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Abstract

Background: Docosahexaenoic acid (DHA, C22:6, n-3) ameliorates the memory-rel
fibrillar amyloid deposits in the affected brains. Here, we have investigated w

limits or deteriorates the toxicity of the human neuroblastoma cells

Experimental methods: In vitro fibrillation of AB,s.35 was performed in the absence or presence of D
35 in absence or presence 20 uM DHA to evaluate its effect on the AP,s_3s-induced neurotoxicity by M

d learning deficits of Alz/feimer's diseage (AD), which is characterized by
er DHA-induced inhibitigh of Amyloid [}-peptide;s. 35 (APR2s-35) fibrillation

. Afterwards, SH-S5¥5 cells were incubated with AR,s.
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide)]-redox and TUNEL (TdT-mediated dUTP-biotin nick end-labeling) assay and immunohistoghemistry. The level of Ap,s3s-induced lipid peroxide (LPO)
was determined in the absence or presence of oligomer-specific antibody. Fatty acid profile was £stimated by gas chromatography.

Results: DHA significantly reduced the AB,s5.35 in vitro fibrillation, as indicated by fluorospectydscopy and transmission electron microscopy. AP,s.35 decreased

the MTT-redox activity and increased the apoptotic damage and levels of LPO when compare

ith those of the controls. However, when the SH-SY5Y cells were

treated with AB,s_35 in the presence of DHA, MTT redox potential significantly increased gnid the levels LPO decreased, suggesting an inhibition of the APB,s.35-

induced neurotoxity. DHA improved the AB,5_35 induced DNA damage and axodendritic

DHA protects the cell from neurotoxic degeneration.

Conclusion: DHA not only inhibits the in vitro fibrillation but also resists the AP,

ss, with a concomitant increase in the cellular level of DHA, suggesting

s-induced toxicity in the neuronal cells. This might be the basis of the DHA-

induced amelioration of AR-induced neurodegeneration and related cognitive deficits.

© 2010 Published by Elsevier Inc.

Keywords: AP,s.35 fibrillation; Docosahexaenoic acid; Neurotoxicity; SH-S5Y5 cells

1. Introduction

Docosahexaenoic acid (DHA; C22:6, n-3), the predominant
synaptosomal plasma membrane polyunsaturated fatty acid (PUFA)
of the brain, is gaining ever more attention because of its protective
[1] and preventive [2] effects on the impairments of memory-related
learning ability in the Alzheimer's disease (AD) model animals
including rats [1,2] and mice [3]. Epidemiological study also supports
that plasma concentration of DHA is correlated with the AD
symptoms [4]. AD is pathologically characterized by neuritic plaques
and neurofibrillar tangles of amyloid beta peptides (APs) such as
AP1.42 and AP_40 [5]. After the proteolytic cleavage from membrane-
bound amyloid precursor proteins (APP), the A eposited
largely in the brain tissues of affected patienfts, W AP1_40 iS

* Corresponding author. Tel.: +81 853 20 2110; fax: +81 853 20 2110.
E-mail addresses: michiol@med.shimane-u.ac.jp (M. Hashimoto),
shahdat@dhaka.net (S. Hossain).

0955-2863/$ - see front matter © 2010 Published by Elsevier Inc.
doi:10.1016/j.jnutbio.2009.11.005

concentrated predominantly in the cerebrospinal fluids [6]. Though
they are considered as the principal forms of ABs, however, other
short fragments of the ABs might be involved in the pathogenesis of
AD. Among them the short fragment AP»s_35 is of particular interest.
This short sequence has been identified in the brains of aged patients
APR1.40 [7]. AP2s-35 is thus biologically active fragment of AR [8],
indicating this short filament can render toxicity to neurons.

