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Preface

As an important component of blood, blood cells are divided into three types:

erythrocytes (red blood cells), leukocytes (white blood cells) and thrombocytes

(platelets). They play a vital role in the human body. Erythrocytes are the most

numerous of the blood cells. The primary function of erythrocytes is the transport

of oxygen and carbon dioxide. Although leukocytes are generally larger than ery-

throcytes, they are fewest in number. Leukocytes are immune system cells who can

defend the body against both infectious disease and foreign invaders. Thrombocytes

are the smallest of the three types of blood cells. The principal function of platelets

is that aggregate at the wound and formate blood cot, when the blood vessel wall

is damaged, to prevent bleeding. It is well known that abnormality in the number

of these three kinds of blood cells causes disease and leads to death.

Mature blood cells are produced in the bone marrow. They develop from hematop

oietic stem cells that have the capacity to self-replicate and differentiate into other

blood cells. These hematopoietic stem cells differentiate into myeloid progenitor

cells and lymphoid progenitor cells as an intermediate stage in order to become

various immature blood cells who will fully mature in the bone marrow. When

the immature blood cells grow into mature blood cells and become functional, they

will leave the bone marrow and enter into the blood circulation. In the whole pro-

duction process of blood cells, hematopoietic stem cells, immature blood cells at

various stages that they are proliferating and differentiating and mature blood cells

that have just been completed are coexisted. All blood cells have inherent life spans.

The life span of a blood cell will be terminated when it is normally phagocytized by

macrophages of splenic and hepatic sinusoids, etc. as an aged blood cell. For the
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basic knowledge of the specific production process of blood cells, for example, see

the book [4, Chap. 18].

The production process of blood cells is well-known as hematopoiesis process. In

1977, Mackey and Glass [18] proposed the hematopoiesis model

x′(t) = − a x(t) +
bx(t− τ)

1 + xn(t− τ)

with n > 0, which describes the hematopoiesis process. Here, the coefficients a, b

and the delay τ are positive constants. Let

f(u) =
u

1 + un
for u ≥ 0.

We can rewrite the above equation as

x′(t) = − a x(t) + bf(x(t− τ)).

The function f is also called by the production function. It is well known that the

periodic environmental changes due to seasonal variations have important influence

on the dynamics of blood cell number. This impact can not be considered by au-

tonomous differential equation with constant coefficients and constant delay. On

the other words, the coefficients a, b and the delay τ should be assumed as periodic

functions rather than constants. The second term with a time lag τ on the right-

hand of the above model represents the production term in hematopoiesis process.

In the clinical studies, it has been confirmed that the time for immature blood cells

to become mature blood cells (time lag) is different depending on the type of blood

cells. It can be said that a hematopoiesis model that only consider one production

term is not accurate. Blood cells are in fact discrete entities, they work effectively

one by one and are represented by the number contained in one microliter of blood.

They are never continua. In that sense, a discrete model is more suitable than a

continuous model to study the dynamics of the number of blood cells.

Taking the above reasons into account, this thesis concerns a discrete hematopoie-
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sis model with periodic coefficients and multiple production terms dominated by

different delays. We consider

∆x(k) = − a(k)x(k) +
m∑
i=1

bi(k)f(x(k − τi(k))) (H)

with n > 1 and m ∈ N, where ∆x(k) = x(k + 1) − x(k), and a : Z → (0, 1),

bi : Z → (0,∞) and τi : Z → Z+ def
= N ∪ {0}(1 ≤ i ≤ m) are ω-periodic discrete

functions with ω ∈ N. The function f is defined by f(u) = u/(1 + un) for u ≥ 0.

Specifically, we focus on the positive periodic solutions of (H). The purpose of

this thesis is to investigate the existence and global asymptotic stability of positive

periodic solution. This thesis is divided into four chapters.

In Chapter 1, theoretical knowledge needed for mathematical analysis is given.

We first introduce a nonlinear delay difference equation with periodic coefficients.

Some basic stability definitions of the zero solution and a positive periodic solution of

this equation are presented. The continuation theorem of coincidence degree theory

often used to explore the existence of positive periodic solutions is given afterwards.

Finally, we present the well-known Schauder fixed point theorem.

In Chapter 2, we study existence of positive ω-periodic solutions of hematopoiesis

model (H). A sufficient condition is established for the existence of positive ω-

periodic solutions. This sufficient condition is constructed by the relationship be-

tween coefficient a(k) and
∑m

i=1 bi(k) for k = 1, 2, . . . , ω. The existence region of

positive ω-periodic solutions is also clarified. To achieve the above goals, the para-

metric delay difference equation

∆x(k) = −λa(k)x(k) + λ
m∑
i=1

bi(k)f(x(k − τi(k))) (L)

for each parameter λ ∈ (0, 1) is considered. We estimate the upper bound and lower

bound of any positive ω-periodic solution of (L) under a proper condition. In fact,

the upper and lower bounds of positive ω-periodic solution of (L) ensure that we

can make clear the region where positive ω-periodic solutions of (H) located in.
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In Chapter 3, a new theorem of the global asymptotic stability of a unique pos-

itive ω-periodic solution of (H) is presented by the mathematical analysis method.

Obviously, this theorem shows that equation (H) has the exactly one positive ω-

periodic solution. It is undoubted that we get global asymptotic stability of the

unique positive ω-periodic solution based on the existence result given in Chapter

2. In order to complete the investigation of this section, the information about the

fluctuation range of general positive solutions of (H) is needed. By using this in-

formation, we estimate the difference between any positive solution and a certain

positive ω-periodic solution. Thereby, the result that this certain positive ω-periodic

solution is globally asymptotically stable can be obtained. That is to say, the unique

positive ω-periodic solution is globally asymptotically stable.

In Chapter 4, we obtain a result of global attractivity of a unique positive ω-

periodic solution of (H) by Schauder fixed point theorem, which is different from

the method used to get the global asymptotic stability in Chapter 3. It is worth

mentioning that the global attractivity of the unique positive ω-periodic solution is

obtained only under the condition for the existence of positive ω-periodic solutions.

This means that as long as positive ω-periodic solutions exist (maybe only one

exists), then all positive periodic solutions are globally attractive. On the other

words, equation (H) has the unique positive ω-periodic solution which is globally

attractive.
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Chapter 1

Preliminaries

1.1 First order nonlinear difference equation with

time delays

Consider the general first order nonlinear delay difference equation

∆x(k) = − a(k)x(k) +
m∑
i=1

bi(k)F (x(k − τi(k))) (1.1)

for k ∈ Z and m ∈ N. Here, ∆ is the forward difference operator defined by

∆x(k) = x(k+1)− x(k) for k ∈ Z. In equation (1.1), a : Z → (0, 1), bi : Z → (0,∞)

and τi : Z → Z+ def
= N∪{0}(1 ≤ i ≤ m) are ω-periodic discrete functions with ω ∈ N.

The function F : R → R is continuous.

Since τi (1 ≤ i ≤ m) are ω-periodic, we can get the maximum value τ of them;

namely,

τ = max
1≤i≤m

{
max
1≤k≤ω

τi(k)

}
∈ Z+.

For any given discrete initial function ϕ : [−τ , 0] ∩ Z → R, we assume that there

exists a unique solution of (1.1). We denote it by x(·;ϕ). A solution x(·;ϕ) of (1.1)

is said to be the zero solution, if x(k;ϕ) ≡ 0 for all k ∈ Z. We assume F (0) = 0,

then it is obvious that equation (1.1) has the zero solution. About the zero solution

of (1.1), we introduce the definition of global attractivity.
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Definition 1.1. The zero solution of (1.1) is said to be globally attractive, if for

any initial function ϕ, the solution x(·;ϕ) of (1.1) satisfies

lim
k→∞

x(k;ϕ) = 0.

Next, we consider the positive ω-periodic solution of (1.1). To distinguish a

positive ω-periodic solution of (1.1) from other solutions, we denote it by x∗(·;ψ).

Of course, the positive ω-periodic solution x∗(·;ψ) satisfies x∗(k + ω;ψ) = x∗(k;ψ)

for all k ∈ Z. Assume x(·, ϕ) is an arbitrary solution of (1.1). With regards to a

positive ω-periodic solution, we introduce the following important definitions.

Definition 1.2. A positive ω-periodic solution x∗(·;ψ) is said to be stable, if for

any ε > 0, there exists a δ(ε) > 0 such that ∥ϕ− ψ∥ < δ implies

|x(k;ϕ)− x∗(k;ψ))| < ε for k ∈ N.

The norm ∥ · ∥ above denotes the maximum norm ∥ϕ∥ = max−τ≤k≤0 |ϕ(k)|.

Definition 1.3. A positive ω-periodic solution x∗(·;ψ) is said to be globally attrac-

tive, if any solution x(·;ϕ) of (1.1) satisfies

lim
k→∞

∣∣x(k;ϕ)− x∗(k;ψ)
∣∣ = 0.

Definition 1.4. A positive ω-periodic solution x∗(·;ψ) is said to be globally asymp-

totically stable, if it is stable and globally attractive.

