtn with DHA and amelioration of cognitive impairment.
367	Recently, it was reported that $A\beta$ production in the liver has a connection with $A\beta$
368	accumulation in the brain [56, 57]. PlsEtn administration suppressed A β accumulation
369	in the brain induced by i.p. injection of lipopolysaccharide [58]. Moreover, the level of
370	PlsEtn with DHA decreased in the blood of patients with AD and had a negative

- 371 correlation with plasma A β levels in healthy subjects [27]. PlsEtn also suppresses A β
- 372 production and aggregation [27, 36]. Therefore, an increase in PlsEtn levels in the blood
- and liver might also slow AD progression.
- 374 In conclusion, administration of ascidian viscera EtnGpl, which is rich in PlsEtn,
- improved cognitive impairment and altered levels of PlsEtn species in A β -infused rats.
- 376 These results suggest that PlsEtn containing DHA from marine invertebrates is
- 377 potentially useful for a therapeutic dietary supplement treating and preventing AD.

Refferences

381	1.	Farooqui AA, Ong WY, and Horrocks LA (2006) Inhibitors of brain		
382	phospholipase A ₂ activity: their neuropharmacological effects and therapeutic			
383	import	tance for the treatment of neurologic disorders. Pharmacol Rev 58: 591-620		
384	2.	Farooqui AA, and Horrocks LA (2001) Plasmalogens: workhorse lipids of		
385	memb	ranes in normal and injured neurons and glia. Neuroscientist 7: 232-245		
386	3.	Glaser PE, and Gross RW (1994) Plasmenylethanolamine facilitates rapid		
387	memb	rane fusion: a stopped-flow kinetic investigation correlating the propensity of a		
388	major	plasma membrane constituent to adopt an HII phase with its ability to promote		
389	memb	rane fusion. Biochemistry 33: 5805-5812		
390	4.	Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, and Sarna T		
391	(2011)	Interactions of plasmalogens and their diacyl analogs with singlet oxygen in		
392	selecte	ed model systems. Free Radic Biol Med 50: 892-898		
393	5.	Wallner S, and Schmitz G (2011) Plasmalogens the neglected regulatory and		
394	scaver	nging lipid species. Chem Phys Lipids 164: 573-589		
395	6.	Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease.		
396	Scienc	e 267: 1456-1462		
397	7.	Yamatsuji T, Matsui T, Okamoto T, Komatsuzaki K, Takeda S, Fukumoto H,		
398	Iwatsu	bo T, Suzuki N, Asami-Odaka A, Ireland S, Kinane TB, Giambarella U, and		
399	Nishin	noto I (1996) G protein-mediated neuronal DNA fragmentation induced by		
400	familia	al Alzheimer's disease-associated mutants of APP. Science 272: 1349-1352		
401	8.	Nitta A, Itoh A, Hasegawa T, and Nabeshima T (1994) β -Amyloid		
402	Protein	n-Induced Alzheimers-Disease Animal-Model. Neurosci Lett 170: 63-66		
403	9.	Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y,		
404	Ishiba	shi Y, Oka J, and Shido O (2002) Docosahexaenoic acid provides protection from		

