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Conjugated linoleic acids (CLAs) are positional and geometrical isomers of linoleic acid (LA). Cis-9,trans-11-

CLA (CLA), the main isomer of CLAs in foods derived from ruminants, has several beneficial effects for

humans and animals; however, its effects on the central nervous system are largely unknown. In this study,

we investigated the effects of LA and CLA on neuronal differentiation of neural stem cells (NSCs). NSCs

cultured with or without LA and CLA were assessed by immunofluorescence staining, mRNA measurement

of basic helix-loop-helix transcription factors and cyclin-dependent kinase inhibitors by real-time PCR,

BrdU incorporation analysis and flow cytometry analysis. In NSCs treated with CLA, the number of Tuj-1-

positive cells (neurons) and the mRNA expression levels of Hes6, MAP2, p21cip1 and p27kip1 increased, while

the proportion of S-phase cells decreased; compared with the control, no change was demonstrated in NSCs

treated with LA. These results suggest that CLA promotes neuronal differentiation by increasing, in part, the

expression of Hes6 mRNA and by activating p21cip1 and p27kip1 to arrest cell cycle.

& 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Conjugated linoleic acids (CLAs, Fig. 1A), a group of polyunsa-
turated fatty acids (PUFAs), are positional and geometrical
isomers of linoleic acid (LA, Fig. 1B) [1]. Cis-9,trans-11-CLA (CLA)
is produced directly by bacterial hydrogenation of LA in rumi-
nants [2] or by delta-9 desaturation of vaccenic acid in most
mammalian tissues [3]. CLA is the primary isomer naturally
present in milk, dairy and ruminant meat products, which con-
tributes about 90% of total dietary intake of CLAs by humans [4].
CLAs have several beneficial effects, such as anti-adipogenic, anti-
carcinogenic, anti-atherogenic, anti-diabetogenic, anti-inflamma-
toric [4] and anti-angiogenic [5] on animal models and/or cell
cultures. CLA is actively incorporated into the brain and metabo-
lized [6,7], suggesting some biological effects on the central
nervous system. Although PUFAs such as docosahexaenoic acid
(DHA) [8,9], eicosapentaenoic acid [10,11] and arachidonic acid
[12] are known to have physiological functions in the central
nervous system, the effects of CLA thereon have remained largely
unknown.

Neural stem cells (NSCs) are self-renewing and multipotent
progenitor cells that differentiate into neuronal or glial cells
[13–15]. Since the stages of neuronal development proceed in
the order of proliferation of NSCs, neuronal differentiation and
glial differentiation [16], and are maintained in cultured NSCs
93
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[16], we used cultured NSCs for investigating the effects of CLA on
neuronal development in vitro.

Basic helix-loop-helix (bHLH) transcription factors play impor-
tant roles in the proliferation and differentiation of NSCs [17].
Neuronal differentiation is promoted by activator-type bHLH
factors such as Mash1 and NeuroD, whereas repressor-type bHLH
factors, such as Hes1, inhibit neuronal differentiation and
promote proliferation [17–19]. The balance of activity among
these factors is thought to determine the cell fate.

Regulation of the cell cycle affects the proliferation, differen-
tiation and apoptosis of NSCs. Cell differentiation is usually
accompanied by irreversible cell cycle exit that is arrested at
the G1/S-phase and enters the G0-phase without passing the cell
cycle restriction point [20]. G1 regulatory molecules have been
shown as exquisitely regulated during the differentiation process.
Deferoxamine, a G1/S-phase cell cycle blocker, induces neuronal
differentiation of NSCs [21]. Cyclin-dependent kinase (CDK)
inhibitors p21cip1 and p27kip1 block cell cycle progression by
inhibiting the activity of cyclin–CDK complexes, and regulate
transition through G1-phase [22,23].

A number of studies on CLAs have used a mixture of various
isomers containing cis-9,trans-11- and trans-10,cis-12 CLA as
major compounds. Recently, studies using individual isomers
indicate that the two isomers have very different health
effects [4]. Therefore, purified cis-9,trans-11-CLA, the main isomer
of CLAs present in foods, was used in our study.