1.2 Continuation theorem of coincidence degree

theory

In the exploration of the existence of positive periodic solutions for difference

equation in the form (1.1), there are many methods that can be utilized. The two

common are Krasnoselskii’s fixed point theorem and the fixed point theorem in

6



cone for decreasing operator. However, in the case that F included in equation (1.1)

is unimodal, the above two methods are not applicable. The unimodal function

mentioned above means a function which has different monotonicity at left side

and right side of the point where the only one peak of the function is obtained. A

different approach which has less special restrictions and more wider range of use

is urgently needed to solve such equation. The continuation theorem of coincidence

degree theory [9] is one of efficient methods.

Definition 1.5. Let X be a Banach space and L : DomL ⊂ X → X a linear

mapping. The mapping L is said to be a Fredholm mapping of index zero if

• dimKerL = codim ImL < +∞,

• ImL is closed in X.

Throughout this thesis, we assume that X always represents a Banach space. It

is well known that if L is a Fredholm mapping of index zero and P , Q : X → X are

continuous projectors such that

ImP = KerL;

KerQ = ImL = Im(I −Q),

where I is the identity mapping from X to X, then the restriction LP : DomL ∩

KerP → ImL is invertible. We denote the inverse of the restriction by KP : ImL→

DomL ∩KerP .

Definition 1.6. Let N : X → X be a continuous mapping and Ω an open bounded

subset of X. The mapping N is said to be L-compact on Ω if

• QN(Ω) is bounded,

• KP (I −Q)N : Ω → X is compact.

Lemma 1.1. Let L be a Fredholm mapping of index zero and let N be L-compact

on Ω. Suppose that
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• for each parameter λ ∈ (0, 1), every solution x of Lx = λNx satisfies x ̸∈ ∂Ω;

• QNx ̸= 0 for each x ∈ ∂Ω ∩KerL and

deg
{
QN, Ω ∩KerL, 0

}
̸= 0.

Then the equation Lx = Nx has at least one solution staying in X ∩ Ω.

Remark 1.1. A significant advantage of continuation theorem of coincidence degree

theory is that the existence range of positive periodic solutions can be evaluated.

1.3 Schauder fixed point theorem

In this section, we introduce the well known Schauder fixed point theorem [2].

Definition 1.7. A subset U of Banach space Ω is said to be convex, if for all

λ ∈ [0, 1], x ∈ U and y ∈ U, the segment λx+ (1− λ)y also belongs to U .

For more details of a convex set, we refer to [22].

Definition 1.8. A subset U of Banach space Ω is said to be relatively compact, if

any sequence in U has a convergent subsequence in Ω.

Theorem A. (Schauder fixed-point theorem). Let U be a closed convex subset of

Banach space Ω. Suppose T is a mapping such that T (U) is a subset of U . If T is

continuous and T (U) is relatively compact, then T has a fixed point in U .
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Chapter 2

Existence of positive ω-periodic

solutions

2.1 Previous research and main result

To express the hematopoiesis process, the first order nonlinear delay differential

equation

x′(t) = − a x(t) +
bx(t− τ)

1 + xn(t− τ)
(2.1)

with n > 0 was proposed by Mackey and Glass [18] as a hematopoiesis model. Here,

the coefficients a, b and the delay τ are positive constants. To be exact, the variable

x is the density of mature blood cells in the blood circulation; the coefficient a is the

rate of blood cells lost by the circulation; the second term of the right-hand is the

influx of blood cells into the blood circulation from hematopoietic stem cells; the

coefficient b is positive; the number τ is the time delay that immature cells made in

the bone marrow are released into the circulating blood stream as mature cells. Let

f(u) =
u

1 + un
for u ≥ 0.

Equation (2.1) can be rewritten as

x′(t) = − a x(t) + bf(x(t− τ)).
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This model is composed with an extinction term and a production term. The func-

tion f in the production term is called as production function of model (2.1). It is a

unimodal function who increases monotonically at the beginning and then decreases

monotonically. Hence, it has only one peak. The extensive research of (2.1) can be

referred to [3, 10–12, 15, 21, 24, 25, 30].

Although the fact that blood cells are discrete entities, they are usually treated

as a continuum because of their enormous number. Hence, a hematopoiesis model

is usually governed by a differential equation in many studies. However, blood cells

play a role one by one, and they are represented by the number contained in one

microliter of blood. They are never continua. In that sense, a discrete hematopoiesis

model is more suitable than a continuous one to investigate the dynamics of the blood

cells number. Moreover, from the perspective of continuously obtaining historical

data of the blood cell count in actual measurement work, the fact that discrete

hematopoiesis model are superior to continuous hematopoiesis model can also be

confirmed. Why can we say something like that ? In fact, to solve differential

equation (2.1) using the method of steps (or step by step method), we need an

initial function ϕ defined on [− τ, 0] that is continuous and satisfies the property

that

ϕ(s) ≥ 0 for − τ ≤ s ≤ 0 and ϕ(0) > 0.

For a given initial function ϕ, let

g1(t) = bf(ϕ(t− τ)) for 0 ≤ t ≤ τ.

Then, the solution x of (2.1) with the initial condition that x(t) = ϕ(t) for − τ ≤

t ≤ 0 satisfies the nonhomogeneous linear differential equation

x′ = − ax+ g1(t)
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for 0 ≤ t ≤ τ . It is easy to find this solution. Let ψ be this solution and let

g2(t) = bf(ψ(t− τ)) for τ ≤ t ≤ 2τ.

Then, the solution x of (2.1) with the initial condition that x(t) = ϕ(t) for − τ ≤

t ≤ 0 satisfies the nonhomogeneous linear differential equation

x′ = − ax+ g2(t)

for τ ≤ t ≤ 2τ . By repeating this process, it is possible to obtain the solution x of

(2.1) on the whole interval [0,∞). Equation (2.1) is a hematopoietic model, and the

initial function ϕ corresponds to past data. As shown from the above consideration,

it is important to know a continuous initial function ϕ. However, it is difficult to

obtain such an initial function from the realistic side because it is impossible to

continuously measure past data of the density of mature blood cells. For example,

it is reported that red blood cells turn into mature cells from immature cells after

7 days of maturity (see [29, Sect. 1]). Let us assume that τ is 7 (days). In order

to obtain continuous historical data, healthcare workers will have to measure the

number of red blood cells at all the time of one week. Clearly, they cannot engage

in such a vast measurement task. It is necessary to simplify the measurement work

such as measuring the number of red blood cells at a fixed time every day (this work

will be possible enough because the number of measurements is 8 times). In other

words, instead of continuous initial functions, only the set

{
ϕ(−7), ϕ(−6), ϕ(−5), ϕ(−4), ϕ(−3), ϕ(−2), ϕ(−1), ϕ(0)

}
of eight initial data will be used to predict the density of mature blood cells. If we

think like that, it can be said that the equation

x′(t) = − ax(t) + bf(x([t− τ ])) (2.2)

is more appropriate than equation (2.1) as a hematopoietic model. Here, τ is a
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natural number and the symbol [(·)] means the greatest integer not exceeding (·).

In equation (2.2), the set of the initial data is

{
ϕ(− τ), ϕ(1− τ), . . . , ϕ(−1), ϕ(0)

}
. (2.3)

Equation (2.2) becomes the first-order linear differential equation with constant

coefficients,

x′ = − ax+ bf(ϕ(−τ)) for 0 ≤ t < 1

because [t− τ ] = −τ if 0 ≤ t < 1 and x(−τ) = ϕ(−τ). Hence, we have

x(t) = ϕ(0)e−at +
b

a
f(ϕ(−τ))(1− e−at)

for 0 ≤ t < 1. Let c = 1− e−a and d = bc/a. Then

x(1)
def
= lim

t→1−0
x(t) = (1− c)ϕ(0) + df(ϕ(−τ)).

Similarly, equation (2.2) becomes

x′ = − ax+ bf(ϕ(1− τ)) for 1 ≤ t < 2

and we get

x(t) = x(1)e−a(t−1) +
b

a
f(ϕ(1− τ))(1− e−a(t−1))

for 1 ≤ t < 2. Hence, we have

x(2)
def
= lim

t→2−0
x(t) = (1− c)x(1) + df(ϕ(1− τ)).

Repeat this calculation, we can obtain the data sets

{
x(0), x(1), . . . , x(τ − 1), x(τ)

}
,

{
x(τ), x(τ + 1), . . . , x(2τ − 1), x(2τ)

}
,
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and so on. Note that ϕ(0) = x(0). The following relationship holds between these

data:

∆x(k)
def
= x(k + 1)− x(k) = − cx(k) + df(x(k − τ))

with k ∈ Z+ def
= N ∪ {0}. For convenience, this relationship can be rewritten as the

difference equation

∆x(k) = − ax(k) + bf(x(k − τ)) (2.4)

by letting c as a and d as b again. What should be noted here is that the coefficients

a and b in equation (2.4) satisfy 0 < a < 1 and b > 0 because of the definitions c

and d, respectively.

