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Abstruct 1 

Ethanolamine plasmalogen (PlsEtn), a major phospholipid in neuronal membranes (60–2 

90 mol% of ethanolamine glycerophospholipid; EtnGpl), is specifically decreased in 3 

brains from patients with Alzheimer’s disease (AD).Objective: The present study 4 

investigated how PlsEtn administration affects cognitive deficits and lipid composition 5 

in an animal model of AD. AD model rats were infused with amyloid-β (Aβ) into the 6 

cerebral ventricle and divided into 3 groups. Control, Egg, and Ascidian groups were 7 

then orally administrated vehicle, egg yolk EtnGpl (260 µmol as EtnGpl/kg BW; 10 8 

µmol as PlsEtn/kg BW), or ascidian viscera EtnGpl (260 µmol as EtnGpl/kg BW; 209 9 

µmol as PlsEtn/kg BW), respectively. After 4 weeks of dosing, Aβ-infused rats were 10 

tested for learning ability in an 8-arm radial maze. The administration of ascidian 11 

viscera EtnGpl improved both reference and working memory-related learning abilities. 12 

In lipid analysis, the Ascidian group showed higher levels of PlsEtn species in the 13 

plasma, erythrocytes, and liver when compared to other groups. In addition, although 14 

there were no differences at levels of total plasmalogen including choline plasmalogen, 15 

the Ascidian group had significantly higher levels of 18:0/22:6-PlsEtn in the cerebral 16 

cortex. These levels of 18:0/22:6-PlsEtn in the cerebral cortex were correlated with 17 
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working memory-related learning ability. Moreover, 18:0/22:6-PlsEtn levels in the 18 

cerebral cortex showed positive correlations with those in the erythrocytes and liver. In 19 

summary, dietary PlsEtn, especially that with 22:6n-3 (docosahexaenoic acid, DHA), 20 

may ameliorate learning deficiencies in AD by altering lipid composition in the brain. 21 

  22 
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Abbreviations 23 

Aβ  amyloid-β 24 

AA  arachidonic acid (20:4n-6) 25 

AD  Alzheimer’s disease 26 

ALA  α-linolenic acid (18:3n-3) 27 

ALT  alanine aminotransferase 28 

AST  aspartate aminotransferase 29 

DHA  docosahexaenoic acid (22:6n-3) 30 

DMA  dimethyl acetal 31 

DPAn-3  docosapentaenoic acid (22:5n-3) 32 

EPA  eicosapentaenoic acid (20:5n-3) 33 

EtnGpl  ethanolamine glycerophospholipid 34 

FAME  fatty acid methyl esters 35 

γ-GTP  γ-glutamyltranspeptidase 36 

HDL  high density lipoprotein 37 

HPLC  high-performance liquid chromatography 38 

LNA  linoleic acid (18:2n-6) 39 
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PlsEtn  ethanolamine plasmalogen or 40 

1-O-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine 41 

PtdCho  phosphatidylcholine or 1,2-diacyl-sn-glycero-3-phosphocholine 42 

PtdEtn  1,2-diacyl-sn-glycero-3-phosphoethanolamine 43 

PUFA  polyunsaturated fatty acid(s) 44 

RBC  red blood cell(s) 45 

ROS  reactive oxygen species 46 

RME  reference memory error(s) 47 

TBARS  thiobarbituric acid-reactive substances 48 

WME  working memory error(s) 49 

  50 
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Introduction 51 

Ethanolamine glycerophospholipid (EtnGpl) is a major class of glycerophospholipid 52 

found in biological membranes. EtnGpl exists in three forms with alkyl, alkenyl, or acyl 53 

linkages at the sn-1 position of the glycerol moiety: 54 

1-O-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine, 55 

1-O-alkenyl-2-acyl-sn-glycero-3-phosphoethanolamine (PlsEtn), and 56 

1,2-diacyl-sn-glycero-3-phosphoethanolamine (PtdEtn), respectively. The alkenylacyl 57 

form is called plasmalogen. The aliphatic moiety at the sn-1 position of PlsEtn consists 58 

of C16:0 (palmitoyl), C18:0 (stearoyl), or C18:1 (oleoyl) carbon chains, whereas the 59 

sn-2 position mainly consists of polyunsaturated fatty acids (PUFA) such as 22:6n-3 60 

(DHA) and 20:4n-6 (ARA). PUFA released from PlsEtn can be metabolized to 61 

eicosanoids and docosanoids, which exhibit various bioactivities [1]. PlsEtn is 62 

distributed in most mammalian tissues and cells, and its concentration in the nervous 63 

system is high [2]. Further, owing to its hexagonal phase formation propensity, PlsEtn 64 

are involved in membrane fusion during synaptic transmission [3]. PlsEtn can also 65 

prevent cell death by scavenging reactive oxygen species (ROS) such as singlet oxygen 66 

(
1
O2) and superoxide (O

2-
) at its alkenyl (vinyl ether) linkages [4, 5]. 67 
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Alzheimer’s disease (AD) presents with brain atrophy caused by neuronal loss as a 68 

prominent pathological feature. The neuronal loss in AD occurs through apoptosis [6, 7], 69 

and amyloid-β (Aβ) peptide, the major component of senile plaques in the AD brain, 70 

was reported to induce neuronal apoptosis [7]. Infusion of Aβ into the cerebral ventricle 71 

induced brain atrophy and cognitive deficits in rats [8, 9]. 72 

On the other hand, PlsEtn levels were reported to be specifically decreased in 73 

postmortem brains from patients with AD [10]. In our previous study, we showed that 74 