Xu et al. [9] reported that this truncated amyloid can exhibit equal
potencies to that of the A3;_40. What's more important is that AB,s_3s,
as being the terminal sequence of the AR_40 and/or AR_4o, it may help
in the understanding of the mechanism of fibrillation of the full length
ApPs. We have recently reported in vitro studies that AP35 35 is able to
form fibrils [10] analogous to that of the full-length AR;_40 [11] and
that DHA can inhibit the fibrillation of both AR3s.35 [10] and AR1.40
[11], thus suggesting AP,s_35 peptide can confer toxicity analogous to
that of the full-length peptide in neurons. This toxicity may underlie
the learning-related memory impairments of mice after the cerebro-
ventricular infusion of APjs.3s [12]. We recently found that DHA
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inhibits the AB,s_35 fibrillation [10]; however, DHA produced diffused
and amorphous-type conformations. The question thus that remains
to be confirmed whether these amorphous conformation further
intoxicates the neuronal cells or whether inhibits the toxicity of these
cells. The brain utilizes large amounts of DHA [13-15] and the level of
DHA decreases in the hippocampus of AD patients [16,17], thus
demonstrating that DHA have a significant role in the nurture of brain
functions. Neuron lacks the ability to biosynthesize adequate DHA,
thus DHA is taken into the neural cells from the extraneuronal
medium after its release from the astroglial/cerebral capillary
endothelial cells [18,19]. Thus, it is very likely that DHA inexorably
endures an interaction with the extra-neuronally deposited amyloid
fibrillar species, which render toxicity to neurons leading to
neurodegenerations. Therefore, the study on the effect of DHA on
the AP,s_35-fibriltion-induced neurotoxicity is of special significance.
In this study we intended to prove whether the DHA-induced
inhibition positively and/or negatively impacts the toxicity in the

SHS5Y5 ISH-SY5Y |

2. Materials and methods

2.1. Materials (Minneapolis, MN, USA) |
AP2s.35 was purchased fro e Peptide Institute (Osaka, Japan); thioflavin T (ThT)
was purchased from Sigma-Ald#fch (St. Louis, MO, USA); mouse antitubulin antibody
(Tuj1) from the R&D Systems;-HSA). Apoptosis Detection Kit;-Millipore;USA). Alexa
488-conjugated secondary antibody and Rabbit polyclo anti-oligéfher antibody
(A11) were purchased from Invitrogen (Carlsbad, CA, USA). All other chgmicals were of
analytical grade.

[from

[(Billerica, MA, USA) |

2.2. AB2s.35 preparation

AP»s.35 was dissolved in 1,1,1,3,3,3- hexafluoro-2-propanol (HFP) at concentration
of 500 uM to produce uniform, non-aggregated AP and immediately stored at —80°C
after N, bath until use. At the day of use, the HFP-dissolved amyloid samples were
initially spun down at 13,800xg, if any, then was blown by N, gas at ice-cold
temperature and re-dissolved in the assembly buffer for aggregation study.

2.3. Preparation of DHA

Fifty milligrams of DHA dissolved in 200 pl ethanol (commercially available;
Cayman Chemical, Arbor, MI, USA) was stored (in 5.0-pl aliquots) at —80°C until use. It
was directly suspended in ultrapure water and used at desired concentration
containing 0.002% ethanol. Only freshly prepared DHA was used.

2.4. ABys.35 fibrillation

Please delete "()".

tion was carried out as
. Hexafluoropropanol was

Prior to use in the cell culture, in vitro
described previously [10,11] with some
blown from the APys.35 stock-aliquot, an jde was immediately suspended
in a desired volume of assembly buffer [¢100 50 mM Tris-HCl buffer (pH 7.4)
containing 100 mM NaCl, 0.01% sodium azide)] at final concentration of 50 uM of
AP2s.35 with or without DHA. The final concentration of DHA was 20 puM. The reaction
mixture was taken into oil-free polymerase chain reaction tubes (Takara Shuzo, Otsu,
Japan), flushed with nitrogen gas to obviate any effect of atmospheric oxygen, and
incubated at 37°C for 24 h. The incubation was stopped by placing the tubes on ice
and then subjected to thioflavin T fluorescence spectroscopy.

2.5. Thioflavin T fluorescence assay of AB2s.35

After 24 h of incubation at 37°C for fibrillation, 40-pl aliquots from each tube were
gently removed and mixed with 210 pl of 5 uM thioflavin T (ThT) in 50 mM glycine-
NaOH buffer (pH 8.5) and subjected to fluorescence measurements (Hitachi F-2500
fluorescence spectrophotometer) at excitation (Aex) and emission (Aem) Wavelengths
of 448 and 487 nm, respectively.

2.6. Transmission electron microscopy

After completion of AP,s._3s fibrillation for 24 h at 37°C with or without DHA, an
aliquot was used for electron microscopy. In brief, a 4-pl sample was placed on a copper
grid, stained with 1% uranyl acetate, excess uranyl acetate was then removed from the
grid using distilled water. Afterwards, the grid was air dried and examined under a
Hitachi H-7000 transmission electron microscope with an operating voltage of 75 kV.