As mentioned above, using the set (2.3) of the initial data, we can uniquely

determine the solution of equation (2.4). All data values are positive because the

data imply the number of mature blood cells. Also, we can see that x(k) is also

positive for all k ∈ N because the solution x of (2.4) satisfies the equality

x(k + 1) = (1− a)x(k) + bf(x(k − τ)) for k ∈ Z+.

The studies of (2.4) can be refer to [31, 32].

It is unnatural to think that the environment remains constant. The seasons

which periodically vary greatly affect the weather, temperature, food supply and

sexual activity of organisms. It has been reported that the population density of

organisms and the constituents inherent in organisms also change due to changes in

various environments surrounding living organisms and behaviors of organisms (see

[20]). Of course, blood cells which are important components inherent in organisms

periodically influenced by periodic environmental variations due to seasonal changes

(see [8, 17, 26]). Unfortunately, models (2.1) and (2.2) have ignored this important

fact. The coefficients with actual biological significance should not be assumed to be

constants. Based on this discrete perspective, many studies of the modified discrete

hematopoiesis model

∆x(k) = − a(k) x(k) + b(k)f(x(k − τ(k))), (2.5)
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have appeared, for example, refer to [13, 19, 33] and the references cited therein. In

equation (2.1), a : Z → (0, 1), b : Z → (0,∞) and τ : Z → Z+ def
= N ∪ {0} are

ω-periodic discrete functions with ω ∈ N; namely,

a(k) = a(k + ω), b(k) = b(k + ω) and τ(k) = τ(k + ω)

for all k ∈ Z. In this model, periodic environmental changes are taken into account

by making coefficients and time lag represented by periodic functions with the same

period.

Jiang et al . [13] considered equation (2.1) and obtained a sufficient condition for

the existence of positive ω-periodic solutions.

Theorem B. Assume that a, b and τ are ω-periodic. If

a(k) < b(k) for k ∈ [0, ω],

then equation (2.5) has at least one positive ω-periodic solution.

Blood cells are divided into three types: erythrocyte, leukocyte and thrombocyte.

Among them, leukocytes are mainly composed of neutrophils, basophils, eosinophils,

lymphocytes, and monocytes. It has confirmed that neutrophils mature in bone

marrow in about 2 weeks and are released into the bloodstream after 2 days (see

[23] ) in clinical studies. Also, basophils differentiate and mature in the bone marrow

during 7 days (see [7, 16]). These clinical results suggest that at least two types of

leukocytes take different time to enter the bloodstream. Therefore, it is not accurate

that assume all types of blood cells mature through the same maturation period. On

the other words, a hematopoiesis model should be expressed by multiple production

functions.

In this chapter, we take the above factor into account and consider a discrete

hematopoiesis model with periodic coefficients and multiple production terms dom-
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inated by different delays,

∆x(k) = − a(k)x(k) +
m∑
i=1

bi(k)f(x(k − τi(k))). (H)

Here, m is a natural number; a : Z → (0, 1), bi : Z → (0,∞) and τi : Z → Z+(1 ≤

i ≤ m) are ω-periodic discrete functions; namely,

a(k) = a(k + ω), bi(k) = bi(k + ω) and τi(k) = τi(k + ω) (2.6)

for all k ∈ Z and i = 1, 2, · · · ,m. The function f is defined by f(u) = u/(1 + un)

for u ≥ 0 and n > 1.

Remark 2.1. Note that in the Mackey and Glass model (2.1), the production func-

tion f(u) = u/(1 + un) is defined for n > 0. However, it is monotonically increas-

ing.when 0 < n ≤ 1. This means that as blood cells increase, the rate of increase

of blood cells also increases. Since it fails to apply the brakes to increase of blood

cells, it seems not suitable as a mathematical model describing the hematopoiesis

process. Hence, in our main result, we only dealt with the case that n > 1.

Because of the periodicity of τi (1 ≤ i ≤ m), the maximum of them can be

determined by

τ = max
1≤i≤m

{
max
1≤k≤ω

τi(k)

}
∈ Z+.

Let S denote the space of positive discrete functions on [−τ , 0] ∩ Z endowed with

the maximum norm

||ϕ|| = max
−τ≤s≤0

|ϕ(s)| for ϕ ∈ S.

For any ϕ ∈ S, since 0 < a(k) < 1 for k ∈ Z and f(u) ≥ 0 for u ≥ 0, equation (H)

has a unique positive solution x(·;ϕ) satisfying the initial condition

x(k) = ϕ(k) > 0 for k ∈ [− τ , 0] ∩ Z. (2.7)

Since equation (H) is a biological model, it is natural to assume that the initial

function ϕ satisfies ϕ(k) > 0 for k ∈ [− τ , 0] ∩ Z.
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The purpose of this chapter is to give a sufficient condition for the existence

of positive ω-periodic solutions of (H). To state our results simply, we denote the

maximum value of bi(1), bi(2), . . . , bi(ω) by

bi = max
1≤k≤ω

bi(k) for 1 ≤ i ≤ m.

The main result is as follows:

Theorem 2.1. Suppose that (2.6) holds. If there exists a γ > 1 such that

γa(k) <
m∑
i=1

bi(k) for k = 1, 2, . . . , ω, (2.8)

then equation (H) with n > 1 has at least one positive ω-periodic solution located

in the region [A,B], where

A ≤ min

{
n
√
γ − 1,

γ an−1
∑m

i=1 bi

an +
(∑m

i=1 bi
)n
}

and B =
1

a

m∑
i=1

bi,

in which a = min1≤k≤ω a(k).

Note that the region [A,B] is not empty. In fact, since n > 1, we see that

f(u) = u/(1 + un) < 1 for u ≥ 0. Hence, it follows that A ≤ γf(B) < γ. On the

other hand, from (2.8) it turns out that

B =
1

a

m∑
i=1

bi ≥
1

a(k)

m∑
i=1

bi ≥
1

a(k)

m∑
i=1

bi(k) > γ

for some k ∈ [1, 2, . . . , ω].

Remark 2.2. In Theorem 2.1, we assume that the coefficients a, bi and the time

delays τi (i = 1, 2, . . . ,m) have the same period ω. However, this assumption is

for the sake of convenience and is not essential. In the case that these periods

are different, Theorem 2.1 holds for their least common multiple ω ∈ N. If any

coefficient or time delay is a constant (that is, if there is no period), then we may

regard its period as 1.
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Remark 2.3. Under the assumptions of Theorem 2.1, even if there are two or more

positive ω-periodic solutions, they exist in the same range [A,B].

2.2 Parametric delay difference equation

Consider the parametric delay difference equation

∆x(k) = −λa(k)x(k) + λ
m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))
(2.9)

for each parameter λ ∈ (0, 1). We give the following result:

Proposition 2.1. Suppose that (2.8) holds. Then every positive ω-periodic solution

x of (2.9) with n > 1 satisfies that

A < x(k) < B for k = 1, 2, . . . , ω,

where A and B are constants given in Theorem 2.1.

Proof. Let x be any positive ω-periodic solution of (2.9) with the initial condition

(2.7). For convenience, let

x = max
1≤k≤ω

x(k) and x = min
1≤k≤ω

x(k).

Since bi (1 ≤ i ≤ m) and x are positive ω-periodic, we see that 0 < bi(k) ≤ bi for all

k ∈ Z and x ≤ x(k) ≤ x for all k ∈ Z+. Equation (2.9) can be rewritten to

x(k + 1) = (1− λa(k))x(k) + λ
m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))
. (2.10)

Hence, it follows from the periodicities of a, bi and τi (1 ≤ i ≤ m) that

x = max
1≤k≤ω

{x(k + 1)}

≤ max
1≤k≤ω

{(1− λa(k))x(k)}+ λ max
1≤k≤ω

{
m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))

}

17



≤ max
1≤k≤ω

{(1− λa(k))} max
1≤k≤ω

{x(k)}+ λ max
1≤k≤ω

{
m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))

}

≤ (1− λa)x+ λ max
1≤k≤ω

{
m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))

}
,

where a is a constant given in Theorem 1. Hence, we have

x ≤ 1

a
max
1≤k≤ω

{
m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))

}
. (2.11)

Since 0 < λ < 1 and 0 < a(k) < 1 for all k ∈ Z, we see that 1−λa(k) > 0 for k ∈ Z.

Multiply both sides of (2.10) by
∏k

r=0 1/(1− λa(r)) to obtain

x(k + 1)
k∏

r=0

1

1− λa(r)
− x(k)

k−1∏
r=0

1

1− λa(r)
= λ

m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))

k∏
r=0

1

1− λa(r)
.

(2.12)

Let k1 be a natural number such that

τ ≤ k1 ≤ τ + ω − 1 and x(k1) = x.

Summing both sides of (2.12) over k ranging from k1 to k1 + ω − 1 and using

x(k1 + ω) = x(k1) = x, we get

x

k1−1∏
r=0

1

1− λa(r)

(
k1+ω−1∏
r=k1

1

1− λa(r)
− 1

)
= λ

k1+ω−1∑
s=k1

(
m∑
i=1

bi(s)x(s− τi(s))

1 + xn(s− τi(s))

s∏
r=0

1

1− λa(r)

)
.