PlsEtn from bovine brains suppresses neuronal cell death [11]. Moreover, PlsEtn species 75 

with DHA showed the strongest suppression of neuronal apoptosis when compared to 76 

other PlsEtn species and other EtnGpl with DHA [12]. These observations suggested 77 

that PlsEtn is involved in AD, and the maintenance or increase in PlsEtn level, 78 

especially that containing DHA, in the brain may prevent the pathogenesis and 79 

progression of AD via suppression of neuronal apoptosis. 80 

Although bovine brain has been the primary PlsEtn resource, outbreaks of bovine 81 

spongiform encephalopathy made its use difficult. However, in our previous studies, 82 

some marine invertebrates, especially ascidian viscera, were found to be resources of 83 
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PlsEtn species with DHA, and preparation and analytical methods were developed 84 

[13-15]. 85 

The present study investigated whether administration of PlsEtn from marine ascidian 86 

viscera would affect cognitive deficits and lipid composition in an animal model of AD. 87 

 88 

Materials and methods 89 

Materials and reagents 90 

Ascidian and hen eggs were respectively purchased from a fishing harbor and local 91 

supermarkets in Sendai, Japan; phospholipids (Phospholipid Kit) were purchased from 92 

Doosan Serdary Research Laboratories (Toronto, ON). Supplies of 18:0/22:6-PlsEtn, 93 

18:0/20:4-PlsEtn, and 18:0/18:1-PlsEtn were purchased from Avanti Polar Lipids 94 

(Alabaster, AL), and 18:0/20:5-PlsEtn was purified according to the methods reported 95 

previously [14]. Fatty acid methyl esters (FAME) GLC-68A were purchased from 96 

NU-CHEK-PREP (Elysian, MN), and fatty acids EPA and DPAn-3 were purchased from 97 

Cayman Chemical Co. (Ann Arbor, MI) and methylated. Hexadecanal dimethyl acetal 98 

(DMA), octadecanol, and 23:0 were purchased from Sigma Chemical Co. (St. Louis, 99 

MO). Octadec-9-enol was purchased from Wako Pure Chemical (Osaka, Japan); 100 
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octadecanal DMA and octadec-9-enal DMA were prepared from octadecanol and 101 

octadec-9-enol, respectively [14]. Aβ1–40 was purchased from Peptide Inst. (Osaka, 102 

Japan), and an Alzet 2002 mini-osmotic pump was purchased from Durect Co. 103 

(Cupertino, CA). 104 

Purification of EtnGpl from egg yolk and ascidian viscera 105 

EtnGpl was prepared by a modification of our previous method [14]. Briefly, neutral 106 

lipids were removed from freeze-dried ascidian viscera and egg yolk with acetone. After 107 

the residue was prepared according to the method described by Folch et al. [16], neutral 108 

lipids and sphingolipids were removed with acetone and diethylether. The crude 109 

glycerophospholipid fraction was subjected to silica gel column chromatography with 110 

the following solvent systems: chloroform-methanol (95:5, v/v), chloroform-methanol 111 

(4:1, v/v), and chloroform-methanol (3:2, v/v). 112 

Animals and diet 113 

All animal experiments were performed according to the Guide for Care and Use of 114 

Laboratory Animals at Shimane University Faculty of Medicine compiled from the 115 

Guidelines for Animal Experimentation of the Japanese Association for Laboratory 116 

Animal Science. Wistar rats (generation 1, G1) (Jcl: Wistar; Clea Japan) were housed in 117 
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a room under controlled temperature (23 ± 2˚C), relative humidity (50 ± 10%), and 118 

light-dark cycles (light: 08:00 to 20:00; dark: 20:00 to 08:00). Rats consumed a fish 119 

oil-deficient but an ALA-rich diet (F-1®; Funabashi Farm), the ingredients and fatty 120 

acid composition of which have been described in a previous study,45 and water ad 121 

libitum. Experiments were performed on the inbred 4th generation male rats (n = 24; 12 122 

weeks old; 324.4 ± 5.2 g body weight) fed the same F-1 diet. 123 

Preparation of Aβ-infused rats 124 

Preparation of Aβ-infused rats was performed as described previously [9, 17]. This 125 

procedure greatly improved the reproducibility and reliability of this animal model of 126 

AD, rats with impaired memory. Briefly, 2 holes (right and left, relative to the bregma; 127 

0.8 mm posterior, 1.4 mm lateral) were drilled in the rats’ skulls according to the atlas of 128 

Paxinos and Watson [18]. To facilitate aggregation of Aβ peptide, 0.5 µg AlCl3 was 129 

injected through a 3.5 mm cannula into the right ventricle. A mini-osmotic pump 130 

containing Aβ1–40 solution (4.9–5.5 nmol) was quickly implanted in the back of the rat. 131 

The outlet of the pump was inserted 3.5 mm into the left ventricle and attached to the 132 

skull with screws and dental cement. Aβ1–40 solution was infused for 2 weeks via the 133 

osmotic pump. 134 
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Radial maze-learning ability and EtnGpl administration 135 

The rats were tested for learning ability 2 weeks after the implantation of the 136 

mini-osmotic pump to verify memory impairment. Learning-related behavior was 137 

assessed using an 8-arm radial maze (Toyo Sangyo Co. Ltd., Toyama, Japan) [17]. 138 

Briefly, the rats were trained to acquire a reward (food-pellet) at the end of each of 4 139 

arms of an 8-arm radial maze. The performance involved 2 parameters of memory 140 

function, i.e., RME, entry into unbaited arms; and WME, repeated entry into arms that 141 

had already been visited within a trial. The Aβ-infused rats were divided into 3 groups 142 

of equal learning ability. The Egg and Ascidian groups were then orally administrated 143 

egg yolk EtnGpl (260 µmol EtnGpl/kg BW; 10 µmol as PlsEtn/kg BW) or ascidian 144 

viscera EtnGpl (260 µmol EtnGpl/kg BW; 209 µmol as PlsEtn/kg BW) dissolved in 145 

palm kernel oil; the Control groups were administrated an equal volume of vehicle 146 

alone. All groups were administrated 500 µL of 5% sodium bicarbonate solution before 147 

administration of sample because the alkenyl linkage of PlsEtn is hydrolyzed by acids. 148 