Page 27 of 42

405	impairment of learning ability in Alzheimer's disease model rats. J Neurochem 81:			
406	1084-1091			
407	10. Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, and Gershfeld NL (1995)			
408	Disease and anatomic specificity of ethanolamine plasmalogen deficiency in			
409	Alzheimer's disease brain. Brain Res 698: 223-226			
410	11. Miyazawa T, Kanno S, Eitsuka T, and Nakagawa K (2006) Plasmalogen: a			
411	short review and newly-discovered functions. In: Yanagita Y, Knapp HR, and Huang YS			
412	(eds) Dietary Fats and Risk of Chronic Disease, AOCS Publishing, New York, pp			
413	196-202			
414	12. Yamashita S, Kanno S, Nakagawa K, Kinoshita M, and Miyazawa T (2015)			
415	Extrinsic plasmalogens suppress neuronal apoptosis in mouse neuroblastoma Neuro-2A			
416	cells: importance of plasmalogen molecular species. Rsc Adv 5: 61012-61020			
417	12 Vamachita S. Aha A. Nakagawa K. Kinachita M. and Miyagawa T. (2014)			
417	Separation and detection of plasmalacon in marine invertebrates by high performance			
410	Separation and detection of plasmalogen in marine invertebrates by high-performance			
419	1261 1273			
420	1201-1275			
421	14. Yamashita S, Honjo A, Aruga M, Nakagawa K, and Miyazawa T (2014)			
422	Preparation of marine plasmalogen and selective identification of molecular species by			
423	LC-MS/MS. J Oleo Sci 63: 423-430			
424	15. Yamashita S, Kanno S, Honjo A, Otoki Y, Nakagawa K, Kinoshita M, and			
425	Miyazawa T (2016) Analysis of Plasmalogen Species in Foodstuffs. Lipids 51: 199-210			
100				
426	16. Folch J, Lees M, and Sloane Stanley GH (1957) A simple method for the			
427	isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509			
428	17. Hashimoto M. Tanabe Y. Fujii Y. Kikuta T. Shibata H. and Shido O (2005)			
429	Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial			
430	cognition learning ability in amyloid β-infused rats. J Nutr 135: 549-555			

431	18.	Paxinos G, and Watson C (1986) The Rat Brain in Stereotaxic Coordinates.
432	Academ	nic Press, New York
433	19.	Rose HG, and Oklander M (1965) Improved Procedure for the Extraction of
434	Lipids f	rom Human Erythrocytes. J Lipid Res 6: 428-431
435	20.	Rouser G, Kritchevsky G, Simon G, and Nelson GJ (1967) Quantitative
436	analysis	of brain and spinach leaf lipids employing silicic acid column chromatography
437	and ace	tone for elution of glycolipids. Lipids 2: 37-40
438	21.	Katz I, and Keeney M (1966) Quantitative micro determination and isolation of
439	plasmal	ogen aldehydes as 2,4-dinitrophenylhydrazones. J Lipid Res 7: 170-174
440	22.	Hashimoto M, Hossain MS, Shimada T, Yamasaki H, Fujii Y, and Shido O
441	(2001) I	Effects of docosahexaenoic acid on annular lipid fluidity of the rat bile
442	canalicu	ılar plasma membrane. J Lipid Res 42: 1160-1168
443	23.	Ikeda S, Tohyama T, Yoshimura H, Hamamura K, Abe K, and Yamashita K
444	(2003) I	Dietary α -tocopherol decreases α -tocotrienol but not γ -tocotrienol concentration
445	in rats.	J Nutr 133: 428-434
446	24.	Ohkawa H, Ohishi N, and Yagi K (1979) Assay for lipid peroxides in animal
447	tissues l	by thiobarbituric acid reaction. Anal Biochem 95: 351-358
448	25.	Perichon R, Moser AB, Wallace WC, Cunningham SC, Roth GS, and Moser
449	HW (19	98) Peroxisomal disease cell lines with cellular plasmalogen deficiency have
450	impaire	d muscarinic cholinergic signal transduction activity and amyloid precursor
451	protein	secretion. Biochem Biophys Res Commun 248: 57-61
452	26.	Han X, Holtzman DM, and McKeel DW, Jr. (2001) Plasmalogen deficiency in
453	early Al	zheimer's disease subjects and in animal models: molecular characterization
454	using el	ectrospray ionization mass spectrometry. J Neurochem 77: 1168-1180
455	27.	Yamashita S, Kiko T, Fujiwara H, Hashimoto M, Nakagawa K, Kinoshita M,
456	Furukav	va K, Arai H, and Miyazawa T (2016) Alterations in the levels of amyloid-β,
457	phospho	olipid hydroperoxide, and plasmalogen in the blood of patients with Alzheimer's