Since a is a positive ω-periodic function, we see that

k1+ω−1∏
r=k1

(1− λa(r)) =
ω−1∏
r=0

(1− λa(r)). (2.13)

Hence, we have

x =
λ
∏k1+ω−1

r=0 (1− λa(r))

1−
∏k1+ω−1

r=k1
(1− λa(r))

k1+ω−1∑
s=k1

(
m∑
i=1

bi(s)x(s− τi(s))

1 + xn(s− τi(s))

s∏
r=0

1

1− λa(r)

)
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=
λ
∏k1+ω−1

r=0 (1− λa(r))

1−
∏ω−1

r=0 (1− λa(r))

k1+ω−1∑
s=k1

(
m∑
i=1

bi(s)x(s− τi(s))

1 + xn(s− τi(s))

s∏
r=0

1

1− λa(r)

)

=
λ

1−
∏ω−1

r=0 (1− λa(r))

k1+ω−1∑
s=k1

(
m∑
i=1

bi(s)x(s− τi(s))

1 + xn(s− τi(s))

k1+ω−1∏
r=s+1

(1− λa(r))

)
.

(2.14)

Note that we have not used the condition that n > 1 so far. Using (2.11) and

(2.14), we will estimate the upper bound x and the lower bound x. Since n > 1, we

see that

u < un < 1 + un for u > 0.

Hence, it follows from (2.11) that

x <
1

a
max
1≤k≤ω

{
m∑
i=1

bi(k)

}
≤ 1

a

m∑
i=1

bi = B.

Recall that the function fn defined by fn(u) = u/(1 + un) for u ≥ 0 is a unimodal

function. Since x ≤ x(k) ≤ x for all k ∈ Z+, it turns out that

x(s− τi(s))

1 + xn(s− τi(s))
≥ min {fn(x), fn(x)} for s ≥ τ .

Note that k1 ≥ τ . Then, by using (2.8), (2.13) and (2.14), we obtain

x ≥ λmin {fn(x), fn(x)}
1−

∏ω−1
r=0 (1− λa(r))

k1+ω−1∑
s=k1

(
m∑
i=1

bi(s)

k1+ω−1∏
r=s+1

(1− λa(r))

)

>
λmin {fn(x), fn(x)}
1−

∏ω−1
r=0 (1− λa(r))

k1+ω−1∑
s=k1

(
γa(s)

k1+ω−1∏
r=s+1

(1− λa(r))

)

=
γmin {fn(x), fn(x)}
1−

∏ω−1
r=0 (1− λa(r))

k1+ω−1∑
s=k1

(
λa(s)

k1+ω−1∏
r=s+1

(1− λa(r))

)

=
γmin {fn(x), fn(x)}
1−

∏ω−1
r=0 (1− λa(r))

k1+ω−1∑
s=k1

((
1− (1− λa(s))

) k1+ω−1∏
r=s+1

(1− λa(r))

)

=
γmin {fn(x), fn(x)}
1−

∏ω−1
r=0 (1− λa(r))

k1+ω−1∑
s=k1

(
k1+ω−1∏
r=s+1

(1− λa(r))−
k1+ω−1∏

r=s

(1− λa(r))

)
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=
γmin {fn(x), fn(x)}
1−

∏ω−1
r=0 (1− λa(r))

(
k1+ω−1∏
r=k1+ω

(1− λa(r))−
k1+ω−1∏
r=k1

(1− λa(r))

)
.

Since
∏k1+ω−1

r=k1+ω(1− λa(r)) can be regarded as 1, we can conclude that

x > γmin {fn(x), fn(x)} . (2.15)

Here, we divide the argument into two cases to be considered: (i) fn(x) ≤ fn(x);

(ii) fn(x) > fn(x).

Case (i): It follows from (2.15) that x > γfn(x); namely,

x > n
√
γ − 1.

Case (ii): The function fn has the only peak value at 1/ n
√
n− 1, and fn is monotone

increasing on
[
0, 1/ n

√
n− 1

)
and monotone decreasing on

(
1/ n

√
n− 1,∞

)
. Hence,

we see that x > 1/ n
√
n− 1. In fact, if x ≤ 1/ n

√
n− 1, then fn(x) ≤ fn(x) ≤

fn(1/
n
√
n− 1). This is a contradiction. Since x > 1/ n

√
n− 1, it follows from (2.15)

that

x > γfn(x) > γfn(B) =
γ an−1

∑m
i=1 bi

an +
(∑m

i=1 bi
)n .

Thus, in both cases, we can estimate that

x > min

{
n
√
γ − 1,

γ an−1
∑m

i=1 bi

an +
(∑m

i=1 bi
)n
}

≥ A.

Thus, every positive ω-periodic solution x of (2.9) satisfies

A < x ≤ x(k) ≤ x < B

for all k ∈ Z+. The proof is now complete.

20



2.3 Proof of main result

We will apply Proposition 2.1 and the continuation theorem introduced in Chap-

ter 1 to prove Theorem 2.1.

Proof. To this end, we define a Banach space X by

X =
{
x ∈ C(Z+, R) : x(k + ω) = x(k)

}
.

It is clear that X is endowed with the maximum norm ||x|| = max
1≤k≤ω

|x(k)|. Also, we

define two mappings L and N by

Lx = x(k + 1)− x(k)

and

Nx = − a(k)x(k) +
m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))
.

If x ∈ X, then

Lx(k + ω) = x(k + ω + 1)− x(k + ω) = x(k + 1)− x(k) = Lx(k)

for all k ∈ Z+. This means that Lx ∈ X. Let x1, x2 ∈ X and c1, c2 ∈ R. Then

L(c1x1 + c2x2) = (c1x1 + c2x2)(k + 1)− (c1x1 + c2x2)(k)

= c1
(
x1(k + 1)− x1(k)

)
+ c2

(
x2(k + 1)− x2(k)

)
= c1Lx1(k) + c2Lx2(k).

Hence, L is a linear mapping from X to X. Since a, bi and τi (1 ≤ i ≤ m) are

positive ω-periodic, if x ∈ X, then

Nx(k + ω) = − a(k + ω)x(k + ω) +
m∑
i=1

bi(k + ω)x(k + ω − τi(k + ω))

1 + xn(k + ω − τi(k + ω))
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= − a(k)x(k) +
m∑
i=1

bi(k)x(k + ω − τi(k))

1 + xn(k + ω − τi(k))

= − a(k)x(k) +
m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))
= Nx(k)

for all k ∈ Z+. Hence, N is a continuous mapping from X to X.

From the definition of L it turns out that

KerL =
{
x ∈ X : x(k) ≡ c ∈ R

}
and

ImL =

{
x ∈ X :

ω∑
k=1

x(k) = 0

}
.

In fact, if Lx(k) = 0 for all k ∈ Z+, then x(k + 1) ≡ x(k). Let x ∈ X. Then

ω∑
k=1

Lx(k) = x(ω + 1)− x(1) = 0.

It is clear that dimKerL = 1 = codim ImL < +∞ and ImL is closed in X. Hence,

L is a Fredholm mapping of index zero.

Define P : X → X by

Px =
1

ω

ω∑
k=1

x(k),

and let Q = P . Then P and Q are continuous projectors. For any x ∈ X,

Px(k + 1)− Px(k) =
1

ω

ω∑
k=1

x(k + 1)− 1

ω

ω∑
k=1

x(k)

=
1

ω

ω+1∑
k=2

x(k)− 1

ω

ω∑
k=1

x(k) =
1

ω

(
x(ω + 1)− x(1)

)
= 0

for all k ∈ Z+. Hence, ImP = KerL. It is clear that x ∈ KerQ ⊂ X if and only if
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∑ω
k=1 x(k) = 0; namely, x ∈ ImL. For any x ∈ ImL,

y(k) = x(k)− 1

ω

ω∑
k=1

x(k) = x(k)

for all k ∈ Z+. Hence, x = y ∈ Im(I −Q). Conversely, for any y ∈ Im(I −Q), there

exists an x ∈ X such that

y(k) = x(k)− 1

ω

ω∑
k=1

x(k)

for all k ∈ Z+. Hence, we have

ω∑
k=1

y(k) =
ω∑

k=1

(
x(k)− 1

ω

ω∑
k=1

x(k)

)
=

ω∑
k=1

x(k)− 1

ω

ω∑
k=1

x(k)
ω∑

k=1

1

=
ω∑

k=1

x(k)−
ω∑

k=1

x(k) = 0.

This means that y ∈ ImL. Thus, we see that KerQ = ImL = Im(I −Q).

From the relations have shown in the immediately preceding paragraph, the

restriction LP : DomL∩KerP → ImL has the inverse KP : ImL→ DomL∩KerP .