Four weeks after starting the administration of EtnGpl, rats were tested again for 149 

learning ability using an 8-arm radial maze to assess the effect of EtnGpl on the 150 

impairment of learning ability. Each rat was given 12 trials for 2 weeks. 151 
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Blood and tissue preparation 152 

After completing the behavioral studies, rats were anesthetized with sodium 153 

pentobarbital (65 mg/kg BW, i.p.). Blood, freshly collected from the abdominal aorta in 154 

tubes with EDTA-2Na, was subjected to low-speed centrifugation (15 min, 1,000 × g, 155 

4˚C) to separate the RBC from the plasma. The precipitated RBC were immediately 156 

washed three times with 0.15 M NaCl and lipid extraction was then conducted. The 157 

cerebral cortex, hippocampus, and liver were separated as described [9]. The plasma 158 

and tissues were stored at -80˚C by flash-freezing in liquid N2 until use. The tissues 159 

were homogenized in ice-cold saline using a Polytron PCU 2-110 homogenizer 160 

(Kinematica, Luzern, Switzerland). 161 

Lipid extraction and assay 162 

RBC lipids were extracted from washed RBC with a mixture of 2-propanol and 163 

chloroform to protect from hem-iron contamination [19]. Lipids of plasma and tissue 164 

homogenates were extracted according to the method of Folch et al. [16]. Phospholipid 165 

content was determined according to the method described by Rouser et al [20]. EtnGpl 166 

content was analyzed by high-performance liquid chromatography (HPLC) with 167 

evaporative light-scattering detection [13]. The average molecular weight was 769 for 168 
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EtnGpl. PlsEtn content was determined by the 2,4-dinitrophenylhydrazine method [21]. 169 

Fatty acid and aldehyde composition were determined by gas chromatography [22]. 170 

MS/MS analysis 171 

PlsEtn species were analyzed by HPLC with a 4000 QTRAP quadrupole/linear ion-trap 172 

tandem mass spectrometer (AB SCIEX, Tokyo, Japan) [14]. To quantify PlsEtn species, 173 

multiple reaction monitoring of the transition of parent ions to product ions was 174 

performed. Quantification of PlsEtn was performed for four molecular species: 175 

18:0/18:1-PlsEtn, 18:0/20:4-PlsEtn, 18:0/20:5-PlsEtn, and 18:0/22:6-PlsEtn. Due to 176 

limited hippocampal tissue, we could not quantify PlsEtn species in the hippocampus. 177 

Other analytical methods 178 

Plasma and liver α-tocopherols were measured by HPLC with fluorescence detection 179 

[23]. TBARS were measured according to the method by Ohkawa et al. [24]. Plasma 180 

levels of AST, ALT, γ-GTP, total cholesterol, and HDL-cholesterol were measured with 181 

a TBA-120FR autoanalyzer (Toshiba Medical System Corp., Tochigi, Japan). The non 182 

HDL-cholesterol concentration was calculated by total cholesterol subtracted by 183 

HDL-cholesterol. 184 

Statistical analysis 185 
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The data are expressed as means ± SEM. Behavioral data were analyzed by two-way 186 

factorial ANOVA followed by Fisher’s PLSD for post hoc comparisons, and other 187 

parameters were tested by one-way ANOVA followed by Scheffe’s F-test. For 188 

correlation analyses, Pearson’s correlation coefficient test for normal data or 189 

Spearman’s rank correlation coefficient test for nonparametric data were used. 190 

 191 

Results 192 

EtnGpl fraction from egg yolk and ascidian viscera 193 

The EtnGpl fraction from egg yolk was 70 wt% EtnGpl. The PlsEtn level of egg yolk 194 

was 4 mol% of EtnGpl. The prominent acyl moieties were 18:0 and 16:0 (Table 1). The 195 

four PlsEtn species that were investigated were not detected. Conversely, the EtnGpl 196 

fraction from ascidian viscera was 66 wt% EtnGpl. The PlsEtn level in ascidian viscera 197 

was 80 mol% EtnGpl. The alkenyl moiety consisted mostly of 18:0, and the prominent 198 

acyl moieties were 20:5n-3 (EPA) and DHA, which are n-3 PUFA. The ratios of n-3/n-6 199 

and DHA/ARA were markedly higher than those of egg yolk. This ascidian viscera 200 

EtnGpl consisted of 18:0/18:1-, 18:0/20:4-, 18:0/20:5-, and 18:0/22:6-PlsEtn (4.8, 5.5, 201 

31.2, and 24.4 mol%, respectively). 202 
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Animal condition 203 

After administration and behavioral experiments, body and liver weights did not differ 204 

among the groups (Table 2). Moreover, there were also no differences in blood 205 

biochemical parameters (i.e., AST, ALT, γ-GTP, and cholesterols) and levels of 206 

α-tocopherol and thiobarbituric acid-reactive substances (TBARS) indicative of 207 

oxidative conditions. 208 

Effect of EtnGpl administration on radial-maze learning ability 209 

The effect of EtnGpl administration on reference (Fig. 1A) and working (Fig. 1B) 210 

memory-related learning ability was expressed as the mean number of reference 211 

memory error (RME) and working memory error (WME) for each group, with the data 212 

averaged over blocks of 2 trials. After 4 weeks of EtnGpl administration, both RME and 213 

WME scores for blocks of the radial maze tasks undergone by Ascidian group were 214 

lower than those of the Control and Egg groups. Conversely, the administration of egg 215 

yolk EtnGpl did not attenuate memory impairment in AD model rats. 216 

Alteration of levels of acyl and alkenyl moieties of blood and livers 217 

After EtnGpl administration for 6 weeks, plasma DHA level was significantly higher in 218 

both the Egg and Ascidian groups than in the Control group, resulting in a significantly 219 
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higher DHA/ARA ratio (Table 3). In the Ascidian group, moreover, levels of EPA and 220 