2.7. Cell culture

Human SH-SY5Y neuroblastoma cells were obtained from the European Collection
Cell Culture and originally maintained in Ham's F12: Minimum Essential Medium Eagle
(Sigma-Aldrich) (1:1) containing 15% fetal bovine serum, 50 IU/ml penicillin G and 50
mg/ml streptomycin in 6 cm culture dish (Corning, Corning, NY, USA) at a density of
2x10° cells per dish. The cells were passaged and cultured in 96-well plate at a density
of 1x10% cells per well for 2 days. The culture medium was replaced to serum-free Opti-
MEM (Gibco) supplemented with or without AR,s_35 and 0.5 uM DHA. After 2 days of
treatment, cells were used for MTT assay and immunofluorescence microscopy. We
chose to conduct our in vitro studies in the absence of bovine serum albumin (BSA),
because preliminary experiments showed that the presence of physiologic concentra-
tions of BSA (i.e., 100 pg/ml or 0.01%) prevented the toxicity of Abeta treatment.

The cytotoxicity of AP,s.35 peptide was assessed by measuring cellular MTT [3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium: bromide)]-redox activity, which
detects active mitochondrial dehydrogenases of living cells to reduce MTT to a water
insoluble blue formazan products. Cells at a density of 1x10%/well were placed in 96-
well plates with 100 pl of fresh medium. After 24 h, the medium was replaced with
100 pl of OPTI-MEM (Gibco BRL) serum-free medium and 10 uM AB,s_35 peptide. The
cells were incubated at 37°Cin 5% €O, for 48 h, afterwards 10 pl of MTT (Dojudo) (5 mg/
ml) was added to each well and the plate was incubated at 37°C for 4 h. The MTT
solution was then removed, BMSO
few min and read at 550 nm with a

2.8. MTT assay

munosorbent assay plate reader.

[dimethy! sulfoxide |

2.9. TUNEL assay

The apoptotic nuclei containing free 3'-OH termini were detected by using a TUNEL
(TdT-mediated dUTP-biotin nick end-labeling) assay kit (ApopTag Red in situ,
Apoptosis, Detection Kit, Mllllpore) accordmg to the manufacturer's protocol w1th
slight modifications. AR n ed-cells-w h
were fixed with 1% paraformaldehyde in phospha kDb uffered salme ( PBS) pH 7. 4 and
post-fixed with ethanol:acetic acid (2:1, v:v) for 5 mim\at -20°C. After incubating with
the TUNEL reaction mixture, anti-digoxigenin conjugatethwith rodamine was added.
The TUNEL-positive cells were detected by fluorescent micjoscope.

For morphological immunofluorescence microscopy, cultured cells were fixed with
4% paraformaldehyde for 30 min at room temperature, washed with 0.1 M Tris-
buffered solution (TBS; pH 7.5), blocked with 3% normal goat serum (Dako Cytomation,
Carpinteria, CA, USA) in TBS containing 0.3% Triton X-100 at room temperature for
60 min, and incubated with primary antibodies at 4°C overnight. The primary antibody
was mouse anti-neuron-specific class IIl beta-tubulin (Tuj-1, 1:1000, R&D Systems).
The cells were washed with TBS and incubated with Alexa Fluor 488-conjugated
secondary antibody (1:1000, Invitrogen, Carlsbad, CA, USA) at room temperature for
60 min. To visualize nuclei, the cells were counterstained with 2 pg/ml propidium
iodide (Dojindo laboratories). Finally, the cells were mounted with 80% glycerol,
visualized under a fluorescent laser microscope (CLMS FV300, Olympus, Tokyo, Japan).

2.10. Cellular morphology study

2.11. SH-S5Y5 cell preparation for lipid analyses | _
o [SH-SY5Y

The cells were harvested and washed thrice with PBS containing protease
inhibitors cocktail. Afterwards, the pellets were homogenized using 10 strokes in a
dounce homogenizer and 10 passages through a 22-gauge syringe on ice. The
samples were then directly used for the fatty acid composition and lipid peroxide
(LPO) analyses.

2.12. Fatty acid composition

Fatty acid composition was determined by the one-step analysis of Lepage and Roy
(1986) [20] as described previously [1,2,11] using gas liquid chromatography.

2.13. LPO levels and protein
LPO concentration was assessed by the thiobarbituric acid reactive substances

assay of Ohkawa et al. [21], as described previously [22]. Protein concentration was
estimated by the method of Lowry et al. [23].