The inverse KP is given by

KPx =
k−1∑
s=0

x(s)− 1

ω

ω−1∑
s=0

s∑
r=0

x(r)

for x ∈ ImL. In fact, since

KPx(k + ω)−KPx(k) =
k+ω−1∑
s=0

x(s)− 1

ω

ω−1∑
s=0

s∑
r=0

x(r)−
k−1∑
s=0

x(s) +
1

ω

ω−1∑
s=0

s∑
r=0

x(r)

=
k+ω−1∑
s=k

x(s) =
ω−1∑
s=0

x(s) = 0

for all k ∈ Z+, it follows that x ∈ ImL implies KPx ∈ DomL. It also turns out that
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PKPx =
1

ω

ω∑
k=1

KPx(k) =
1

ω

ω∑
k=1

(
k−1∑
s=0

x(s)− 1

ω

ω−1∑
s=0

s∑
r=0

x(r)

)

=
1

ω

(
ω∑

k=1

k−1∑
s=0

x(s)− ω

ω

ω−1∑
s=0

s∑
r=0

x(r)

)
=

1

ω

(
ω∑

k=1

k−1∑
s=0

x(s)−
ω∑

k=1

k−1∑
r=0

x(r)

)
= 0.

Hence, x ∈ ImL implies KPx ∈ KerP . For any x ∈ ImL, we have

LPKPx = KPx(k + 1)−KPx(k)

=
k∑

s=0

x(s)− 1

ω

ω−1∑
s=0

s∑
r=0

x(r)−
k−1∑
s=0

x(s) +
1

ω

ω−1∑
s=0

s∑
r=0

x(r)

= x(k) = Ix.

In addition, for any x ∈ DomL ∩KerP , we have

KPLPx = KP

(
x(k + 1)− x(k)

)
=

k−1∑
s=0

(
x(s+ 1)− x(s)

)
− 1

ω

ω−1∑
s=0

s∑
r=0

(
x(r + 1)− x(r)

)
= x(k)− x(0)− 1

ω

ω−1∑
s=0

(
x(s+ 1)− x(0)

)
= x(k)− 1

ω

ω∑
s=1

x(s).

Since x ∈ KerP = KerQ = ImL, we see that
∑ω

s=1 x(s) = 0. Hence, KPLPx =

x(k) = Ix. We therefore conclude that KP = L−1
P .

We next show the mapping N defined above is L-compact on Ω, where

Ω =
{
x ∈ X : A < x(k) < B

}
.

To this end, we will check that

(a) QN(Ω) is bounded,

(b) KP (I −Q)N : Ω → X is compact.
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By a straightforward calculation, we obtain

QNx =
1

ω

ω∑
k=1

(
− a(k)x(k) +

m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))

)

and

Kp(I −Q)Nx =
k−1∑
s=0

(
− a(s)x(s) +

m∑
i=1

bi(s)x(s− τi(s))

1 + xn(s− τi(s))

)

−
(
k

ω
− ω + 1

2ω

) ω∑
s=1

(
− a(s)x(s) +

m∑
i=1

bi(s)x(s− τi(s))

1 + xn(s− τi(s))

)

− 1

ω

ω−1∑
s=0

s∑
r=0

(
− a(r)x(r) +

m∑
i=1

bi(r)x(r − τi(r))

1 + xn(r − τi(r))

)

for x ∈ X.

Since

ω∑
k=1

(
− a(k)x(k) +

m∑
i=1

bi(k)x(k − τi(k))

1 + xn(k − τi(k))

)
<

ω∑
k=1

(
m∑
i=1

bi(k)

)
= ω

m∑
i=1

bi

for x ∈ Ω, the mapping QN is bounded on Ω. Hence, the above sentence (a) is true.

To show that the sentence (b) is also true, from the definition of the compactness

of mappings, we have only to prove that KP (I −Q)N(E) is relatively compact for

any bounded subset E ⊂ Ω ⊂ X. As a matter of fact, we can even show that it is

compact.

Since E is a subspace of a finite dimensional Banach space X, we see that E is

closed. Hence, E is compact. Note that a metric space is compact if and only if it

is sequentially compact. Hence, E is sequentially compact; namely, every infinite

sequence in E contains a convergent subsequence {xj}j∈N whose limit x∗ belongs to

E. Let y∗ = KP (I −Q)Nx∗. Since limj→∞ xj = x∗ ∈ E, it turns out that

lim
j→∞

Kp(I −Q)Nxj = lim
j→∞

k−1∑
s=0

(− a(s)xj(s)) + lim
j→∞

k−1∑
s=0

m∑
i=1

bi(s)xj(s− τi(s))

1 + xnj (s− τi(s))
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−
(
k

ω
− ω + 1

2ω

)
lim
j→∞

ω∑
s=1

(− a(s)xj(s))

−
(
k

ω
− ω + 1

2ω

)
lim
j→∞

ω∑
s=1

m∑
i=1

bi(s)xj(s− τi(s))

1 + xnj (s− τi(s))

− 1

ω
lim
j→∞

ω−1∑
s=0

s∑
r=0

(− a(r)xj(r))

− 1

ω
lim
j→∞

ω−1∑
s=0

s∑
r=0

m∑
i=1

bi(r)xj(r − τi(r))

1 + xnj (r − τi(r))

=
k−1∑
s=0

(
− a(s) lim

j→∞
xj(s)

)
+

k−1∑
s=0

m∑
i=1

bi(s) limj→∞ xj(s− τi(s))

1 + limj→∞ xnj (s− τi(s))

−
(
k

ω
− ω + 1

2ω

) ω∑
s=1

(
− a(s) lim

j→∞
xj(s)

)
−
(
k

ω
− ω + 1

2ω

) ω∑
s=1

m∑
i=1

bi(s) limj→∞ xj(s− τi(s))

1 + limj→∞ xnj (s− τi(s))

− 1

ω

ω−1∑
s=0

s∑
r=0

(
− a(r) lim

j→∞
xj(r)

)

− 1

ω

ω−1∑
s=0

s∑
r=0

m∑
i=1

bi(r) limj→∞ xj(r − τi(r))

1 + limj→∞ xnj (r − τi(r))

= Kp(I −Q)N lim
j→∞

xj = Kp(I −Q)Nx∗ = y∗.

Hence, Kp(I −Q)N(E) is compact.

Next, we check the first condition of Lemma 1.1 is satisfied. From the definitions

of L and N , we see that any ω-periodic solution of (2.6) corresponds one-to-one to

a solution of Lx = λNx with λ ∈ (0, 1). Proposition 2.1 shows that every positive

solution of Lx = λNx stays in the open bounded subset Ω. Let y be an element of

∂Ω. Suppose that y is a solution of Lx = λNx. Of course, y ∈ X. Then, we can

find a k∗ ∈ {1, 2, . . . , ω} so that y(k∗) = min1≤k≤ω y(k). There are three cases to be

considered. If y(k∗) > A, then y is a positive solution of Lx = λNx. Hence, we see

that A < y(k) < B for k = 1, 2, . . . , ω. It turns out from the fact that there exists

a neighborhood of y whose all elements belong to Ω. This contradicts the fact that

y ∈ ∂Ω. If 0 < y(k∗) ≤ A, then y is a positive solution of Lx = λNx. However,

this contradicts the conclusion of Proposition 2.1. If y(k∗) ≤ 0, then there exists a
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neighborhood of y whose all elements do not belong to Ω. This also contradicts the

fact that y ∈ ∂Ω. Hence, if y ∈ ∂Ω, then y is never any solution of Lx = λNx. This

means that the first condition of Lemma 1.1 holds.

Finally, we check the second condition of Lemma 1.1 is also satisfied. If x ∈

∂Ω ∩KerL, then x(k) = A or x(k) = B for all k ∈ Z+. Let x1 and x2 be sequences

satisfying x1(k) ≡ A and x2(k) ≡ B, respectively. Then, by (2.5) we have

QNx1 =
1

ω

ω∑
k=1

(
−Aa(k) +

A

1 + An

m∑
i=1

bi(k)

)
>
A

ω

(
γ

1 + An
− 1

) ω∑
k=1

a(k).

Since A ≤ n
√
γ − 1, we see that QNx1 > 0. Recall that

bi = max
1≤h≤ω

bi(k) and B =
1

a

m∑
i=1

bi.

Then we obtain

QNx2 =
1

ω

ω∑
k=1

(
−Ba(k) +

B

1 +Bn

m∑
i=1

bi(k)

)
≤ − B

ω

ω∑
k=1

a(k) +
B

1 + Bn

m∑
i=1

bi

< − B

ω

ω∑
k=1

a(k) +
m∑
i=1

bi ≤ − aB + aB = 0.

We therefore conclude that QNx ̸= 0 for each x ∈ ∂Ω ∩ KerL. To seek the degree

deg
{
QN,Ω∩KerL, 0

}
, we define a continuous mapping H : Ω∩KerL× [0, 1] → X

by

H(x, µ) = −µ

(
Ix− A+B

2

)
+ (1− µ)QNx.

It is clear that H connects two continuous mappings QN , − I + (A + B)/2 : Ω ∩

KerL → X. Recall that the elements of ∂Ω ∩KerL are only two sequences x1 and

x2 satisfying x1(k) ≡ A and x2(k) ≡ B, respectively. We have

H(xi, µ) = −µ

(
Ixi −

A+B

2

)
+ (1− µ)QNxi = (−1)iµ

(
A−B

2

)
+ (1− µ)QNxi

for i = 1, 2 and µ ∈ [0, 1]. Since A < B and QNx2 < 0 < QNx1, we see that
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H(x2, µ) < 0 < H(x1, µ). Hence, H(x, µ) ̸= 0 for all (x, µ) ∈ ∂Ω∩KerL× [0, 1], and

therefore, H is a homotopic mapping. Since the mappings QN and − I+(A+B)/2

are homotopy equivalent, it turns out that

deg
{
QN, Ω ∩KerL, 0

}
= deg

{
− I +

A+B

2
, Ω ∩KerL, 0

}
= 1 ̸= 0.