458

disease: Possible interactions between amyloid- β and these lipids. J Alzheimers Dis 50: 459 527-537 Rapoport SI, Igarashi M, and Gao F (2010) Quantitative contributions of diet 460 28. 461 and liver synthesis to docosahexaenoic acid homeostasis. Prostaglandins Leukot Essent 462 fatty Acids 82: 273-276 463 29. Dorninger F, Brodde A, Braverman NE, Moser AB, Just WW, Forss-Petter S, 464 Brugger B, and Berger J (2015) Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. 465 466 Biochim Biophys Acta 1851: 117-128 467 30. Igarashi M, Kim HW, Chang L, Ma K, and Rapoport SI (2012) Dietary n-6 polyunsaturated fatty acid deprivation increases docosahexaenoic acid metabolism in rat 468 469 brain. J Neurochem 120: 985-997 Schuchardt JP, Kobe T, Witte V, Willers J, Gingrich A, Tesky V, Pantel J, 470 31. Rujescu D, Illig T, Floel A, and Hahn A (2016) Genetic Variants of the FADS Gene 471 472 Cluster Are Associated with Erythrocyte Membrane LC PUFA Levels in Patients with 473 Mild Cognitive Impairment. J Nutr Health Aging 20: 611-620 474 32. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, and Schmidt AM (1996) 475 476 RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382: 477 685-691 478 33. Pratico D, and Delanty N (2000) Oxidative injury in diseases of the central 479 nervous system: focus on Alzheimer's disease. Am J Med 109: 577-585 480 34. Niemoller TD, and Bazan NG (2010) Docosahexaenoic acid neurolipidomics. Prostaglandins Other Lipid Mediat 91: 85-89 481 482 35. Zommara M, Tachibana N, Mitsui K, Nakatani N, Sakono M, Ikeda I, and 483 Imaizumi K (1995) Inhibitory effect of ethanolamine plasmalogen on iron- and 484 copper-dependent lipid peroxidation. Free Radic Biol Med 18: 599-602

485	36.	Onodera T, Futai E, Kan E, Abe N, Uchida T, Kamio Y, and Kaneko J (2015)				
486	Phospl	hatidylethanolamine plasmalogen enhances the inhibiting effect of				
487	phospł	natidylethanolamine on γ -secretase activity. J Biochem 157, 301-309				
488	37.	Gorgas K, Teigler A, Komljenovic D, and Just WW (2006) The ether				
489	lipid-d	eficient mouse: tracking down plasmalogen functions. Biochim Biophys Acta				
490	1763:	1511-1526				
491	38.	Vetrivel KS, and Thinakaran G (2010) Membrane rafts in Alzheimer's disease				
492	β-amy	loid production. Biochim Biophys Acta 1801: 860-867				
493	39.	Sanchez-Mejia RO, Newman JW, Toh S, Yu GQ, Zhou Y, Halabisky B, Cisse				
494	M, Sce	earce-Levie K, Cheng IH, Gan L, Palop JJ, Bonventre JV, and Mucke L (2008)				
495	Phospholipase A ₂ reduction ameliorates cognitive deficits in a mouse model of					
496	Alzhei	mer's disease. Nature Neurosci 11: 1311-1318				
497	40.	Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, and Lukiw WJ (2002)				
498	Gene e	expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription				
499	and ne	urotrophic factor down-regulation and up-regulation of apoptotic and				
500	pro-int	flammatory signaling. J Neurosci Res 70: 462-473				
501	41.	Kriem B, Sponne I, Fifre A, Malaplate-Armand C, Lozac'h-Pillot K, Koziel V,				
502	Yen-Pe	otin FT, Bihain B, Oster T, Olivier JL, and Pillot T (2005) Cytosolic				
503	phospł	nolipase A ₂ mediates neuronal apoptosis induced by soluble oligomers of the				
504	amyloi	id-β peptide. FASEB J 19: 85-87				
505	42.	Sundaram JR, Chan ES, Poore CP, Pareek TK, Cheong WF, Shui G, Tang N,				
506	Low C	M, Wenk MR, and Kesavapany S (2012) Cdk5/p25-induced cytosolic				
507	PLA ₂ -	mediated lysophosphatidylcholine production regulates neuroinflammation and				
508	trigger	rs neurodegeneration. J Neurosci 32: 1020-1034				
509	43.	Martin RE (1998) Docosahexaenoic acid decreases phospholipase A2 activity				