Please delete "s

2.14. Statistical analyses

Results are expressed as means+S.E.M. For two-group differences, data were
analyzed by Student's t test. For more than two groups, the data were subjected to one-
way analysis of variance (ANOVA), followed by Bonferroni post hoc comparisons. The
statistical programs used were GBSTAT 6.5.4 (Dynamic Microsystems, Silver Spring,
MD, USA) and StatView 4.01 (MindVision Software; Abacus Concepts, Berkeley, CA,
USA). P<.05 was considered statistically significant.
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Fig. 1 |

3. Results

3.1. Effects fof DHA on in vitro ABs.3s fibrillation and fiber morphology

Formation of APys_35 fibers at 50 uM was measured, alone and in
the presence of 20 uM DHA. We found that APRs.35 monomer at
final congentrations of 50 pM incubated for 24 h in the assembly

buffer hafl significantly higher thioflavin T fluorescence intensity.
When the fibrillation was commenced in the presence of DHA
(20 pM)\Lhe degree of fibrillation significantly decreased by about
43% {Fig—r-

To confirm the inhibitory effect of DHA on the AP;s_35 fibrillation,
Aps fibrils with or without DHA (20 uM) were viewed under a
transmission electron microscope. The control samples (AP2s-35
alone) exhibited abundant aggregated APB,s.3s fibrils both with a
ribbonic and round morphology. Consistent with the ThT fluorescence
data, the AB;_4,+DHA samples contained only very small amount of
poorly defined fibrils, if at all. In the presence of DHA, the fibril
contents were practically very poor and appeared as densely
amorphous conformations {Fig-—1)- The lengths of the ARys._35 fibers
were not determinable due té\extensive branching; however, the
widths were 5-6 nm.

3.2. Effect of DHA on AfBys.35 induced cytoxici Fig 3
As shown in the Fig—2, DHA alone had increased the MTT-

redox potential as compared to that of the vehicle treated

120 a

100

80F

60 |

% of control

m L
This would be Fig. 3.
Please bring here Figl.

0%

10 uM A
0.5 uM DHA

Fig2: The cytotoxicity of AP;s.35 was assessed by measuring MTT-redox activity. The
MTT assay measures cell survival. Cells were used at a density of 1x10%/ well. The
absorbance of the untreated cells read at 550 nm was normalized to 100%. Data shown
were from four experiments in quadruplicate determinations (P<.05).

controls. The APs.35 significantly decreased (by >22%) the MTT-
redox potential in the SH-S5¥5 cells, whereas DHA had inhibitory
effect on toxicity when fiRgillation of APas.3s occurred in its
presence, as indicated by the increase of MTT-redox potential in
the AP2s-35+DHA cells.

Fig-—1- Representative transmission electron micrograph of the effects of DHA on the Ab25-35 fibril morphology. AR,s_35 peptide (50 pM) was incubated in the absence (A) or presence

(B) of 20 uM DHA for 24 h at 37°C; 4-ul of samples was subjected to 400-mesh grid,

dired for 1 min, stained with 1% uranylacetate and subjected to visualization by electron

microscope. The morphology of the control fibrils was structured and clear (A and its inset A1), while those of the DHA-treated samples had highly unstructured (B and its inset B1)

and mostly amorphous type consistency.
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3.3. Effect of DHA on the ABys.35-induced apoptosis Flg- 4 3.5. Effect of DHA on the fatty acid profile_|Please delete. |
AP;s.35-induced apoptosis in the SH-S5¥5 cells, as indicated byife As shown in the Table 1, tie levels of saturated fatty acids
increased abundance of TUNEL-positive nuglei in these cells {Fig-—3). palmitic and stearic acid ang“fonounsaturated fatty acid oleic acid
The characteristic nuclear fragment of the apdptotic cells was clearly were not altered in either’of the DHA or DHA+AP-treated cells in
observed in the SH-S5¥5 s. In addition, cgndensed nuclei and the absence or presence of oligomer-specific antibody (A11), when
nuclear fragements were als sitive nuclei were compared to th se”of the untreated controls. The levels of linoleic
significantly lower in the DHAAPR2s.35-treated\ cells. Also, the acid; ie were significantly increased in the ApR-treated
TUNEL-stained nuclei were comparabte between DHAW-alone treated cells. The levels of linolenic, eicosapentaenoic and docosapentaenoic
and the untreated control cells, indicati t induce an acid were not affected. As expected, the levels of DHA were
extra apoptotic stress in the SH-S5¥5 cells. significantly increased in both the DHA and DHA+AR,s_3s-treated
cells either in the absence (APys.35+DHA) or presence of oligomer
SH-SY5Y antlbody (AP2s.35+DHA+A11 cells). Finally, changes in the fatty
rofile resulted in a significant increase in the unsaturation
index (U
the vehicle- 3.6. Effect of DHA on the lipid peroxide levelsof SH-S5Y5 cells

d morphology
»d 48'_] treatment of The level of lipid peroxide (LPO) significantly decreased in the
I morphology. DHA\treated cells (~26%) when compared to those in the untreated
4pE, acquirng ¢ The level of LPO was significantly increased (>15%) in the
rocesses. They e-treated cells while the levels of LPO further increased