Hence, the second condition of Lemma 1.1 holds.

Since all assumptions of Lemma 1.1 are satisfied, the equation Lx = Nx has

at least one solution lying in X ∩ Ω. In other words, equation (H) has at least

one positive ω-periodic solution located in the region [A,B]. The proof is now

complete.

2.4 Examples

In this section, we give two examples to illustrate Theorem 2.1. One is a math-

ematical example, we can find a positive ω-periodic solution by using hand calcula-

tions. The other one is a practical example related to the red blood cells. In this

example, by use of the actual measurement data of red blood cells number obtained

in clinical examination, we can know that a positive ω-periodic solution exists in

the region determined by the actual data. We now introduce the first example.

Example 2.1. Consider the equation

∆x(k) = − a(k)x(k) +
b1(k)x(k − τ1(k))

1 + x2(k − τ1(k))
+
b2(k)x(k − τ2(k))

1 + x2(k − τ2(k))
, (2.16)

where

a(k) =



1/2 if k = 0,

5/6 if k = 1,

1/4 if k = 2,

1/5 if k = 3,
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b1(k) =



3/2 if k = 0,

1/2 if k = 1,

2 if k = 2,

1/4 if k = 3,

b2(k) =



1 if k = 0,

7/6 if k = 1,

5/8 if k = 2,

3/4 if k = 3,

τ1(k) = 6+ 2 cos
(π
2
k
)
=



8 if k = 0,

6 if k = 1,

4 if k = 2,

6 if k = 3,

τ2(k) = 5+ 3 sin
(π
2
k
)
=



5 if k = 0,

8 if k = 1,

5 if k = 2,

2 if k = 3,

and a, bi, and τi are 4-periodic for i = 1, 2. Then equation (2.16) has at least one

positive 4-periodic solution.

It is clear that 0 < a(k) < 1, bi(k) > 0 and τi(k) > 0 for k ∈ Z and i = 1, 2. Let

γ =

1 + min
1≤k≤4

{
b1(k) + b2(k)

a(k)

}
2

=
3

2
> 1.

Then it is easy to check that condition (2.8) is satisfied. Hence, Theorem 2.1 shows

that equation (2.16) has at least one positive 4-periodic solution.

Theorem 2.1 ensures that we can evaluate the existence range of the positive

ω-periodic solutions of (2.16). In this example, since m = n = 2, γ = 3/2,

a = min
1≤k≤ω

a(k) = 1/5, b1 = max
1≤k≤ω

b1(k) = 2 and b2 = max
1≤k≤ω

b2(k) =
7

6
,

we can calculate that

√
γ − 1 =

1√
2
,

m∑
i=1

bi/a =
19

6
and

γ an−1
∑m

i=1 bi

an +
(∑m

i=1 bi
)n =

45

511
.

Hence, from Theorem 2.1 we see that positive 4-periodic solutions locate in the

region

[A,B] =

[
45

511
,
95

6

]
.
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Choosing a set of initial points ϕ(− τ), ϕ(− τ + 1), . . . ,ϕ(0), where

τ = max
1≤i≤2

{
max
1≤k≤4

τi(k)

}
= 8.

We can find a positive 4-periodic solution by using hand calculations. Let

ϕ(k) =



1/2 if k = −8,

1/2 if k = −7,

∗ if k = −6,

1/2 if k = −5,

and ϕ(k) =



2 if k = −4,

2 if k = −3,

1 if k = −2,

2 if k = −1,

2 if k = 0,

where ∗ can be any positive real number. Note that the initial points ϕ(k) (−8 ≤

k ≤ 0) have no periodicity. Then we have

x(1) =
(
1− a(0)

)
x(0) +

b1(0)x(0− τ1(0))

1 + x2(0− τ1(0))
+
b2(0)x(0− τ2(0))

1 + x2(0− τ2(0))

=

(
1− 1

2

)
× 2 +

3

2
× x(−8)

1 + x2(−8)
+ 1× x(−5)

1 + x2(−5)
= 2,

x(2) =
(
1− a(1)

)
x(1) +

b1(1)x(1− τ1(1))

1 + x2(1− τ1(1))
+
b2(1)x(1− τ2(1))

1 + x2(1− τ2(1))

=

(
1− 5

6

)
× 2 +

1

2
× x(−5)

1 + x2(−5)
+

7

6
× x(−7)

1 + x2(−7)
= 1,

x(3) =
(
1− a(2)

)
x(2) +

b1(2)x(2− τ1(2))

1 + x2(2− τ1(2))
+
b2(2)x(2− τ2(2))

1 + x2(2− τ2(2))

=

(
1− 1

4

)
× 1 + 2× x(−2)

1 + x2(−2)
+

5

8
× x(−3)

1 + x2(−3)
= 2,

x(4) =
(
1− a(3)

)
x(3) +

b1(3)x(3− τ1(3))

1 + x2(3− τ1(3))
+
b2(3)x(3− τ2(3))

1 + x2(3− τ2(3))

=

(
1− 1

5

)
× 2 +

1

4
× x(−3)

1 + x2(−3)
+

3

4
× x(1)

1 + x2(1)
= 2,

30



x(5) =
(
1− a(4)

)
x(4) +

b1(4)x(4− τ1(4))

1 + x2(4− τ1(4))
+
b2(4)x(4− τ2(4))

1 + x2(4− τ2(4))

=

(
1− 1

2

)
× 2 +

3

2
× x(−4)

1 + x2(−4)
+ 1× x(−1)

1 + x2(−1)
= 2,

x(6) =
(
1− a(5)

)
x(5) +

b1(5)x(5− τ1(5))

1 + x2(5− τ1(5))
+
b2(5)x(5− τ2(5))

1 + x2(5− τ2(5))

=

(
1− 5

6

)
× 2 +

1

2
× x(−1)

1 + x2(−1)
+

7

6
× x(−3)

1 + x2(−3)
= 1,

x(7) =
(
1− a(6)

)
x(6) +

b1(6)x(6− τ1(6))

1 + x2(6− τ1(6))
+
b2(6)x(6− τ2(6))

1 + x2(6− τ2(6))

=

(
1− 1

4

)
× 1 + 2× x(2)

1 + x2(2)
+

5

8
× x(1)

1 + x2(1)
= 2,

x(8) =
(
1− a(7)

)
x(7) +

b1(7)x(7− τ1(7))

1 + x2(7− τ1(7))
+
b2(7)x(7− τ2(7))

1 + x2(7− τ2(7))

=

(
1− 1

5

)
× 2 +

1

4
× x(1)

1 + x2(1)
+

3

4
× x(5)

1 + x2(5)
= 2,

and so on (see Figure 2.1). Certainly, the solution x is positive and 4-periodic

satisfying

A =
45

511
< 1 ≤ x(k) ≤ 2 <

95

6
= B

for all k ∈ Z+.
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Figure 2.1: A graph of the solution of (2.16)

In Example 2.1, for the given positive numbers m, n, the coefficients a, bi and

the time delays τi (i = 1, 2, . . . ,m), we estimated the existence range [A,B] of the

31



positive periodic solutions of (H). Conversely, for the given value A and B, we can

choose the positive numbers m, n, the coefficients a, bi and the time delays τi so

that the positive periodic solutions of (H) exist in the range [A,B]. We will explain

this situation below.

It is reported that the number of red blood cells per microliter is different de-

pending on sex and race, even for healthy humans. The lower and upper limits of

the measured value are slightly different depending on health agencies. For exam-

ple, according to the guidelines for clinical examination (JSLM2012) by Japanese

Society of Laboratory Medicine, the standard value of red blood cells is 4.1× 106 to

5.3×106 per 1µℓ for adult males, 3.8×106 to 4.8×106 per 1µℓ for adult females. Let

A be the lower limit and let B be the upper limit. In the case of Japanese people,

even if A and B are regarded as 3.6× 106 and 6.0× 106 per 1µℓ respectively, there

would be no big difference from the reality. Of course, it is also possible to change

the values A and B.

It is known that red blood cells start a immature cells in the bone marrow and

after about 7 days of maturation they are released into the bloodstream (see [29,

Sect. 1]). For this reason, we assume that time lag is 7 days; namely, τi(k) = 7 for

i = 1, 2, . . . ,m and k = 1, 2, . . . , ω. To simplify hand calculations, we set m = 2 and

ω = 7.