510 in the neurites/nerve growth cones of PC12 cells. J Neurosci Res 54: 805-813

511	44. Wood PL, Mankidy R, Ritchie S, Heath D, Wood JA, Flax J, and Goodenowe						
512	DB (2010) Circulating plasmalogen levels and Alzheimer Disease Assessment						
513	Scale-Cognitive scores in Alzheimer patients. J Psychiatry Neurosci 35: 59-62						
514	45. Dragonas C, Bertsch T, Sieber CC, and Brosche T (2009) Plasmalogens as a						
515	marker of elevated systemic oxidative stress in Parkinson's disease. Clin Chem Lab Med						
516	47: 894-897						
517	46. Gregoire L, Smith T, Senanayake V, Mochizuki A, Miville-Godbout E,						
518	Goodenowe D, and Di Paolo T (2015) Plasmalogen precursor analog treatment reduces						
519	levodopa-induced dyskinesias in parkinsonian monkeys. Behav Brain Res 286: 328-337						
520							
520	47. Rasmiena AA, Barlow CK, Stefanovic N, Huynn K, Tan K, Sharma A, Tuli D,						
521	de Haan JB, and Meikle PJ (2015) Plasmalogen modulation attenuates atherosclerosis in						
522	ApoE- and ApoE/GPx1-deficient mice. Atherosclerosis 243: 598-608						
523	48. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS,						
524	Aggarwal N, and Schneider J (2003) Consumption of fish and n-3 fatty acids and risk of						
525	incident Alzheimer disease. Arch Neurol 60: 940-946						
52.6	49 Bascoul-Colombo C. Guschina IA. Maskrey BH. Good M. O'Donnell VB. and						
527	Harwood II (2016) Dietary DHA supplementation causes selective changes in						
528	phospholipids from different brain regions in both wild type mice and the Tg2576						
529	mouse model of Alzheimer's disease. Biochim Biophys Acta 1861: 524-537						
02)							
530	50. Yaguchi T, Nagata T, and Nishizaki T (2010)						
531	1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine ameliorates age-related spatial						
532	memory deterioration by preventing neuronal cell death. Behav Brain Funct 6: 52						
533	51. Wood PL, Smith T, Lane N, Khan MA, Ehrmantraut G, and Goodenowe DB						
534	(2011) Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the						
535	rabbit: a new therapeutic strategy for Alzheimer's disease. Lipids Health Dis 10: 227						
536	52. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom						
537	M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC,						
538	Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, and Langstrom B						

539 (2004) Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B.

540 Ann Neurol 55: 306-319

Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, 541 53. 542 De Deyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, Iqbal K, Pottel H, Vanmechelen E, and Vanderstichele H (1999) Improved discrimination of AD patients using 543 544 β-amyloid(1-42) and tau levels in CSF. Neurology 52: 1555-1562 545 54. Hara H, Wakisaka T, and Aoyama Y (2003) Lymphatic absorption of 546 plasmalogen in rats. Br J Nutr 90: 29-32 Hashimoto M, Katakura M, Tanabe Y, Al Mamun A, Inoue T, Hossain S, Arita 547 55. 548 M, and Shido O (2015) n-3 fatty acids effectively improve the reference 549 memory-related learning ability associated with increased brain docosahexaenoic 550 acid-derived docosanoids in aged rats. Biochim Biophys Acta 1851: 203-209 551 Sutcliffe JG, Hedlund PB, Thomas EA, Bloom FE, and Hilbush BS (2011) 56. 552 Peripheral reduction of β -amyloid is sufficient to reduce brain β -amyloid: implications 553 for Alzheimer's disease. J Neurosci Res 89: 808-814 554 57. Skerrett R, Pellegrino MP, Casali BT, Taraboanta L, and Landreth GE (2015) 555 Combined liver X receptor/peroxisome proliferator-activated receptor γ agonist treatment reduces amyloid β levels and improves behavior in amyloid precursor 556 557 protein/presenilin 1 mice. J Biol Chem 290: 21591-21602 558 58. Ifuku M, Katafuchi T, Mawatari S, Noda M, Miake K, Sugiyama M, and Fujino 559 T (2012) Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in 560 lipopolysaccharide-induced neuroinflammation in adult mice. J Neuroinflammation 9: 197 561