Here, we investigated whether LA and CLA affect neuronal
differentiation and modulate the expression level of bHLH tran-
scription factors, CDK inhibitors and the cell cycle in NSCs.
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Fig. 1. Structures of linoleic acid (LA, A) and cis-9,trans-11-conjugated linoleic acid (CLA, B).
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2. Materials and methods

All experiments were carried out in accordance with the
‘‘Guidelines for Animal Experimentation’’ of the Center for Inte-
grated Research in Science, Shimane University, and approved by
the ‘‘Animal Care and Use Committee’’ of the same institution
under the ‘‘Guiding Principles for the Care and Use of Animals in
the Field of Physiological Science’’ of the Physiological Society of
Japan and ‘‘Guide for the Care and Use of Laboratory Animals’’ of
NIH. The number of animals used and anesthetized for the
collection of embryonic NSCs was kept to a minimum. Protocols
were designed to minimize pain and suffering during the
procedures.

2.1. Embryonic NSC culture

NSCs were cultured by the neurosphere method as described
[24,25]. Briefly, forebrain cortices isolated from 14.5-day embryo-
nic rats were mechanically disrupted into single cells by repeated
pipetting in a serum-free conditioned medium (N2 medium)
containing Dulbecco’s Modified Eagle Medium/Ham’s F12 1:1,
0.6% glucose, 0.1% sodium bicarbonate, 2 mM of L-glutamine,
5 mM Hepes, 100 mg/mL human apo-transferrin (Sigma-Aldrich,
St. Louis, MO, USA), 20 nM progesterone (Sigma-Aldrich), 30 nM
sodium selenite (Sigma-Aldrich), 60 mM putrescine (Sigma-
Aldrich) and 25 mg/mL insulin (Sigma-Aldrich). The dissociated
cells were cultured in dishes at a density of 1�105 cells/mL in N2
medium with 20 ng/mL basic fibroblast growth factor (bFGF; R&D
Systems, Inc., Minneapolis, MN, USA) and 2 mg/mL heparin
(Sigma-Aldrich) in a (5% CO2/95% air) humidified incubator at
37 1C. The cells grown as free floating neurospheres within 3–5
days were collected by centrifugation, dissociated by mechanical
pipetting and passaged.

2.2. NSC differentiation

For differentiation, the neurospheres (passage 2) were
mechanically dissociated and seeded onto poly-L-ornithine
(15 mg/mL, Sigma-Aldrich)-coated 24-well plates at a density of
2�105 cells/well in N2 medium without bFGF or heparin. The
cultures were then treated with LA (1.0 and 10 mM, Cayman, MI,
USA) or CLA (0, 0.001, 0.01, 0.1, 1.0 and 10 mM, Cayman) and
dissolved in N2 medium containing 1.0% fatty acid-free bovine
serum albumin (BSA, Sigma-Aldrich) at a final concentration of
0.01%. BSA (0.01%) was used as the control, and the culture
medium was changed every other day.

2.3. Immunofluorescence staining

Cultured cells were fixed with 4% paraformaldehyde at room
temperature for 30 min, washed with 0.1 M Tris-buffered solution
Please cite this article as: T. Okui, et al., Cis-9,trans-11-conjugated lin
of Hes6 mRNA and..., Prostaglandins Leukotrienes Essent. Fatty Acid
(pH 7.5, TBS), blocked with 3% normal goat serum (Dako Cytoma-
tion, Carpinteria, CA, USA) in TBS containing 0.3% Triton X-100 at
room temperature for 60 min and incubated with primary anti-
bodies at 4 1C overnight. The primary antibody was mouse anti-
neuron-specific class III beta-tubulin (Tuj-1, 1:1000, R&D
Systems, Inc.). The cells were washed with TBS and incubated
with Alexa Fluor 488-conjugated secondary antibody (1:1000,
Invitrogen Corp., Carlsbad, CA, USA) at room temperature for
60 min. To visualize nuclei, the cells were counterstained with
2 mg/mL propidium iodide (PI, Dojindo Laboratories). Finally, the
cells were mounted with 80% glycerol, visualized under a fluor-
escent laser microscope (CLMS FV300, Olympus Corp., Tokyo,
Japan) and processed using the Image J software (NIH, Bethesda,
MD, USA). The number of Tuj-1-positive cells and total cells was
counted in each of the seven random fields per well.