: ! | the APysss- 5535+ DHA cells (Fig. GA).
treated SH-S5¥5 cell§ were examined aftgr comcubat on with DHA, When the SH-S5Y5 cells were incubated with APysss in the
the loss of axodendritic processes recovefed with the lappearance of presence of A11 (oligomerspecificantibody); the levels of LPO
wel!-_defmed sprouting processes (lowfer right), ndicating an reverted to those of the untreated controls, and significantly
add.ltllon of DHA to the APB,s.35+SH-S5¥5 cells prevented the decreased when compared with those of the AP,s.35+DHA cells.
toxicity of Afys.3s. The LPO level also decreased in the presence of A11 (in the ARys.35
Afas 35 AB2s.35+DHA
Fig. 4

Fig-3: Effect of DHA on the AP,s_35-induced apoptosis. Representative Wuorescence images of control (vehicle-treated) cells (upper left) and DHA-treated (0.5 uM) cells (upper right).
TUNEL-stained nuclei (red) were increased after the treatment of SH-SY5¥ cells with AP,s 35 for 48 h, whereas, the DHA treatment of the cells (AP,s.35+DHA) significantly reduced
apoptosis, as indicated by the reduced number EL-stained cells.

IPlease add "of". |
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Control

Fig—4: Fluorescence images of control (vehicle-treated) cells (upper left) and DHA-treated (0.5 pM)
axodendritic systems are clearly observed after treatment with AP,s.35 for 48 h (lower left). DHA inhibited the toxil
appearance of well-defined axodendritic sprouting processes (lower right). Fluorescent signals were then visualized by
Tokyo, Japan) and processed by Adobe Photoshop (Adobe Systems, Mountain View, CA, USA).

261 +DHA-+AT11 cells). A11 alone did not have any significant effect on
262 oxidative stress. An alteration of the level of LPO was not significantly
263 associated with unsaturation index (Fig. 6B).

(data not shown) |

264 4. Discussion

265 The purpose of the current study is to evaluate whether DHA can
266 successfully inhibit the AP;s.3s-induced toxicity in the human

This would be Fig. 1.
Therefore, please
change its position (at
the pdf file). It is
preferred to be located
at the beginning of the
result section. .
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ThT fly
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cells (upper right). Altered neuritic sprouting wNM dystrophic
; however, (as determined by the MTT assay in-Fig-5) with the
e confocal laser microscope system (CLSM FV300, Olympus,

SH-SY5Y

neuroblastoma cells {—SH—S%%%e bseryation that DHA inhibits
the AP_40-induced neurotoxicity ang'the mgmory impairments of the
AP1_40-infused Alzheimer's disedse mo 11] led us to
hypothesize that DHA would apeliorate foxicity ptoduced by the
APys.35 peptide. While this is/a hypothesis, currently, there is no
direct experimental evidencg¢/ to support |the outcome of DHA on
neurotoxicity and morpholggical deteriorations. Thus, we directly

could not
we clearly
n of APBys_35

the SH-S5Y5 cells.
Neurotoxicity in AD results from enhanced cellular prpcessing of
APP, interactions of AR with cell membranes itself, generations of

ABas as Afis 35 + DHA

 [Please delete s,

xygen species and abnormality in the protective response to
tress and/or susceptibility to apoptotic stimuli [24-29].

Fig-—5: The effect of DHA on in vitro fibrillation of AP;s.3s. For fibril formation, AP,s.s;
peptides (50 uM) were incubated at 37°C for 24 h in the presence or absence of 20
of DHA. After completion of fibrillation, 40 pl of the sample was added to 210 pl of 3 uM
ThT in glycine buffer (pH 8.5), and fluorescence intensity was measured at e
and emission wavelengths of 448 and 488 nm, respectively. Results are means+S.E.M.
(n=5). Significant difference at *p<05 (unpaired Student's t test).