22:5n-3 (DPAn-3), which are n-3 PUFA, were also higher. The alkenyl moiety 221 

expressed plasmalogens including PlsEtn and choline plasmalogen. The levels of total 222 

and 18:0 plasmalogens were higher in the Ascidian group than in the Control group. 223 

Alkenyl 18:0, DHA, and EPA were the prominent moieties in the ascidian viscera 224 

EtnGpl. 225 

In red blood cells (RBC), the DHA/ARA ratio was higher in the Ascidian group than in 226 

the Control group (Table 4). Levels of 18:2n-6 (LNA), EPA, DPAn-3, and DHA in the 227 

liver were higher in the Ascidian group than in the Control group. Total and 18:1 228 

plasmalogen levels in the liver were higher in the Ascidian group than in the Control 229 

group. 230 

Alteration of levels of acyl and alkenyl moieties of brains 231 

Table 5 shows carbon chain levels in the cerebral cortex and hippocampus of 232 

Aβ-infused rats. There were no differences in plasmalogen and fatty acid levels between 233 

three groups, except decreases in palmitate and DPAn-3 levels of Egg group. The 234 

DHA/ARA ratio in the hippocampus was significantly higher in the Ascidian group than 235 

in the Control group. The mol% of DPAn-3 in carbon chains in the cerebral cortex 236 
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(Control group: 0.11 ± 0.01 mol%, Egg group: 0.08 ± 0.01 mol%, Ascidian group: 0.15 237 

± 0.01 mol%) and hippocampus (Control group: 0.10 ± 0.01 mol%, Egg group: 0.08 ± 238 

0.01 mol%, Ascidian group: 0.13 ± 0.01 mol%) were significantly higher in the 239 

Ascidian group than in the Control group. 240 

Alteration of PlsEtn species levels of blood and tissues in Aβ-infused rats 241 

In the blood and liver, levels of 18:0/20:5 and 18:0/22:6-PlsEtn, which are major 242 

components in ascidian viscera EtnGpl, were higher in the Ascidian group than the 243 

Control group (Table 6). The cerebral cortex level of 18:0/22:6-PlsEtn was significantly 244 

higher in the Ascidian group than the Control group. There were no differences in the 245 

levels of other PlsEtn species or total EtnGpl in the cerebral cortex between the three 246 

groups (total EtnGpl Control group: 123.7 ± 7.2 nmol/mg protein, Egg group: 118.5 ± 247 

14.7 nmol/mg protein, Ascidian group: 129.8 ± 8.8 nmol/mg protein). 248 

Relationship between learning ability and PlsEtn levels 249 

Plasma 18:0/22:6-PlsEtn levels had a negative correlation with RME in Aβ-infused rats 250 

(Table 7). In addition, 18:0/22:6-PlsEtn levels in the cerebral cortex had a negative 251 

correlation with WME. There were no correlations between RME or WME scores and 252 

levels of other PlsEtn species or fatty acids including DHA (data not shown). 253 
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Relationship between levels of 18:0/22:6-PlsEtn in blood and tissues 254 

The levels of 18:0/22:6-PlsEtn in the cerebral cortex were positively correlated with 255 

those in the RBC and liver (Table 7). Liver 18:0/22:6-PlsEtn levels were positively 256 

correlated with those in the plasma and RBC. 257 

 258 

Discussion 259 

PlsEtn has an important role for neurotransmission and the maintenance of membrane 260 

function on brain [3, 25], and its level is specifically decreased in brains from patients 261 

with AD [10]. In addition, PlsEtn level continues to decrease in the brain as AD 262 

advances [26], and the level of PlsEtn, especially PlsEtn bearing DHA, is decreased in 263 

the plasma and RBC of patients with AD [27]. Our group found that extrinsic PlsEtn 264 

suppressed neuronal apoptosis in vitro [11]. In this study, we investigated whether oral 265 

administration of EtnGpl containing high concentrations of PlsEtn would affect spatial 266 

cognition learning ability and lipid composition in Aβ-infused rats produced by infusing 267 

Aβ peptide into the brain. 268 

In behavioral experiments, administration of ascidian viscera EtnGpl, which is rich in 269 

PlsEtn, improved both reference and working memory-related learning ability in 270 
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Aβ-infused rats, while administration of egg yolk EtnGpl, which is poor in PlsEtn, did 271 

not. In addition, administration of ascidian viscera EtnGpl increased levels of PlsEtn 272 

species in the blood and tissues of Aβ-infused rats (Table 6). Levels of PlsEtn bearing 273 

DHA were increased in the cerebral cortex, and the concentration had a negative 274 

correlation with the WME scores, which indicated short-term memory impairment as an 275 

AD character (Table 7). Our previous studies showed that the addition of PlsEtn with 276 

DHA strongly suppressed neuronal apoptosis and destabilized Aβ fibrils in vitro [12, 27]. 277 

These results suggested that the increase in PlsEtn bearing DHA levels in the cerebral 278 

cortex improved spatial cognition learning ability. 279 

The administration of ascidian viscera EtnGpl also increased in DHA, DPAn-3, and EPA 280 

levels in the plasma and liver (Table 3 and 4) but not in the RBC and brain (Table 4 and 281 

5). Their fatty acid levels were reflected by absorption, elongation, and desaturation of 282 

the C20 over n-3 PUFA in EtnGpl because all groups had been fed an α-linolenic acid 283 

(ALA)-rich diet. Tissues, especially brain tissues have homeostasis, and thereby do not 284 

markedly alter the levels of fatty acids and lipid classes [28, 29]. However, the lipid 285 

levels in the RBC and brain markedly alter in case of extreme nutrient limitation for 286 

long term[30] and certain disorders such as cognitive impairment [10, 31]. Decreases in 287 
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the lipid levels of tissues may be complemented by the administration of the lipid or the 288 

precursor. Therefore, it will be more important to quantify lipid molecular species than 289 

fatty acid composition. 290 

Aβ is deposited in the form of plaques in patients with AD, inducing oxidative stress 291 

and chronic inflammation in the brain and resulting in AD pathologies [32, 33]. 292 