2.4. Cell viability assay

NSCs were seeded onto poly-L-ornithine-coated 96-well plates
at a density of 2�104 cells/well in N2 medium with or without
fatty acids (LA or CLA). The methylthiazoltetrazolium assay (MTT;
3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide;
Dojindo Laboratories, Kumamoto, Japan) was conducted to
measure cell viability. The cells were incubated with 0.25 mg/mL
of MTT at 37 1C for 4 h; the reaction was terminated by the
addition of 20% sodium dodecyl sulfate/50% dimethylformamide,
and then the cells were gently shaken at room temperature for
12 h. The amount of MTT formazan product was determined with
a microplate reader, and the absorbance was measured at 550 nm.
The data are expressed as percentages of the control group.

2.5. Real-time PCR

The NSCs were allowed to differentiate for 6, 12, 24 and 96 h in
differentiation medium in the presence of LA or CLA. Total RNA
was isolated by Isogen (Wako Pure Chemical Industries, Ltd.),
then cDNA was synthesized with the Quantitect reverse tran-
scription kit (QIAGEN, GmbH, Hilden, Germany) and amplified by
the ABI prism 7000 sequence detection system (Applied Biosys-
tems, Inc., Foster City, CA, USA). Real-time PCR was carried out
with the Quantitect SYBR Green PCR kit (QIAGEN). The primer
sequences used are listed in Table 1. The specificity of PCR
products was confirmed by both melting curve analysis and
agarose gel electrophoresis (data not shown). The amplification
efficiencies of all the genes determined in the initial experiment
were all comparable (data not shown). The PCR conditions were
as follows: initial activation at 95 1C for 15 min, then 40 ampli-
fication cycles of denaturation at 95 1C for 15 s, annealing at
58–63 1C for 30 s (see Table 1 for temperatures used) and exten-
sion at 72 1C for 30 s. The relative changes in gene expression
oleic acid promotes neuronal differentiation through regulation
s (2011), doi:10.1016/j.plefa.2011.06.001
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Table 1
Primers and reaction conditions of reverse transcription-polymerase chain

reaction.

Genes Primer sequence (50–30) Size

(bp)

Annealing

temperature

(1C)

Accession

no.

Hes1 F: TTCCTCCCATTGGCTGAAAG 129 60 NM024360

R: CCAGCTCCAGATCCAGTGTGAT

Hes6 F: TCCTTAGGCATCCTGACCAC 149 63 BC087597

R: TGGGCTATCTCCACCTCATC

Mash1 F: GTTCGGCGGTCGAATACAT 411 63 X53725

R: TGAATCTAAGTCCTGGTGCCC

NeuroD F: AAGACGCATGAAGGCCAATG 135 63 AF107728

R: GCCAAGCGCAGTGTCTCTATCT

MAP2 F: GTTTACATTGTTCAGGACCTCATGG 257 63 NM013066

R: TCGGTAAGAAAGCCAGTGTGGT

p21cip1 F: CAAAGTATGCCGTCGTCTGTTC 70 63 BC100620

R: CATGAGCGCATCGCAATC

p27kip1 F: GGCCAACAGAACAGAAGAAAATG 67 58 NM031762

R: GGGCGTCTGCTCCACAGT

GAPDH F: ATCTTCTTGTGCAGTGCCAGC 216 63 AB017801

R: CCTTGACTGTGCCGTTGAACT

Hes, hairy and enhancer of split; Mash1, mammalian achaete–scute complex

homolog 1; NeuroD, neurogenic differentiation; MAP2, microtubule-associated

protein 2; p21cip1 and p27kip1, cyclin-dependent kinase inhibitors; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase; F, forward primer; R, reverse primer.