Therefore, we carried out two experiments to study the AP;s.3s-
induced cellular perturbation: suppression of cellular cdpacity to
reduce MTT and induction of apoptosis. The MTT assay esti¥hates the
mitochondrial redox potential of live cells, in this case SH-S5¥5 cells,
and thus monitors cell condition and the cells in good physical shape
reduce MTT, turning the redox dye from yellow to purple/blue,
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Effects of DHA (0.5 uM)-treatment on the fatfy acid proﬁle (ug/mg of the-SH-S5¥5 cells with or without Ast 35- ol1gAt1body

SH-SY5Y

PLA Q/ DHA usi
Control 30+2.5% 28+2.7 0.97+0.2° 0.1+0.0 O.GiO.l 1.0 0.1° 234034 81+£1.3°
DHA 244270 24420 1.3+£0.1* 0.1+0.0 0.54-0.06 2+0.15%° 5.040.05{" 97+5.8"
ABys.35 29+1.7% 28+1.5 1.7+£0.22 0.09+0.0 0.640.10 240.124 2.240.15¢¢ 86+£3.0°
APys.35-+DHA 26+1.0° 24+0.5 0.8+0.3° 0.1+0.0 0.640.10 4+0.124 43404° 96+3.0°
APos.35+A11 27+1.12 26+1.0 1.3+£0.2*° 0.1+0.0 0.4+0.02 .3+£0.021° 2.8+0.06 85+2.8"
APys.35--DHA+AT1 2542.52 27418 1.0£0.0°° 0.0940.0 0.6+£0.1 $4+0.17 5.74£0.4° 10545.0°

followed by Bonferroni post hoc test).
PLA, palmitic acid (C16:0); STA, steart

are a common superscript®© arefsignificantly fiffererjt at P<.05 (bne-way ANOVA

ejfacid (C18:2, n-6); LNA, Linolenic acid (C18}:3, n-3){ AA, Arachidonic afid (C20:4, n-6);

Please add "A11,

ollgomer-spemﬂc how less of a color changes.
antlbOdy- IMTT-redox efficiency in the

when compared with that of the DHA-untreated cell
DHA can boost up the redox potential of the cell
decreased MTT redox levels in the AP,5_35-treated SH—SS% cells are
consistent with other studies reporting that APB,s_.3s inhibits the
cellular reduction of MTT [30]. Considering it a measure of cell
viability, the percent reduction of MTT was found to be significantly
higher in the ARjs.35+DHA cells than in APjs.3s-incubated cells,
indicating that the higher redox activity could be ascribed to DHA in
the AP,s.35+DHA cells. Then, we carried out whether APR;s_35-induces

whetler such an apoptotic
with thp use of TUNEL assay.
uced severe apoptosis. The
nucledr condemsation and
reased [DNA strand breaks,
nzymatically| labelinlg the 3-DH termini
i NEL al;say. These new|DNA ends
igally idehtifiable huclei, and
ells wer¢ higher in
the AP,s.35-treated cells. Culturgs expos¢d to DHA showe
of AB,s5_35-induced apoptpsis, ag indicatgd by the|{reduced jnumber of
5 35+D HA cells.
at DHA |inhibits the AP,s.4s-induced
toxicity/apoptosis of the¢ SH-S5¥5 cells.| The result of the [decreased
number of TUNEL-posifive nuclei in the DHA-tteated cells also is
qualitatively consistent|with our previqus in vivp investigation [1],
where we reported thpt dietary administration |of DHA decreases
apoptosis marker such fas histone-assoclated DNA| fragmentations in
the cortical tissues of the APR_4o-infusedl AD model rats.

With these aforem¢ntioned evidencgs of the injhibitory pffects of
DHA on the AP,s.3s-jnduced cellular foxicity, wle also have used
immunohistochemical assays for the neyronal marlker such as class I
p-tubulin that takes part in the mainténance and changing of cell
morphology. The DHA-incubated cells|(DHA alonje) demanstrated
clearer axodendritic features with a heflthier morphology than the
vehicle-treated cells [(controls). AP»s.34 caused seyere axodendritic
loss; also, floating debris in the culture media wag more aljundant,
suggesting tle dege eratlon of the cel =—4Y. The toxic effect of

ose of the X et al [9] who also reported

A
1609
b
= 140+
£ T\Q
s120{ « \ c .
= 1004 \ =
g
§ 804 T \
g 60 \
2
= 40+ \ =]
2
= 204 \
g N
Control DHA ABs.35 ABs 35 Abrsss ABs a5
+DHA +All  +DHA
+ All
[Fig. 5
B B Control, ODHA, O APssas 9
451 | @ APys s+DHA, A AP, 1s+ATL A AP, so+ALL+DHA
40 ®
£ 357 ®
I3
: °© o
= 307 O r=0.03, P=385
£ ®
£ 25+
s A e A
% 20 Tﬂj 7AY
a & & A O
154 D D A
A o O
10 T T T T T T T T T 1
75 8 85 90 95 100 105 110 115 120 125