563 Figure legend

- 564 Fig. 1. Effect of administration of EtnGpl to Aβ-infused rats on learning ability. Effects
- of oral administration of EtnGpl on reference memory-related learning ability (A) and
- 566 working memory-related learning ability (B) in the radial maze task in A β -infused rats.
- 567 Means \pm SEM, n = 8. Asterisks indicate significant differences between this group and
- 568 Control group (**P < 0.01) by randomized 2-factor (block and group) ANOVA followed
- 569 by Fisher's PLSD test.
- 570 EtnGpl, ethanolamine glycerophospholipid; AD, Alzheimer's disease.

Tables

Table 1. Acyl and alkenyl chain composition of prepared EtnGpl

	Egg yolk	Ascidian viscera
Acyl		
Palmitate16:0	23.2	2.9
Stearate18:0	26.6	8.6
Oleate18:1n-9	19.4	7.3
LNA18:2n-6	12.6	0.4
ALA18:3n-3	0.0	0.3
ARA20:4n-6	13.4	4.6
EPA20:5n-3	0.1	22.4
DPA22:5n-3	0.2	0.6
DHA22:6n-3	2.6	13.3
n-3/n-6	0.09	7.32
DHA/ARA	0.19	2.89
Alkenyl		
Palmitoyl16:0	0.9	3.1
Stearoyl18:0	1.0	34.2
Oleoyl18:1	0.1	2.3
		(mol%)

EtnGpl, ethanolamine glycerophospholipid; LNA, linoleic acid; ALA, α-linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid.

Table 2. Body and liver weights, and liver and blood biochemical parameters of A β -infused rats administrated EtnGpl for 6 weeks

	Control group	Egg group	Ascidian group
Body			
Weight (g/rat)	403.1 ± 4.6	405.4 ± 9.0	404.7 ± 7.7
Liver			
Weight (g/rat)	10.4 ± 0.5	10.5 ± 0.4	10.2 ± 0.2
α-Tocophenol (nmol/mg protein)	0.7 ± 0.1	0.9 ± 0.1	1.0 ± 0.1
TBARS (nmol/mg protein)	0.7 ± 0.0	0.8 ± 0.1	0.8 ± 0.1
Plasma			
AST (IU/L)	56.6 ± 2.0	55.4 ± 2.1	54.8 ± 1.3
ALT (IU/L)	27.4 ± 1.0	29.4 ± 1.9	31.1 ± 0.6
γ-GTP (IU/L)	0.4 ± 0.2	0.3 ± 0.2	0.5 ± 0.2
Total cholesterol (mmol/L)	2.1 ± 0.1	2.3 ± 0.1	2.0 ± 0.1
HDL-cholesterol (mmol/L)	1.1 ± 0.0	1.3 ± 0.0	1.2 ± 0.0
non HDL-cholesterol (mmol/L)	1.0 ± 0.1	1.0 ± 0.0	0.9 ± 0.0
α-Tocophenol (nmol/mL)	9.8 ± 0.5	10.1 ± 0.3	9.5 ± 0.6
TBARS (nmol/mL)	1.4 ± 0.1	1.6 ± 0.1	1.3 ± 0.1

Means \pm SEM, n = 8. AD, Alzheimer's disease; TBARS, thiobarbituric acid reactive substances; AST,

aspartate aminotransferase; ALT, alanine aminotransferase; γ-GTP, γ-glutamyltranspeptidase; HDL,

high density lipoprotein.