Fig. 2. CLA enhanced neuronal differentiation of NSCs in a dose-dependent

manner. (A) Immunofluorescence images of Tuj-1 (neuron marker, green) and PI

(nuclei, red) in control (0.01% BSA treated) and CLA (1.0 mM) groups on day 7.

Scale bars: 100 mm. (B) NSCs were treated with 0, 0.001, 0.01, 0.1, 1.0 or 10 mM of

CLA for 7 days. The number of neuronal differentiated cells is expressed as the

proportion of Tuj-1-positive cells versus the total number of cells (PI-stained

cells). The values are presented as the means7SE (n¼6). * The values are

significantly different from the control group (Po0.05). BSA at 0.01% was used

as the control. (For interpretation of the references Q1to color in this figure legend,

the reader is referred to the web version of this article.)
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levels were determined by the 2�DDCt method described in User
Bulletin #2 of the ABI prism 7000 sequence detection system.

2.6. 5-Bromo-20-deoxyuridine (BrdU) incorporation assay

BrdU (10 mM, Sigma-Aldrich) was added to the medium for
24 h with or without CLA. Cells were fixed with 4% paraformal-
dehyde and treated with 2 M HCl at 37 1C for 10 min and then
with 0.1 M borate buffer (pH 8.5) at room temperature for 10 min.
After blocking with 3% normal goat serum in TBS containing 0.3%
Triton X-100 at room temperature for 60 min, the cells were
incubated with rat anti-BrdU antibody (1:10, AbD Serotec, Oxford,
UK) at 4 1C overnight. The cells were washed with TBS and
incubated with Alexa Fluor 488-conjugated secondary antibody
(1:1000, Invitrogen Corp.) at room temperature for 60 min. To
visualize nuclei, the cells were counterstained with 2 mg/mL of PI.
Finally, the cells were mounted with 80% glycerol and visualized
under a fluorescent laser microscope (CLMS FV300, Olympus
Corp.) and processed with the use of Image J software. The
number of BrdU positive cells and total cells was counted in each
of the seven random fields per well.

2.7. Cell cycle analysis

After incubating the cells for 11 h, BrdU (10 mM) was added to the
culture medium and the cells were allowed to incubate for another
1 h. Cell cycle was analyzed with a BrdU Flow Kit (Becton Dickinson
and Company, SanDiego, CA, USA; BD). The cells were analyzed with a
Becton Dickinson FACS Calibur cytometer equipped with a 15 mW,
488 nm, air-cooled argon ion laser for excitation of FITC (FL1), then
7-aminoactinomycin D (7-AAD, FL3) and FL1-H height signals were
collected after logarithmic amplification, while both FSC-H and SSC-H
height signals and the FL3-A area signal were collected after linear
amplification. Samples were acquired and analyzed with the use of
CELLQuest 3.3 software (Becton Dickinson), and the percentage of
cells in G0/G1-, S- and G2/M-phases was determined.

2.8. Statistical analysis

Statistical analysis was carried out by one-way analysis of variance
(ANOVA). The results are expressed as the means7standard error
Please cite this article as: T. Okui, et al., Cis-9,trans-11-conjugated lin
of Hes6 mRNA and..., Prostaglandins Leukotrienes Essent. Fatty Acid
(SE). One-way ANOVA followed by Dunnett’s test was compared with
the control group. Statistical significance was accepted at Po0.05.
3. Results

3.1. Effects of LA and CLA on neuronal differentiation of NSCs

Fig. 2A shows fluorescence images of neuronal differentiated
cells treated with CLA or BSA for 7 days. CLA dose-dependently
increased the percentage of Tuj-1-positive cells by a maximum of
18.3% at 1.0 mM; the percentage was slightly lower at 10 mM CLA,
but still higher than that in the control (Fig. 2B).