Usl

Fig. 6. (A) Effect of DHA in the presence of oligomers' conformation-specific antibody
(A11). Results are mean+S.E.M., n=3 each with triplicate determinations. Bars with
different letters are significantly different at *P<.05 (One-way ANOVA). B: Correlation
between LPO content and USI of SH-S5Y5 cells.

That APas.35 cause$ breakdown and dlissolution of oligodendritic
cellular processes jand appearance of/shrunken ftell bodigs. The
coincubation of DHA with ARys_35+SH-S5¥5 cells
the morphologicall features of the cells. All thes¢ morphalogical
results are thus, again, compatible with those of the [MTT and [TUNEL
data that the APjs.3s-induced neurotoxicity is atfenuated [in the
presence of DHA.

The content of DHA in SH-SY5Y cells shown in Thble 1 wds 2.15
40.25 mol%, whigch is considerably lower than in nprmal nefironal
cells where D accounts for >10% of total fatty acidd. The
discrepancy of tlje lower basal DHA level in the SH-S5¥5 cellf may
relate to the conditions of the cell culture, the differences in the innate
capability of DHA to be incorporated into the membrane and the
activities of the proteins/enzymes responsible for the translocagjon of
DHA from the sjte of synthesis, the peroxisome. Reynolds et alf [31]
have reported|a highly significant deficit of DHA in SH-S5¥5
compared with/that in normal neuronal cells (rat synaptosomes, rat
cerebellum and human cerebellum contain 15%, 20% and 18% DHA vs.
6% DHA in S cells). The lower level of DHA in the cells of our
study might be considered consistent with the fact that human
neuroblastoma cells are profoundly deficient in DHA compared with
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nontransformed neuronal tissue. In our study, the level of DHA
increased ~3 times after supplementation with DHA, which is also
consistent with the 3 times increase in DHA reported by Reynolds
etal. [31].

It is unclear what concentration of free DHA might be routinely
found in the brain or CSF; however, Pilitsis et al. [32] reported that the
concentration of DHA in human cerebrospinal fluid is ~0.2 uM DHA.
This is in the range of the 0.5 pM used to inhibit the amyloid-toxicity
in the present in vitro experiments. Therefore, it (0.5 UM of
DHA) could be presumed to act\n the same way in the physiological
condition. While this physiologicglly-relevant concentration of DHA
(ie. 0.5 uM of DHA) significantly inhibited the APss_3s-induced
toxicity in the SH-S5¥5 cells, it did not, however, significantly affect in
i of DHA was required to

in the DHA- treated
in DHA renders it
oxidative stress
in plasma and

several tissues [34]. In contrast, DH
cytes are less vulnerable to oxidative
(25-150 uM) shows anticancer effects \

we used 0.5 uM of DHA and demonstrated
differently to varying concentrations of DH
cells DHA prevents apoptosis by down-regul
(Kim et al. [37]). Thus, the relation between D

LPO were significantly decreased in the DHA-treat

to oxidation [45,46]. The AP,s.35 also contains a Metss at the C-
terminal end. In an independent set of experiments, thus, we
evaluated whether AP,s.3s and/or DHA induces the oxidative
stress in the AP,s.35+DHA cells with the use of oligomer-antibody
A11 (Fig. 7). A11 specifically binds with the conformation-specific
oligomers, the on-pathway (during momomer into fibril transforma-
tion) intermediate amyloid toxic species. AP,s.35 again increased
while DHA decreased the levels of LPO in the SH-S5¥5 cells. In the
APR2s5.35+A11 or APRys.35+DHA+A11 cells, the levels of LPO were
significantly reduced to those of thecontrofs. Thus, the increase in the
LPO in the AP,s.35+DHA cells could ndt be ascribed to the effect
(presence) of DHA rather it was due t@ APRjs_35, demonstrating toxic
APas.35 oligomers contributed to the/production of LPO. Notably, the
antibody-alone did not have effect 4n the LPO levels of SH-S5¥5 cells,
thus confirming the effect of A| stress. These
findings thus rule out the possipility that DHA acts 2§ a pro-oxidant in
the present experimental Londition rather 4t ameliorated the
neurotoxicity mediated by the oxidative stp€ss. Lukiw et al. [19]
reported that DHA-deriv¢d docosahexatrigfie, namely, neuroprotec-
tin D1, rather inhibits deurotoxicity ingdced by ABi_42, which itself
has strong oxidative potential [41,42)/Our results are also quantita-
tively consistent wjith those of Flopént et al. [47] who reported that
pretreatment with DHA reduceg’neuronal apoptosis in response to