Excessive oxidative stress causes the activation of phospholipase A2 (PLA2), including 293 

PlsEtn-selective PLA2, to decrease brain PlsEtn level [2]. DHA released from PlsEtn is 294 

metabolized to docosanoids (e.g., docosatrienes and resolvins), which have 295 

anti-apoptotic and anti-inflammatory effects [34]. Moreover, PlsEtn acts as an 296 

antioxidant and a chelation agent to protect neuronal cells from ROS- and iron-induced 297 

oxidative injures [4, 35]. Thus, PlsEtn is sacrificed for the protection of neuronal cells. 298 

However, decreases in neuronal cell PlsEtn activate γ-secretase, which produces Aβ 299 

from Aβ protein precursor [36]. PlsEtn lack impairs intracellular cholesterol distribution, 300 

affecting plasma membrane function and structural changes in the endoplasmic 301 

reticulum and Golgi cisternae [37]. Increases in the cholesterol level of membrane rafts 302 

also enhance Aβ production [38]. Taken together, PlsEtn degradation is important due to 303 
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its protective effect on neuronal cells, and the neuronal cells in which the amount of 304 

PlsEtn is decreased become stress-prone. 305 

Conversely, the activation of cytosolic PLA2, which catalyzes phosphatidylcholine 306 

(PtdCho), is also a key step in the AD brain [39]. ARA released from PtdCho is 307 

metabolized to eicosanoids, which show apoptotic and inflammatory effects, through 308 

the cyclooxygenase pathway [40, 41]. In addition, lyso-PtdCho from PtdCho is released 309 

to initiate astrogliosis, neuroinflammation, and subsequent neurodegeneration [42]. 310 

PlsEtn and DHA reduce cytosolic PLA2 and cyclooxygenase activities, suppressing 311 

neuronal apoptosis [12, 43]. Therefore, increases in the PlsEtn bearing DHA level and 312 

DHA/ARA ratio are thought to moderate oxidative conditions in the brain. The 313 

administration of DHA ethyl ester has been reported to ameliorate learning deficiencies 314 

in Aβ-infused rats due to increased DHA/ARA ratios and suppressed ROS generation 315 

[17]. The DHA/ARA ratio may possibly indirectly alter level of PlsEtn with DHA due 316 

to be a storage depot of DHA. 317 

In the present study, plasma levels of PlsEtn with DHA had a negative correlation with 318 

RME scores, indicating long-term memory impairment (Table 7). Other researchers 319 

have reported that cognitive impairment increased in patients with AD having low 320 
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levels of serum PlsEtn with DHA after a year [44]. Decreases in PlsEtn level have been 321 

reported in the serum of patients with Parkinson’s disease (PD) as a neurodegenerative 322 

disease [45]. Administration of PlsEtn precursor increased levels of serum PlsEtn 323 

bearing DHA in monkeys with dyskinesias caused by treatment of PD, improving 324 

dyskinesia symptoms [46]. Moreover, PlsEtn with DHA/total PlsEtn ratios were 325 

inversely correlated with dyskinesia symptoms. Plasma or serum PlsEtn levels may be 326 

associated with brain PlsEtn level and central nervous system function. On the other 327 

hand, administration of PlsEtn precursor increased plasma and heart levels of PlsEtn 328 

and choline plasmalogen in atherosclerosis model mice that were deficient in ApoE or 329 

ApoE/glutathione peroxidase-1, attenuating atherosclerosis [47]. Therefore, 330 

improvement in the circulatory system may indirectly attenuate cognitive impairments.  331 

As described above, it is thought that the level of PlsEtn having DHA in brain is 332 

associated with brain functions. On the other hand, a number of studies on animals and 333 

humans have reported that DHA administration has the potential to suppress the 334 

incidence of AD in animals as well as in human [9, 17, 48]. Recently, it was reported 335 

that in AD model mice (Tg2576), DHA supplementation for 1 year increases in the 336 

brain PlsEtn with DHA [49]. Therefore, PlsEtn with DHA in the brain is emphasized as 337 
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an important factor for cognitive functions. However, there is a question whether the 338 

administration of fatty acid DHA or PlsEtn with DHA is more effective for increasing in 339 

the brain PlsEtn containing DHA. In AD brain, alkenyl chain and ethanolamine as well 340 

as DHA are insufficient [10]. It has been reported that the EtnGpl level is strictly 341 

managed by homeostasis [29], and the PtdEtn administration improves age-related 342 

spatial memory deterioration [50]. Moreover, PlsEtn or the precursor has been reported 343 

to pass the blood-brain barrier [51]. Further studies including clinical trials are required 344 

to determine the availability of the administration of DHA and PlsEtn. 345 

PlsEtn bearing DHA levels in RBC were correlated with the levels in the cerebral cortex 346 

(Table 7). In our previous study, levels of RBC PlsEtn with DHA were decreased in 347 

patients with AD compared to healthy subjects [27]. The levels of RBC PlsEtn having 348 

DHA were correlated with the brain volumes of patients with AD and healthy subjects 349 

(unpublished observation). The level of RBC PlsEtn with DHA may thus reflect brain 350 

condition. The use of brain amyloid imaging [52] and Aβ levels in the cerebrospinal 351 

fluid [53] as biomarkers of AD is limited due to cost and safety factors. Therefore, 352 

identification of AD biomarkers in the blood would significantly improve patient safety 353 
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and reduce AD diagnostic costs. Levels of RBC PlsEtn with DHA could be potential 354 

candidates for blood-based biomarkers of AD. 355 

Dietary PlsEtn has a low absorption rate [54]. Therefore, PlsEtn precursors have been 356 

used to increase PlsEtn levels in vivo [47, 51]. However, PlsEtn levels in the blood and 357 

liver could be markedly increased by ingestion of PlsEtn over a fixed term, and the 358 

increase in brain PlsEtn with DHA is very important. Administration of ascidian viscera 359 