Tuj-1-positive cells cultured for 4 days with 1.0 or 10 mM of LA
or CLA (Fig. 3A) showed that the number of cells treated with LA
(1.0 and 10 mM) was not different from that of the control,
whereas cells treated with CLA (1.0 and 10 mM) increased
significantly by 134.5% and 121.7%, respectively, compared with
those of the control (Fig. 3B). These data indicate that CLA, but not
LA, enhances neuronal differentiation of NSCs.

As a concentration of 1.0 mM of LA and CLA did not affect
cell viability (data not shown), it was used in subsequent
experiments.

3.2. Effects of LA and CLA on mRNA expression of bHLH transcription

factors.

Compared with the control, a 96 h-treatment of NSCs with CLA
significantly increased the mRNA expression level of Mash1
oleic acid promotes neuronal differentiation through regulation
s (2011), doi:10.1016/j.plefa.2011.06.001
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Fig. 3. Effects of LA and CLA on neuronal differentiation of NSCs.

(A) Immunofluorescence images of Tuj-1 (neuron marker, green) and PI (nuclei,

red) in control (0.01% BSA treated), LA (1.0 mM) and CLA (1.0 mM) groups on day 4.

Scale bars: 100 mm. (B) NSCs were treated with LA or CLA (1.0 or 10 mM) for

4 days. The number of differentiating cells is expressed as the proportion of Tuj-1-

positive cells versus the total number of cells (PI-stained cells). The control was set

at 100%. The values are presented as the means7SE (n¼3). * The values are

significantly different from the control group (Po0.05). BSA at 0.01% was used as

the control. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 4. Effects of LA and CLA on mRNA expression levels of bHLH transcription

factors and MAP2. NSCs were cultured with 0.01% BSA (control, circle), LA (1.0 mM,

square) or CLA (1.0 mM, triangle) in the culture medium for the periods of time

indicated. Total RNA was prepared from each culture, and cDNA was synthesized

and subjected to real-time PCR using specific primers for Mash1 (A), NeuroD (B),

Hes1 (C), Hes6 (D) and MAP2 (E). GAPDH was used as an internal control. The

values are expressed as the means7SE of the fold-increase in the ratio of each

gene/GAPDH, with the value of the control group (24 h) taken as 1.0. Statistical

analysis was carried out by Dannett’s test. * The values are significantly different

from the control group (Po0.05).
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(Fig. 4A). Similarly, a 24 h-treatment significantly increased the
expression level of Hes6 and MAP2 by 50% and 80%, respectively
(Fig. 4D and E). In contrast, the mRNA expression level of NeuroD
and Hes1 demonstrated no significant difference (Fig. 4D and E).
Treatment with LA did not affect the mRNA expression level of
any of the bHLH transcription factors (Fig. 4).

3.3. Effects of LA and CLA on mRNA expression of p21cip1 and p27kip1,

and on cell proliferation

The mRNA expression level of p21cip1 and p27kip1 in NSCs
treated with CLA increased significantly by 247% and 80%,
respectively, compared with that in the control. On the other
hand, treatment with LA had no effect (Fig. 5A and B).

BrdU incorporation assay showed that the percentage of BrdU-
positive cells of NSCs (53.7% in control) decreased significantly by
treatment with 10 mM CLA (Fig. 5C and D), suggesting that CLA
inhibits proliferation of NSCs.

3.4. Effects of LA and CLA on cell cycle regulation of NSCs

Representative scatter plot of FACS analysis in NSCs exposed to
LA and CLA is shown in Fig. 6. The effects of LA and CLA on cell
cycle distribution in NSCs are summarized in Table 2. Treatment
with CLA significantly increased the percentage of G0/G1-phase
and reduced that of S-phase of NSCs. On the other hand, treat-
ment with LA did not affect cell cycle distribution in NSCs
compared with the control. These data indicate that CLA
promotes G1/S arrest and entry into the G0-phase.
129

131

133
4. Discussion

This study is, to our knowledge, the first to describe the effects
of LA and CLA on neuronal differentiation of NSCs. Treatment of
NSCs with CLA increased Tuj-1-positive cells in a dose-dependent
Please cite this article as: T. Okui, et al., Cis-9,trans-11-conjugated lin
of Hes6 mRNA and..., Prostaglandins Leukotrienes Essent. Fatty Acid
manner, while LA had no effect, suggesting that CLA promotes
neuronal differentiation of NSCs.