Table 3. Composition of acyl and alkenyl chain in plasma of $A\beta$ -infused rats administered EtnGpl for

6 weeks

	Control group	Egg group	Ascidian group
Acyl		(nmol/mL plasma	a)
Palmitate16:0	908.1 ± 30.3	959.9 ± 66.0	935.8 ± 34.0
Stearate18:0	488.7 ± 21.0	515.2 ± 23.4	473.9 ± 11.5
Oleate18:1n-9	328.5 ± 15.7	386.5 ± 60.7	356.1 ± 30.3
LNA18:2n-6	807.0 ± 35.1	822.2 ± 73.2	950.6 ± 37.1
ALA18:3n-3	7.6 ± 0.8	7.5 ± 1.6	9.4 ± 1.3
ARA20:4n-6	1113.1 ± 65.0	1190.1 ± 86.5	882.0 ± 33.5
EPA20:5n-3	13.2 ± 1.3	13.7 ± 1.1	74.8 ± 5.0**
DPA22:5n-3	19.7 ± 2.1	19.7 ± 2.8	47.2 ± 1.7**
DHA22:6n-3	102.6 ± 7.4	137.2 ± 11.9*	203.6 ± 6.1**
n-3/n-6	0.07 ± 0.00	0.09 ± 0.00	0.18 ± 0.01**
DHA/ARA	0.09 ± 0.00	0.11 ± 0.00*	0.23 ± 0.01**
Alkenyl		(nmol/mL plasma	a)
Palmitoyl16:0	16.4 ± 2.2	16.3 ± 2.2	16.8 ± 2.3
Stearoyl18:0	17.0 ± 2.3	27.5 ± 5.4	105.4 ± 25.1**
Oleoyl18:1	11.3 ± 1.5	10.5 ± 1.4	10.2 ± 1.4
Total	44.7 ± 6.0	54.3 ± 7.9	132.4 ± 25.4**

Means \pm SEM, n = 8. Asterisks indicate significant differences between this group and Control group (**P < 0.01, *P < 0.05) by one-way ANOVA followed by Scheffe's F-test. AD, Alzheimer's disease; EtnGpl, ethanolamine glyceropospholipid; LNA, linoleic acid; ALA, α -linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid.

Table 4.	Composition	of acvl and	alkenvl chain	in RBCs and liv	ver of AB-infused	rats administered
	r r r r r r r r r r r r r r r r r r r	· · · · · ·				

EtnGpl for 6 weeks

		RBC			Liver	
	Control group	Egg group	Ascidian group	Control group	Egg group	Ascidian group
Acyl			(nmol/mg	protein)		
Palmitate16:0	121.4 ± 23.5	146.1 ± 14.7	124.3 ± 11.0	31.3 ± 3.5	30.1 ± 3.8	41.7 ± 2.8
Stearate18:0	62.2 ± 10.9	73.7 ± 7.5	60.3 ± 5.8	19.7 ± 1.8	21.4 ± 2.5	27.0 ± 1.7
Oleate18:1n-9	25.8 ± 5.4	29.4 ± 3.3	24.9 ± 2.4	12.9 ± 1.7	11.6 ± 2.0	15.5 ± 1.1
LNA18:2n-6	35.0 ± 6.9	40.3 ± 4.0	38.8 ± 3.5	22.7 ± 3.1	17.8 ± 2.2	32.3 ± 2.3**
ALA18:3n-3	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.5 ± 0.1	0.4 ± 0.1	0.6 ± 0.1
ARA20:4n-6	99.1 ± 18.9	116.0 ± 12.0	89.4 ± 8.6	24.0 ± 2.4	25.0 ± 2.8	27.1 ± 1.7
EPA20:5n-3	0.1 ± 0.0	0.1 ± 0.1	0.4 ± 0.1	0.1 ± 0.0	0.0 ± 0.0	1.0 ± 0.1**
DPA22:5n-3	34.6 ± 4.8	37.1 ± 3.5	34.9 ± 2.9	2.0 ± 0.2	1.8 ± 0.2	$4.0 \pm 0.3^{**}$
DHA22:6n-3	10.3 ± 1.9	13.6 ± 1.5	15.3 ± 1.6	6.9 ± 0.7	7.7 ± 0.9	14.2 ± 1.1**
n-3/n-6	0.37 ± 0.03	0.33 ± 0.01	0.40 ± 0.01	0.20 ± 0.00	0.23 ± 0.01	$0.33 \pm 0.02^{**}$
DHA/ARA	0.11 <u>+</u> 0.01	0.12 ± 0.00	0.17 ± 0.00**	0.29 ± 0.01	0.31 ± 0.01	0.52 ± 0.02**
Alkenyl			(nmol/mg	protein)		
Palmitoyl16:0	10.5 ± 2.5	13.8 ± 1.5	11.8 ± 1.1	0.3 ± 0.0	0.2 ± 0.0	0.3 ± 0.0
Stearoyl18:0	9.4 ± 2.0	13.0 ± 1.4	11.8 ± 1.1	0.3 ± 0.0	0.2 ± 0.0	0.4 ± 0.0
Oleoyl18:1	7.7 ± 2.0	9.5 ± 1.1	8.5 ± 0.9	0.3 ± 0.0	0.3 ± 0.0	0.5 ± 0.1*
Total	27.7 ± 6.5	36.3 ± 3.9	32.1 ± 3.1	0.8 ± 0.1	0.7 ± 0.1	1.2 ± 0.1*