EtnGpl increased brain PlsEtn with DHA in this study although it is not clear whether 360 

administered PlsEtn could directly transfer into the brain. Moreover, ascidian viscera 361 

EtnGpl contains PlsEtn with EPA, which is metabolized and exhibits various 362 

bioactivities [15, 55], and administration of ascidian viscera EtnGpl increased the brain 363 

mol% of DPAn-3, a DHA precursor. Taken together, these findings suggest that intake 364 

of PlsEtn from marine invertebrates is preferable for the purposes of increase in brain 365 

PlsEtn with DHA and amelioration of cognitive impairment. 366 

Recently, it was reported that Aβ production in the liver has a connection with Aβ 367 

accumulation in the brain [56, 57]. PlsEtn administration suppressed Aβ accumulation 368 

in the brain induced by i.p. injection of lipopolysaccharide [58]. Moreover, the level of 369 

PlsEtn with DHA decreased in the blood of patients with AD and had a negative 370 
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correlation with plasma Aβ levels in healthy subjects [27]. PlsEtn also suppresses Aβ 371 

production and aggregation [27, 36]. Therefore, an increase in PlsEtn levels in the blood 372 

and liver might also slow AD progression. 373 

In conclusion, administration of ascidian viscera EtnGpl, which is rich in PlsEtn, 374 

improved cognitive impairment and altered levels of PlsEtn species in Aβ-infused rats. 375 

These results suggest that PlsEtn containing DHA from marine invertebrates is 376 

potentially useful for a therapeutic dietary supplement treating and preventing AD. 377 

  378 
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Figure legend 563 

Fig. 1. Effect of administration of EtnGpl to Aβ-infused rats on learning ability. Effects 564 

of oral administration of EtnGpl on reference memory-related learning ability (A) and 565 

working memory-related learning ability (B) in the radial maze task in Aβ-infused rats.  566 

Means ± SEM, n = 8. Asterisks indicate significant differences between this group and 567 

Control group (**P < 0.01) by randomized 2-factor (block and group) ANOVA followed 568 

by Fisher’s PLSD test. 569 

EtnGpl, ethanolamine glycerophospholipid; AD, Alzheimer’s disease. 570 
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Tables 

Table 1. Acyl and alkenyl chain composition of prepared EtnGpl  

 

EtnGpl, ethanolamine glycerophospholipid; LNA, linoleic acid; ALA, α-linolenic acid; ARA, 

arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic 

acid. 

  

Egg yolk Ascidian viscera

Palmitate16:0 23.2 2.9

Stearate18:0 26.6 8.6

Oleate18:1n-9 19.4 7.3

LNA18:2n-6 12.6 0.4

ALA18:3n-3 0.0 0.3

ARA20:4n-6 13.4 4.6

EPA20:5n-3 0.1 22.4

DPA22:5n-3 0.2 0.6

DHA22:6n-3 2.6 13.3

n-3/n-6 0.09 7.32

DHA/ARA 0.19 2.89

Palmitoyl16:0 0.9 3.1

Stearoyl18:0 1.0 34.2

Oleoyl18:1 0.1 2.3

(mol%)

Acyl

Alkenyl
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Table 2. Body and liver weights, and liver and blood biochemical parameters of Aβ-infused rats 

administrated EtnGpl for 6 weeks 

 

Means ± SEM, n = 8. AD, Alzheimer’s disease; TBARS, thiobarbituric acid reactive substances; AST, 

aspartate aminotransferase; ALT, alanine aminotransferase; γ-GTP, γ-glutamyltranspeptidase; HDL, 

high density lipoprotein. 

  

Weight (g/rat) 403.1 ± 4.6 405.4 ± 9.0 404.7 ± 7.7

Liver

Weight (g/rat) 10.4 ± 0.5 10.5 ± 0.4 10.2 ± 0.2

α-Tocophenol (nmol/mg protein) 0.7 ± 0.1 0.9 ± 0.1 1.0 ± 0.1

TBARS (nmol/mg protein) 0.7 ± 0.0 0.8 ± 0.1 0.8 ± 0.1

AST (IU/L) 56.6 ± 2.0 55.4 ± 2.1 54.8 ± 1.3

ALT (IU/L) 27.4 ± 1.0 29.4 ± 1.9 31.1 ± 0.6

γ-GTP (IU/L) 0.4 ± 0.2 0.3 ± 0.2 0.5 ± 0.2

Total cholesterol (mmol/L) 2.1 ± 0.1 2.3 ± 0.1 2.0 ± 0.1

HDL-cholesterol (mmol/L) 1.1 ± 0.0 1.3 ± 0.0 1.2 ± 0.0

non HDL-cholesterol (mmol/L) 1.0 ± 0.1 1.0 ± 0.0 0.9 ± 0.0

α-Tocophenol (nmol/mL) 9.8 ± 0.5 10.1 ± 0.3 9.5 ± 0.6

TBARS (nmol/mL) 1.4 ± 0.1 1.6 ± 0.1 1.3 ± 0.1

Control group Egg group Ascidian group

Body

Plasma
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Table 3. Composition of acyl and alkenyl chain in plasma of Aβ-infused rats administered EtnGpl for 

6 weeks 

 

Means ± SEM, n = 8. Asterisks indicate significant differences between this group and Control group 

(**P < 0.01, *P < 0.05) by one-way ANOVA followed by Scheffe’s F-test. AD, Alzheimer’s disease; 

EtnGpl, ethanolamine glyceropospholipid; LNA, linoleic acid; ALA, α-linolenic acid; ARA, 

arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic 

acid. 