Cell fate such as proliferation and differentiation of NSCs is
regulated by bHLH transcription factors [18,19]. Neuronal differ-
entiation is promoted by activator-type bHLH transcription
factors such as Mash1 and NeuroD [26,27], and inhibited by
repressor-type bHLH transcription factors such as Hes1. Repres-
sor-type bHLH transcription factors promote cell proliferation and
retard neuronal differentiation of NSCs [28,29]. Mash1 forms a
heterodimer with E47, another bHLH activator, and promotes
neuronal differentiation of NSCs [30]. Hes1 represses Mash1 gene
expression by forming a non-functional heterodimer with E47
and inhibits the transcriptional activity of Mash1 [30,31]. The
expression of Hes1 is regulated by Notch signaling. Notch is a
single transmembrane protein and cleaved by gamma-secretase,
and releases intracellular domain (NICD). NICD moves into the
nucleus and induces the expression of Hes1 that inhibits differ-
entiation of NSCs. Hes6 promotes neural differentiation by inhi-
biting Hes1 function and promoting proteolytic degradation of
Hes1 [32]. These reports indicate that Hes6 is dominant-nega-
tively regulating the Notch pathway. In this study, the expression
level of Hes6 was increased by treatment with CLA but did not
affect the expression level of Hes1 (Fig. 4). It has reported that
Hes6 suppressed Hes1 from inhibiting Mash1-E47 heterodimer
and enables Mash1 and E47 to up-regulate transcription such as
MAP2 in the presence of Hes1 [40]. CLA may inhibit Hes1 action
by increasing the expression level of Hes6 and stimulates
oleic acid promotes neuronal differentiation through regulation
s (2011), doi:10.1016/j.plefa.2011.06.001
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neuronal differentiation by altering the balance of bHLH tran-
scription factors (Fig. 7).

Cell proliferation and differentiation of NSCs is affected by
regulating the cell cycle [20]. Hes6 induces cell cycle arrest by
71

73

75

77

Fig. 5. Effects of LA and CLA on mRNA expression levels of p21cip1 and p27kip1.

NSCs were cultured with 0.01% BSA, LA (1.0 mM) or CLA (1.0 mM) in the culture

medium for 24 h. Total RNA was prepared from each culture, and cDNA was

synthesized and subjected to real-time PCR using specific primers for p21cip1

(A) and p27kip1 (B). GAPDH was used as an internal control. The values are

expressed as the means7SE of the fold-increase in the ratio of each gene/GAPDH,

with the value of control group taken as 1.0. (C) The effect of CLA on the

proliferation of NSCs was determined by BrdU incorporated into the cells.

Immunofluorescence images of BrdU (green) and PI (red) in control (0.01% BSA

treated) and CLA (10 mM) groups. Scale bars: 100 mm. (D) NSCs were cultured for

24 h with or without CLA (1.0 or 10 mM) containing BrdU. The cells were fixed and

stained with anti-BrdU antibody and PI, and then BrdU positive cells were

counted. The values are presented as the means7SE (n¼6). Statistical analysis

was carried out by Dannett’s test. * The values are significantly different from the

control group (Po0.05).