Means \pm SEM, n = 8. Asterisks indicate significant differences between this group and Control group (**P < 0.01, *P < 0.05) by one-way ANOVA followed by Scheffe's F-test. AD, Alzheimer's disease; RBCs, red blood cells; EtnGpl, ethanolamine glyceropospholipid; LNA, linoleic acid; ALA, α -linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid.

Table 5.	. Composition	n of acyl and	l alkenyl cl	hain in brai	n of Aβ-infusec	l rats adminis	stered EtnGp	ol for 6
weeks								

		Cerebral cortex			Hippocampus	
	Control group	Egg group	Ascidian group	Control group	Egg group	Ascidian group
Acyl			(nmol/m	g protein)		
Palmitate16:0	285.9 ± 5.1	267.3 ± 2.5*	274.4 ± 4.1	259.3 ± 6.0	263.8 ± 4.1	249.8 ± 4.9
Stearate18:0	277.6 ± 6.0	256.9 ± 3.0	248.5 ± 16.7	264.6 ± 6.6	270.9 ± 4.8	256.7 ± 5.9
Oleate18:1n-9	153.6 ± 5.1	139.1 ± 3.2	141.5 ± 3.4	177.6 ± 7.4	181.4 ± 8.1	176.2 ± 8.7
LNA18:2n-6	9.1 ± 0.8	7.4 ± 0.7	8.7 ± 0.6	6.8 ± 0.3	6.7 ± 0.2	7.2 ± 0.2
ALA18:3n-3	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.1 ± 0.0
ARA20:4n-6	124.9 ± 3.6	120.8 ± 2.3	120.8 ± 2.3	130.3 ± 3.0	133.8 ± 4.0	126.4 ± 2.3
EPA20:5n-3	0.8 ± 0.1	0.6 ± 0.0	0.6 ± 0.0	0.8 ± 0.1	0.7 ± 0.0	0.6 ± 0.0
DPA22:5n-3	1.2 ± 0.1	0.8 ± 0.1*	1.5 ± 0.1	1.0 ± 0.1	0.8 ± 0.1*	1.3 ± 0.1
DHA22:6n-3	162.9 ± 5.3	152.3 ± 4.9	162.2 ± 4.9	139.1 ± 3.0	144.4 ± 3.5	141.5 ± 2.5
n-3/n-6	1.24 ± 0.06	1.20 ± 0.05	1.27 ± 0.05	1.03 ± 0.02	1.04 ± 0.01	1.08 ± 0.01
DHA/ARA	1.32 ± 0.07	1.27 ± 0.06	1.35 ± 0.06	1.07 ± 0.02	1.08 ± 0.01	1.12 ± 0.01*
Alkenyl			(nmol/mg	g protein)		
Palmitoyl16:0	24.6 ± 2.1	25.8 ± 1.7	25.6 ± 1.3	28.9 ± 1.6	29.3 ± 1.2	28.9 ± 1.7
Stearoyl18:0	22.8 ± 1.1	21.7 ± 0.6	23.1 ± 0.9	27.2 ± 2.6	27.4 ± 2.5	28.4 ± 2.1
Oleoyl18:1	9.5 ± 0.7	8.7 ± 0.4	8.5 ± 0.5	18.3 ± 2.7	19.2 ± 2.4	18.5 ± 3.1
Total	56.9 ± 2.2	56.2 ± 1.9	57.2 ± 1.1	74.4 ± 6.7	75.9 ± 5.6	75.8 ± 6.7

Means \pm SEM, n = 8. Asterisks indicate significant differences between this group and Control group (*P < 0.05) by one-way ANOVA followed by Scheffe's F-test. AD, Alzheimer's disease; EtnGpl, ethanolamine glyceropospholipid; LNA, linoleic acid; ALA, α -linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid.