ids. Amyloid oligomers but not the fibers
e neurodegeneration and symptoms of AD-

arachidonic acid on fibrillation. Stearic acid increased amyloid

with those in the untreated control (Fig. 6A) and t

1erization (Fig. 7). Arachidonic acid reduced polymerization but
cing effect was lower than that of DHA, suggesting that DHA

increased; demonstrating DHA did not intr
insult in the present experimental conditio

enzymes such as catalase, glutathione
reductase and reduced glutathione levels i
chronic administration of DHA [22]. A

a concomitant antiapoptic effect on them. Our results are confistent
with those of the Kim et al. [41], who reported that [DHA's
antiapoptotic effect on mouse neuroblastoma cells apparently
requires that it accumulates in cellular lipids. In contrast, afdition
of DHA and its increase in neuronal lipids augmented lipid|radical
formation and often enhanced susceptibility to oxidativ®/ stress
[42,43]. However, our present results show that for SH-S5¥5 cells,
the protective effect of DHA prevailed, with its addition preventing
oxidative-stress—-induced apoptosis. Rostein et al. [44] reported that
DHA inhibits the oxidative stress-induced apoptosis by activating the
antiapoptotic proteins of Bcl-2 family.

The mechanism by which DHA ameliorates the Afs_35-induced
neurotoxicity is not clearly understood. Amyloid-induced oxidative
stress is a prominent feature of AR-mediated neuronal death [45].
Methionine (Metss) residue of full-length amyloids is highly sensitive

is more poté n arachidonic acid in inhibiting AP,s._35 fibrillation.
Thus, it is noted that t ct of fatty acids on ARys_35 fibrillation is
not specific to DHA. However, ibitory) effect of other fatty
acids on the AR;s_3s-induced toxicity in SH-S5¥5 cells needs to be
determined. In summary, DHA is an essential brain nutrient and is
required through out life for the well being of the brain functions.
Deficiency of this PUFA declines the memory-related learning ability
of the AD. Thus, the outcome of the effect of DHA on AP,s5_35-induced

b

1201 a
g
Z. 1004
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5 .
g 80 d
g o I
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g 40
=
[

201

R
ThT AﬁZS-BS AﬂZS-SS Aﬂ:s-as Aﬁz.’\-.?ﬁ
+20uMSTA  +20uMAA  +20uM DHA

Fig. 7. Effects of fatty acids on the degree of amyloid fibrillation. STA, Stearic acid; AA,
arachidonic acid; DHA, docosahexaenoic acid. Results are mean4S.E.M., each with
duplicate determinations. AP,s_3o fibril formation was conducted similarly as described
in the Fig—1 Bars with different letters are significantly different at *9P<.05 (One-way
ANOVA).

Fig. 1

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463


Masanori
取り消し線

Masanori
取り消し線

Masanori
取り消し線

Masanori
取り消し線

Masanori
取り消し線

Masanori
取り消し線

Masanori
取り消し線

Masanori
取り消し線

Masanori
取り消し線

Masanori
取り消し線

Masanori
引き出し線
Tuj-1

Masanori
引き出し線
SH-SY5Y

Masanori
線

Masanori
線

Masanori
線

Masanori
線

Masanori
線

Masanori
取り消し線

Masanori
引き出し線
Fig. 1

Masanori
引き出し線
ThT

Masanori
線

Masanori
線

Masanori
線

Masanori
取り消し線

Masanori
線


464
465
466
467
468
469
470

471

472
473
474
475
476
477

478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
604

8 M. Hashimoto et al. / Journal of Nutritional Biochemistry xx (2010) XxX—Xxx

neurotoxicty has positive impact because AP;s.3s retains the
characteristics of its full length amyloids with regard to toxicity and
the process of fibrillogenesis. Finally, the results of the present study
clearly demonstrate that DHA inhibits the APR,s_35-induced neurotox-
icity of SH-S5¥5_cells and could thus be used to protect the
neurodegeneratio ed by cleavage products of full length

amyloids such as AP;s._3s. SH-SY5Y
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