Example 2.2. Let A = 3.6× 106 and B = 6.0× 106. If

a(k) =



0.60 if k = 0,

0.66 if k = 1,

0.60 if k = 2,

0.72 if k = 3,

0.66 if k = 4,

0.60 if k = 5,

0.66 if k = 6,

(2.17)
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b1(k) =



0.8× 106 if k = 0,

0.5× 106 if k = 1,

0.6× 106 if k = 2,

0.8× 106 if k = 3,

0.7× 106 if k = 4,

0.2× 106 if k = 5,

0.6× 106 if k = 6,

b2(k) =



2.2× 106 if k = 0,

2.8× 106 if k = 1,

2.4× 106 if k = 2,

2.8× 106 if k = 3,

2.6× 106 if k = 4,

2.8× 106 if k = 5,

2.7× 106 if k = 6,

(2.18)

and a(k) = a(k + 7), b1(k) = b1(k + 7), b2(k) = b2(k + 7) for k ∈ Z. Then the

equation

∆x(k) = − a(k)x(k) +
b1(k)x(k − 7)

1 + x1.02(k − 7)
+

b2(k)x(k − 7)

1 + x1.02(k − 7)
(2.19)

has at least one positive 7-periodic solution x satisfying

A ≤ x(k) ≤ B for k ∈ Z+.

In the case that n > 1, the production function fn given by

fn(u) =
u

1 + un
for u ≥ 0

has the maximum value (
(n− 1)n−1

nn

)1/n

at u∗ = n
√
1/(n− 1). As n approaches 1, the maximum value fn(u

∗) increases and

converges to 1, and the value u∗ diverges to ∞. Hence, we can find n > 1 so that

fn(B) > A/B, because A/B < 1. In the case that A = 3.6× 106 and B = 6.0× 106,

we can choose n as 1.02. In fact,

f1.02(6.0× 106) =
6.0× 106

1 + (6.0× 106)1.02
= 0.7318 · · · > 0.6 =

A

B
.
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Next, we choose a γ satisfying

γ ≥ max

{
A

fn(B)
, An + 1

}
.

Since n = 1.02, A = 3.6 × 106 and B = 6.0 × 106, we see that A/fn(B) =

4, 918, 872 · · · and An + 1 = 4, 868, 875 · · · . Hence, we can choose γ as 4.95× 106.

It is clear that a, b1 and b2 are 7-periodic discrete functions satisfying 0 < a(k) <

1, b1(k) > 0 and b2(k) > 0 for k ∈ Z. Since a = 0.60, b1 = 0.8×106 and b2 = 2.8×106,

it turns out that

B = 6.0× 106 =
1

0.6
(0.8× 106 + 2.8× 106) =

1

a

(
b1 + b2

)
.

From (2.17) and (2.18), we see that condition (2.8) holds for γ = 4.95, m = 2 and

ω = 7. Hence, Theorem 2.1 ensures that equation (2.19) has at least one positive

7-periodic solution located in the region [A,B] under the assumptions (2.17) and

(2.18).

2.5 The case that 0 < n ≤ 1

As is said in Section 2.1, equation (H) is not suitable as a mathematical model

describing the hematopoiesis process when 0 < n ≤ 1. However, from pure mathe-

matical side, it is worth considering the case that 0 < n ≤ 1. We have the following

result.

Theorem 2.2. Suppose that (2.6) and (2.8) hold . Then equation (H) with 0 < n ≤

1 has at least one positive ω-periodic solution located in the region [C,D], where

C = n
√
γ − 1 and D = n

√
ω
∑m

i=1 b
∗
i

a
− 1,

in which γ and a are constants given in Theorem 2.1 and b∗i = (
∑ω

k=1 bi(k)) /ω for

1 ≤ i ≤ m.
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By using continuation theorem, we can show that Theorem 2.2 holds in the same

way as the proof of Theorem 2.1. To apply continuation theorem to the proof of

Theorem 2.2, it is only necessary to show the following proposition (leave the details

to the reader).

Proposition 2.2. Suppose that (2.8) holds . Then every positive ω-periodic solution

x of (2.9) with 0 < n ≤ 1 satisfies

C < x(k) < D for k = 1, 2, . . . , ω,

where C and D are constants given in Theorem 2.2.

Proof. As in the proof of Proposition 2.1, we can show that the inequalities (2.11)

and (2.14) hold. Since 0 < n ≤ 1, the function fn defined by fn(u) = u/(1 + un) is

increasing for u ≥ 0. Hence, it follows from (2.11) that

x ≤ 1

a
max
1≤k≤ω

{
m∑
i=1

bi(k)f(x(k − τi(k)))

}

≤ f(x)

a
max
1≤k≤ω

{
m∑
i=1

bi(k)

}
≤ f(x)

a

m∑
i=1

bi

<
ωf(x)

a

m∑
i=1

b∗i .

Arranging this inequality, we obtain

x < n

√
ω
∑m

i=1 b
∗
i

a
− 1 = D.

From (2.8) and (2.14) it turns out that

x =
λ

1−
ω−1∏
r=0

(1− λa(r))

k1+ω−1∑
s=k1

(
m∑
i=1

bi(s)fn(x(s− τi(s)))

k1+ω−1∏
r=s+1

(1− λa(r))

)

≥ λfn(x)

1−
ω−1∏
r=0

(1− λa(r))

k1+ω−1∑
s=k1

(
m∑
i=1

bi(s)

k1+ω−1∏
r=s+1

(1− λa(r))

)
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>
γfn(x)

1−
ω−1∏
r=0

(1− λa(r))

k1+ω−1∑
s=k1

(
λa(s)

k1+ω−1∏
r=s+1

(1− λa(r))

)

>
γfn(x)

1−
ω−1∏
r=0

(1− λa(r))

(
1−

ω−1∏
r=0

(1− λa(r))

)
= γfn(x).

Hence, we can estimate that

x > n
√
γ − 1 = C.

We therefore conclude that

C < x ≤ x(k) < x < D

for all k ∈ Z+. This completes the proof of Proposition 2.2.
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Chapter 3

Global asymptotic stability of a

unique positive ω-periodic solution

3.1 Main result

For continuous hematopoiesis models with unimodal function, we can find a few

research results on the global asymptotic stability of a positive ω-periodic solution.

For example, see [25, 28]. Though it is not a research result on the global attractivity

of a positive ω-periodic solution of discrete hematopoiesis models, there are research

results of a unique positive equilibrium point (see [27, 31, 32]). However, there is no

research on the global asymptotic stability of a unique positive ω-periodic solution

of discrete hematopoiesis models with unimodal function untill now. In this chapter,

we deal with this problem.

In chapter 2, we considered the discrete hematopoiesis model

∆x(k) = − a(k)x(k) +
m∑
i=1

bi(k)f(x(k − τi(k))) (H)

with m ∈ N. Here a : Z → (0, 1), bi : Z → (0,∞) and τi : Z → Z+(1 ≤ i ≤ m)

are ω-periodic discrete functions satisfying periodic relation (2.6). The function f

is defined by f(u) = u/(1 + un) for u ≥ 0 and n > 1. The existence of positive ω-

periodic solutions of (H) has been obtained. We will make an attempt continuously
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on model (H) in this chapter. We intend to explore the global asymptotic stability

of a unique positive ω-periodic solution of (H) base on the existence result Theorem

2.1.

Recall that function f is defined by f(u) = u/(1 + un) for u ≥ 0. Since

f ′(u) =
1− (n− 1)un

(1 + un)2
,

the function f has the only one peak value at 1/n
√
n− 1. For simplicity, let

n∗ =
1

n
√
n− 1

and f = f(n∗) =
n

√
(n− 1)(n−1)

nn
< 1.

Let us define constants as follows:

C = max
A≤u≤B

∣∣f ′(u)
∣∣ and Cε = max

A−ε≤u≤B

∣∣f ′(u)
∣∣

for any ε > 0, where A and B are positive numbers given in Theorem 2.1. Since

f ′(u) is continuous on [0,∞), we see that Cε → C as ε → 0. Hence, the following

lemma holds.

Lemma 3.1. If

B C < 1, (3.1)

then there exists an ε0 > 0 such that B Cε < 1 for any ε ∈ (0, ε0].

We are now ready to describe our main result.

Theorem 3.1. Suppose that (2.8) and (3.1) hold . Then equation (H) with n > 1

has exactly one positive ω-periodic solution located in the region [A,B], which is

globally asymptotically stable.
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3.2 Upper and lower limit values on positive so-

lutions

To complete the proof of global asymptotic stability of a unique positive ω-

periodic solution of (H), we need some information on the bound estimate of all

positive solutions of (1.1), which are not necessarily periodic. Recall that the positive

solution of (H) with initial condition (2.7) for any ϕ ∈ S is denoted by x(·;ϕ). To

know the fluctuation range of x(k;ϕ) for k ∈ Z+ sufficiently large, we examine the

limit superior and limit inferior of x(·;ϕ). From now on, we write x(k;ϕ) as x(k)

for simplicity if necessary.

Equation (H) can be rewritten to

x(k + 1)− (1− a(k))x(k) =
m∑
i=1

bi(k)f(x(k − τi(k))). (3.2)

Multiplying both sides of (3.2) by
∏k

r=0 1/(1− a(r)) to obtain

x(k + 1)
k∏

r=0

1

1− a(r)
− x(k)

k−1∏
r=0

1

1− a(r)
=

m∑
i=1

bi(k)f(x(k − τi(k)))
k∏

r=0

1

1− a(r)
.