Table 6. PlsEtn species levels in blood, liver, and brain of $A\beta$ -infused rats administered EtnGpl for 6 weeks

	Control group	Egg group	Ascidian group	
Plasma		(nmol/mL plasma	ı)	
18:0/18:1-PlsEtn	0.5 ± 0.1	0.7 ± 0.1	2.3 ± 0.6**	
18:0/20:4-PlsEtn	6.7 ± 1.0	10.3 ± 2.1	29.9 ± 6.8**	
18:0/20:5-PlsEtn	0.2 ± 0.0	0.3 ± 0.1	10.2 ± 3.0**	
18:0/22:6-PlsEtn	3.7 ± 0.5	6.8 ± 1.4	26.5 ± 6.2**	
RBC		(nmol/mg protein)	
18:0/18:1-PlsEtn	0.2 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	
18:0/20:4-PlsEtn	7.9 ± 0.8	8.1 ± 1.7	8.1 ± 0.7	
18:0/20:5-PlsEtn	0.0 ± 0.0	0.0 ± 0.0	0.3 ± 0.0**	
18:0/22:6-PlsEtn	1.1 ± 0.1	1.2 ± 0.3	2.1 ± 0.1*	
Liver	(pmol/mg protein)			
18:0/18:1-PlsEtn	43.4 ± 4.6	40.3 ± 5.3	64.3 <u>+</u> 5.1*	
18:0/20:4-PlsEtn	1495.8 ± 82.2	1468.3 ± 178.7	1703.5 ± 140.3	
18:0/20:5-PlsEtn	19.9 ± 1.5	18.4 ± 1.8	155.7 ± 6.3**	
18:0/22:6-PlsEtn	209.2 ± 15.6	288.2 ± 37.9	720.2 ± 100.8**	
Cerebral cortex		(nmol/mg protein)	
18:0/18:1-PlsEtn	1.6 ± 0.1	1.7 ± 0.1	2.0 ± 0.2	
18:0/20:4-PlsEtn	7.3 ± 0.3	7.2 ± 0.3	8.9 ± 0.6	
18:0/20:5-PlsEtn	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	
18:0/22:6-PlsEtn	9.4 ± 0.3	9.2 ± 0.5	11.6 ± 0.6*	

Means \pm SEM, n = 8. Asterisks indicate significant differences between this group and Control group (**P < 0.01, *P < 0.05) by one-way ANOVA followed by Scheffe's F-test. PlsEtn, ethanolamine plasmalogen; AD, Alzheimer's disease; EtnGpl, ethanolamine glyceropospholipid; RBC, red blood cell.

_	RME			WME		
	r	p	r	р		
18:0/22:6-PlsEtn						
Plasma	-0.48	<0.05	-0.26	0.23		
RBC	-0.18	0.40	-0.03	0.99		
Liver	-0.16	0.46	-0.18	0.39		
Cerebral cortex	0.04	0.85	-0.40	<0.05		
			18:0/22:	6-PlsEtn		
	Pla	sma	RE	BC	Liv	/er
	r	p	r	р	r	р
18:0/22:6-PlsEtn						
Plasma						
RBC	0.281	0.183				
Liver	0.481	<0.05	0.663	<0.001		
Cerebral cortex	0.125	0.561	0.450	<0.05	0.559	<0.01

Table 7. Correlations between of learning ability and levels of 18:0/22:6-PlsEtn in A β -infused rats¹

¹The number of RME and WME in block 6 shown in Figure 1 was used as an indicator of learning ability. n = 24. PlsEtn, ethanolamine plasmalogen; AD, Alzheimer's disease; RME, reference memory error; WME, working memory error; RBC, red blood cell.

P. C.

209x108mm (150 x 150 DPI)