 

  

(nmol/mL plasma)

Palmitate16:0 908.1 ± 30.3 959.9 ± 66.0 935.8 ± 34.0

Stearate18:0 488.7 ± 21.0 515.2 ± 23.4 473.9 ± 11.5

Oleate18:1n-9 328.5 ± 15.7 386.5 ± 60.7 356.1 ± 30.3

LNA18:2n-6 807.0 ± 35.1 822.2 ± 73.2 950.6 ± 37.1

ALA18:3n-3 7.6 ± 0.8 7.5 ± 1.6 9.4 ± 1.3

ARA20:4n-6 1113.1 ± 65.0 1190.1 ± 86.5 882.0 ± 33.5

EPA20:5n-3 13.2 ± 1.3 13.7 ± 1.1 74.8 ± 5.0**

DPA22:5n-3 19.7 ± 2.1 19.7 ± 2.8 47.2 ± 1.7**

DHA22:6n-3 102.6 ± 7.4 137.2 ± 11.9* 203.6 ± 6.1**

n-3/n-6 0.07 ± 0.00 0.09 ± 0.00 0.18 ± 0.01**

DHA/ARA 0.09 ± 0.00 0.11 ± 0.00* 0.23 ± 0.01**

Alkenyl (nmol/mL plasma)

Palmitoyl16:0 16.4 ± 2.2 16.3 ± 2.2 16.8 ± 2.3

Stearoyl18:0 17.0 ± 2.3 27.5 ± 5.4 105.4 ± 25.1**

Oleoyl18:1 11.3 ± 1.5 10.5 ± 1.4 10.2 ± 1.4

Total 44.7 ± 6.0 54.3 ± 7.9 132.4 ± 25.4**

Acyl

Control group Egg group Ascidian group
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Table 4. Composition of acyl and alkenyl chain in RBCs and liver of Aβ-infused rats administered 

EtnGpl for 6 weeks 

 

Means ± SEM, n = 8. Asterisks indicate significant differences between this group and Control group 

(**P < 0.01, *P < 0.05) by one-way ANOVA followed by Scheffe’s F-test. AD, Alzheimer’s disease; 

RBCs, red blood cells; EtnGpl, ethanolamine glyceropospholipid; LNA, linoleic acid; ALA, 

α-linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; 

DHA, docosahexaenoic acid. 

 

  

Palmitate16:0 121.4 ± 23.5 146.1 ± 14.7 124.3 ± 11.0 31.3 ± 3.5 30.1 ± 3.8 41.7 ± 2.8

Stearate18:0 62.2 ± 10.9 73.7 ± 7.5 60.3 ± 5.8 19.7 ± 1.8 21.4 ± 2.5 27.0 ± 1.7

Oleate18:1n-9 25.8 ± 5.4 29.4 ± 3.3 24.9 ± 2.4 12.9 ± 1.7 11.6 ± 2.0 15.5 ± 1.1

LNA18:2n-6 35.0 ± 6.9 40.3 ± 4.0 38.8 ± 3.5 22.7 ± 3.1 17.8 ± 2.2 32.3 ± 2.3**

ALA18:3n-3 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.5 ± 0.1 0.4 ± 0.1 0.6 ± 0.1

ARA20:4n-6 99.1 ± 18.9 116.0 ± 12.0 89.4 ± 8.6 24.0 ± 2.4 25.0 ± 2.8 27.1 ± 1.7

EPA20:5n-3 0.1 ± 0.0 0.1 ± 0.1 0.4 ± 0.1 0.1 ± 0.0 0.0 ± 0.0 1.0 ± 0.1**

DPA22:5n-3 34.6 ± 4.8 37.1 ± 3.5 34.9 ± 2.9 2.0 ± 0.2 1.8 ± 0.2 4.0 ± 0.3**

DHA22:6n-3 10.3 ± 1.9 13.6 ± 1.5 15.3 ± 1.6 6.9 ± 0.7 7.7 ± 0.9 14.2 ± 1.1**

n-3/n-6 0.37 ± 0.03 0.33 ± 0.01 0.40 ± 0.01 0.20 ± 0.00 0.23 ± 0.01 0.33 ± 0.02**

DHA/ARA 0.11 ± 0.01 0.12 ± 0.00 0.17 ± 0.00** 0.29 ± 0.01 0.31 ± 0.01 0.52 ± 0.02**

Alkenyl

Palmitoyl16:0 10.5 ± 2.5 13.8 ± 1.5 11.8 ± 1.1 0.3 ± 0.0 0.2 ± 0.0 0.3 ± 0.0

Stearoyl18:0 9.4 ± 2.0 13.0 ± 1.4 11.8 ± 1.1 0.3 ± 0.0 0.2 ± 0.0 0.4 ± 0.0

Oleoyl18:1 7.7 ± 2.0 9.5 ± 1.1 8.5 ± 0.9 0.3 ± 0.0 0.3 ± 0.0 0.5 ± 0.1*

Total 27.7 ± 6.5 36.3 ± 3.9 32.1 ± 3.1 0.8 ± 0.1 0.7 ± 0.1 1.2 ± 0.1*

RBC Liver

Ascidian group

(nmol/mg protein)Acyl

Control group Egg group

(nmol/mg protein)

Control group Egg group Ascidian group
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Table 5. Composition of acyl and alkenyl chain in brain of Aβ-infused rats administered EtnGpl for 6 

weeks 

 

Means ± SEM, n = 8. Asterisks indicate significant differences between this group and Control group 

(*P < 0.05) by one-way ANOVA followed by Scheffe’s F-test. AD, Alzheimer’s disease; EtnGpl, 

ethanolamine glyceropospholipid; LNA, linoleic acid; ALA, α-linolenic acid; ARA, arachidonic acid; 

EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid. 