Fig. 6. Effects of LA and CLA on cell cycle distribution in NSCs. NSCs were treated with

final 1 h of culture. NSCs were then counterstained with FITC-conjugated anti-BrdU an

indicated each phase of cell cycle.
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enhancing p21cip1 expression through the promotion of p53
activity [33]. p21cip1 and p27kip1, CDK inhibitors, negatively
regulate cyclin/CDKs complex activity and promote cell cycle
progression [22,23,34]. Cyclin D/CDK4 and cyclin D/CDK6 com-
plexes act in G1-phase, and cyclin E/CDK2 complex operates in
G1/S-phase of cell cycle [22,23,34]. Cell cycle arrest in G1-phase is
induced by the inhibition of CDKs, which induces differentiation
of cells [20]. Treatment of NSCs with deferoxamine increases the
number of Tuj-1-positive cells by increasing the expression of
p27kip1 [21]. In this study, treatment of NSCs with CLA signifi-
cantly increased the expression of Hes6 (Fig. 4D), and p21cip1 and
p27kip1 mRNA (Fig. 5A and 5B). Furthermore, CLA depressed BrdU
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0.01% BSA (control), LA (1.0 mM) or CLA (1.0 mM) for 12 h. BrdU was added to the

tibody and 7-AAD (for DNA staining), then analyzed by flow cytometer. Each gate

Table 2
Percentage of cells in the G0/G1-, S- and G2/M-phases of NSCs treated with or

without LA and CLA.

Cell cycle phases Control (%) LA (%) CLA (%)

G0/G1 80.8770.18 80.9970.29 88.0770.18n

S 15.4970.08 15.3170.39 7.4170.40n

G2/M 2.1070.15 2.2470.05 3.0070.19n

The values are expressed as the means7SE (n¼3). Statistical analysis was carried

out by Dannett’s test.

n The values are significantly different from the control group (Po0.05).

Fig. 7. Speculated mechanism of CLA in promoting neuronal differentiation

of NSCs.
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incorporation (Fig. 5C and 5D), significantly increased the propor-
tion of G0/G1-phase cells and significantly decreased the propor-
tion of S-phase cells by 52% as compared with the control (Fig. 6
and Table 2), indicating that G1/S-phase arrest was caused by
treatment with CLA. These data are associated with the increase
of Tuj-1-positive cells in NSCs treated with CLA.

Treatment of cancer cells with CLA inhibits cell proliferation
through a p53-dependent mechanism [35]. p53 is also known to
induce apoptosis of cells [36]. In this study, however, MTT assay
showed that cell viability of NSCs was not influenced by LA or CLA
at concentrations between 0.001 and 1.0 mM (data not shown).
How CLA promotes the expression of Hes6 and induces the
expression of both p21cip1 and p27kip1 is not clear. The treatment
of NSCs with LA did not affect neuronal differentiation nor the
expression of either p21cip1 or p27kip1. Therefore, the different
neuronal effects of LA and CLA were attributed to the geometric
isomerism of the fatty acids.

DHA (omega-3 PUFA) is well known for its beneficial effects on
brain functions such as the enhancement of long-term memory in
young and aged rats [37,38] and improvement of impaired
memory and leaning ability in Alzheimer’s disease model rats
[8,39]. DHA promotes neuronal differentiation of NSCs by enhan-
cing the expression of p27kip1 and suppressing Hes1 [25]. In this
study, CLA promoted neuronal differentiation of NSCs as effec-
tively as DHA does, but increased Hes6 mRNA expression and did
not suppress Hes1 mRNA expression. Hes6 induces neuronal
differentiation of NSCs by suppressing Hes1 activity without
controlling Hes1 expression [40]. Therefore, CLA may promote
neuronal differentiation by suppressing Hes1 activity and sup-
porting Mash1 activity by increasing the Hes6 mRNA expression
(Fig. 7). In neuronal differentiation of NSCs, DHA characteristically
represses the expression of Hes1 without the presence of Hes6. It
is therefore assumed that the mechanism of CLA is different from
that of DHA.
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5. Conclusions

CLA increases the expression of Hes6 mRNA and promotes
neuronal differentiation by activating p21cip1 and p27kip1 to arrest
cell cycle. Therefore, CLA is speculated to control cell fate and to
be useful in regenerative therapies for neurodegenerative
diseases such as Alzheimer’s and Parkinson’s disease, particularly
by controlling differentiation of NSCs pre- and post-transplantation.
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