 

  

Palmitate16:0 285.9 ± 5.1 267.3 ± 2.5* 274.4 ± 4.1 259.3 ± 6.0 263.8 ± 4.1 249.8 ± 4.9

Stearate18:0 277.6 ± 6.0 256.9 ± 3.0 248.5 ± 16.7 264.6 ± 6.6 270.9 ± 4.8 256.7 ± 5.9

Oleate18:1n-9 153.6 ± 5.1 139.1 ± 3.2 141.5 ± 3.4 177.6 ± 7.4 181.4 ± 8.1 176.2 ± 8.7

LNA18:2n-6 9.1 ± 0.8 7.4 ± 0.7 8.7 ± 0.6 6.8 ± 0.3 6.7 ± 0.2 7.2 ± 0.2

ALA18:3n-3 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.1 ± 0.0

ARA20:4n-6 124.9 ± 3.6 120.8 ± 2.3 120.8 ± 2.3 130.3 ± 3.0 133.8 ± 4.0 126.4 ± 2.3

EPA20:5n-3 0.8 ± 0.1 0.6 ± 0.0 0.6 ± 0.0 0.8 ± 0.1 0.7 ± 0.0 0.6 ± 0.0

DPA22:5n-3 1.2 ± 0.1 0.8 ± 0.1* 1.5 ± 0.1 1.0 ± 0.1 0.8 ± 0.1* 1.3 ± 0.1

DHA22:6n-3 162.9 ± 5.3 152.3 ± 4.9 162.2 ± 4.9 139.1 ± 3.0 144.4 ± 3.5 141.5 ± 2.5

n-3/n-6 1.24 ± 0.06 1.20 ± 0.05 1.27 ± 0.05 1.03 ± 0.02 1.04 ± 0.01 1.08 ± 0.01

DHA/ARA 1.32 ± 0.07 1.27 ± 0.06 1.35 ± 0.06 1.07 ± 0.02 1.08 ± 0.01 1.12 ± 0.01*

Alkenyl

Palmitoyl16:0 24.6 ± 2.1 25.8 ± 1.7 25.6 ± 1.3 28.9 ± 1.6 29.3 ± 1.2 28.9 ± 1.7

Stearoyl18:0 22.8 ± 1.1 21.7 ± 0.6 23.1 ± 0.9 27.2 ± 2.6 27.4 ± 2.5 28.4 ± 2.1

Oleoyl18:1 9.5 ± 0.7 8.7 ± 0.4 8.5 ± 0.5 18.3 ± 2.7 19.2 ± 2.4 18.5 ± 3.1

Total 56.9 ± 2.2 56.2 ± 1.9 57.2 ± 1.1 74.4 ± 6.7 75.9 ± 5.6 75.8 ± 6.7

Cerebral cortex Hippocampus

Control group Egg group Ascidian group

Acyl (nmol/mg protein)

(nmol/mg protein)

Control group Egg group Ascidian group

Page 38 of 42



For Peer Review

 

6 

 

Table 6. PlsEtn species levels in blood, liver, and brain of Aβ-infused rats administered EtnGpl for 6 

weeks 

 

Means ± SEM, n = 8. Asterisks indicate significant differences between this group and Control group 

(**P < 0.01, *P < 0.05) by one-way ANOVA followed by Scheffe’s F-test. PlsEtn, ethanolamine 

plasmalogen; AD, Alzheimer’s disease; EtnGpl, ethanolamine glyceropospholipid; RBC, red blood 

cell. 

  

18:0/18:1-PlsEtn 0.5 ± 0.1 0.7 ± 0.1 2.3 ± 0.6**

18:0/20:4-PlsEtn 6.7 ± 1.0 10.3 ± 2.1 29.9 ± 6.8**

18:0/20:5-PlsEtn 0.2 ± 0.0 0.3 ± 0.1 10.2 ± 3.0**

18:0/22:6-PlsEtn 3.7 ± 0.5 6.8 ± 1.4 26.5 ± 6.2**

18:0/18:1-PlsEtn 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0

18:0/20:4-PlsEtn 7.9 ± 0.8 8.1 ± 1.7 8.1 ± 0.7

18:0/20:5-PlsEtn 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.0**

18:0/22:6-PlsEtn 1.1 ± 0.1 1.2 ± 0.3 2.1 ± 0.1*

18:0/18:1-PlsEtn 43.4 ± 4.6 40.3 ± 5.3 64.3 ± 5.1*

18:0/20:4-PlsEtn 1495.8 ± 82.2 1468.3 ± 178.7 1703.5 ± 140.3

18:0/20:5-PlsEtn 19.9 ± 1.5 18.4 ± 1.8 155.7 ± 6.3**

18:0/22:6-PlsEtn 209.2 ± 15.6 288.2 ± 37.9 720.2 ± 100.8**

Cerebral cortex

18:0/18:1-PlsEtn 1.6 ± 0.1 1.7 ± 0.1 2.0 ± 0.2

18:0/20:4-PlsEtn 7.3 ± 0.3 7.2 ± 0.3 8.9 ± 0.6

18:0/20:5-PlsEtn 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

18:0/22:6-PlsEtn 9.4 ± 0.3 9.2 ± 0.5 11.6 ± 0.6*

Control group Egg group Ascidian group

(nmol/mg protein)

Plasma (nmol/mL plasma)

RBC (nmol/mg protein)

Liver (pmol/mg protein)
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Table 7. Correlations between of learning ability and levels of 18:0/22:6-PlsEtn in Aβ-infused rats
1
 

 

 

1
The number of RME and WME in block 6 shown in Figure 1 was used as an indicator of learning 

ability. n = 24. PlsEtn, ethanolamine plasmalogen; AD, Alzheimer’s disease; RME, reference 

memory error; WME, working memory error; RBC, red blood cell. 

  

r p r p

18:0/22:6-PlsEtn

  Plasma –0.48 <0.05 –0.26 0.23

  RBC –0.18 0.40 –0.03 0.99

  Liver –0.16 0.46 –0.18 0.39

  Cerebral cortex 0.04 0.85 –0.40 <0.05

RME WME

r p r p r p

18:0/22:6-PlsEtn

  Plasma

  RBC 0.281 0.183

  Liver 0.481 <0.05 0.663 <0.001

  Cerebral cortex 0.125 0.561 0.450 <0.05 0.559 <0.01

Plasma RBC Liver

18:0/22:6-PlsEtn
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Fig. 1 
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