(3.3)

We here regard
∏−1

r=0 1/(1− a(r)) as 1.

Lemma 3.2. For any ϕ ∈ S, the positive solution x(·;ϕ) satisfies

lim sup
k→∞

x(k;ϕ) ≤ fB.

Proof. Summing both sides of (3.3) from 0 to k − 1, we get

x(k)
k−1∏
r=0

1

1− a(r)
− x(0) =

k−1∑
s=0

(
m∑
i=1

bi(s)f(x(s− τi(s)))
s∏

r=0

1

1− a(r)

)
.

This implies that

x(k) = x(0)
k−1∏
r=0

(1− a(r)) +
k−1∑
s=0

(
m∑
i=1

bi(s)f(x(s− τi(s)))
k−1∏

r=s+1

(1− a(r))

)
. (3.4)
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Note that a ≤ a(k) < 1 and 0 < bi(k) ≤ bi (1 ≤ i ≤ m) for all k ∈ Z, and that

function f has the maximum f . It follows from (3.4) that

x(k) ≤ x(0)
k−1∏
r=0

(1− a(r)) + f

k−1∑
s=0

(
m∑
i=1

bi(s)
k−1∏

r=s+1

(1− a(r))

)

≤ x(0)
k−1∏
r=0

(1− a) + f
m∑
i=1

bi

k−1∑
s=0

(
k−1∏

r=s+1

(1− a)

)

= x(0)(1− a)k +
f
∑m

i=1 bi
a

(
1− (1− a)k

)
=

(
x(0)− f

∑m
i=1 bi
a

)
(1− a)k +

f
∑m

i=1 bi
a

.

Since (1− a)k converges to 0 as k → ∞, we see that lim supk→∞ x(k) ≤ fB.

Lemma 3.3. Assume (2.8). Then, for any ϕ ∈ S, the positive solution x(·;ϕ)

satisfies

lim inf
k→∞

x(k;ϕ) ≥ A.

Proof. We first show that

lim inf
k→∞

x(k) > 0.

By way of contradiction, suppose that lim infk→∞ x(k) = 0. Then there exists a

divergent sequence {kj}j∈N such that

lim
j→∞

x(kj + 1) = 0 (3.5)

and x(kj + 1) ≤ x(q) for q = 0, 1, . . . , kj. From (3.2) it follows that

x(kj + 1)− (1− a(kj))x(kj) =
m∑
i=1

bi(kj)f(x(kj − τi(kj))).

Since x(kj + 1) ≤ x(kj), we see that

a(kj)x(kj + 1) ≥
m∑
i=1

bi(kj)f(x(kj − τi(kj))). (3.6)

Let a = max1≤k≤ω a(k) and bi = min1≤k≤ω bi(k) for each i = 1, 2, . . . ,m. Then we
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have

a x(kj + 1) ≥ b1f(x(kj − τ1(kj))) ≥ 0.

From (3.5) it turns out that limj→∞ f(x(kj − τ1(kj))) = 0. Recall that f(u) =

u/(1 + un) for u ≥ 0. By Lemma 3.2, we see that x(kj − τ1(kj)) cannot diverge to

infinity as j → ∞. Hence, it has to converge to zero as j → ∞. Similarly, we obtain

lim
j→∞

x(kj − τi(kj)) = 0 for each i = 1, 2, . . . ,m. (3.7)

Let us consider the sequence {a(kj)}. Since the coefficient a is a discrete function

with ω-period, each a(kj) coincides with any one of a(1), a(2), . . . , a(ω). Hence,

there exist a subsequence {k1j} ⊂ {kj} and a number a∗ such that a(k1j ) = a∗

for all j ∈ N, where a∗ is one of a(1), a(2), . . . , a(ω). Next, consider the sequence

{b1(k1j )}. Since the coefficient b1 is also a discrete function with ω-period, each b1(k
1
j )

coincides with any one of b1(1), b1(2), . . . , b1(ω). Hence, there exist a subsequence

{k2j} ⊂ {k1j} and a number b∗1 such that b1(k
2
j ) = b∗1 for all j ∈ N, where b∗1 is one of

b1(1), b1(2), . . . , b1(ω). Of course, a(k2j ) = a∗. Similarly, there exist subsequences

{k2j} ⊃ {k3j} ⊃ · · · ⊃ {kmj } ⊃ {km+1
j } and numbers b∗2, b

∗
3,. . . ,b

∗
m such that b2(k

3
j ) =

b∗2, b3(k
4
j ) = b∗3, . . . , bm(k

m+1
j ) = b∗m. For simplicity, we write {km+1

j } as {ℓj}j∈N.

Then we have

a(ℓj) = a∗ and bi(ℓj) = b∗i for each i = 1, 2, . . . ,m. (3.8)

Since the coefficients a and bi (i = 1, 2, . . . ,m) are ω-period discrete functions and

we assume (2.8), we see that

γa∗ <

m∑
i=1

b∗i . (3.9)

From (3.6) it follows that

a(ℓj) ≥
m∑
i=1

bi(ℓj)
f(x(ℓj − τi(ℓj)))

x(ℓj + 1)
=

m∑
i=1

bi(ℓj)

1 + xn(ℓj − τi(ℓj))

x(ℓj − τi(ℓj))

x(ℓj + 1)
.
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Taking into account that x(ℓj + 1) ≤ x(ℓj − τi(ℓj)), we get the inequality

a(ℓj) ≥
m∑
i=1

bi(ℓj)

1 + xn(ℓj − τi(ℓj))
.

Hence, using (3.7)–(3.9), we obtain

a∗ ≥
m∑
i=1

b∗i > γa∗.

This contradicts γ > 1. Thus, we can conclude that lim infk→∞ x(k) > 0.

Let D = lim infk→∞ x(k) > 0. Then it turns out from Lemma 3.2 that

D = lim inf
k→∞

x(k) ≤ lim sup
k→∞

x(k) ≤ fB < B. (3.10)

We next show that D ≥ min
{

n
√
γ − 1, γf(B)

}
= A. It is clear that D ≥ γf(D)

implies D ≥ n
√
γ − 1. We will prove that D < γf(D) implies D ≥ γf(B). We

proceed our argument by dividing into two cases: (i) f(D) ≤ f(B) and (ii) f(D) >

f(B). Recall that the function f has the only one peak value at n∗; namely, it is

strictly increasing on [0, n∗) and strictly decreasing on [n∗,∞). Note that n∗ < B in

the case (i) and D < n∗ in the case (ii). Since f is a strictly increasing function on

[0, n∗), it has the inverse function on this interval. Let f−1 be the inverse function.

Case (i) We choose

c =
γf(D)−D

2 γ
> 0.

Then we have

γ
(
f(D)− c

)
=
γf(D) +D

2
>
D +D

2
= D. (3.11)

This means that 0 < f(D) − c < f(D) ≤ f(B). Taking into account of (3.10), we

can choose a K1 ∈ N so that

f−1(f(D)− c) < x(k) < B for k ≥ K1 − τ .
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Hence, we have

f(x(k − τi(k))) > f(D)− c for k ≥ K1 and i = 1, 2, . . . ,m. (3.12)

Summing both sides of (3.3) from K1 to k − 1, we get

x(k) = x(K1)
k−1∏
r=K1

(1− a(r)) +
k−1∑
s=K1

(
m∑
i=1

bi(s)f(x(s− τi(s)))
k−1∏

r=s+1

(1− a(r))

)
.

From (2.8), (3.12) and the definitions of a and a, we see that

x(k) > x(K1)(1− a)k−K1 +
(
f(D)− c

) k−1∑
s=K1

(
m∑
i=1

bi(s)
k−1∏

r=s+1

(1− a(r))

)

> x(K1)(1− a)k−K1 + γ
(
f(D)− c

) k−1∑
s=K1

(
a(s)

k−1∏
r=s+1

(1− a(r)

)

= x(K1)(1− a)k−K1 + γ
(
f(D)− c

) k−1∑
s=K1

((
1− (1− a(s))

) k−1∏
r=s+1

(1− a(r)

)

= x(K1)(1− a)k−K1 + γ
(
f(D)− c

) k−1∑
s=K1

(
k−1∏

r=s+1

(1− a(r))−
k−1∏
r=s

(1− a(r))

)

= x(K1)(1− a)k−K1 + γ
(
f(D)− c

)(
1−

k−1∏
r=K1

(1− a(r))

)

≥ x(K1)(1− a)k−K1 + γ
(
f(D)− c

)(
1−

k−1∏
r=K1

(1− a)

)

= x(K1)(1− a)k−K1 + γ
(
f(D)− c

) (
1− (1− a)k−K1

)
for k ≥ K1. Since 0 < a ≤ a < 1, we obtain

D = lim inf
k→∞

x(k) ≥ γ
(
f(D)− c

)
.

However, this contradicts (3.11). Thus, Case (i) does not occur.

Case (ii) There are two subcases to be considered:

(a) n∗ < D
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(b) n∗ ≥ D.

Subcase (a) Let d = (D − n∗)/2 > 0. Then it is clear that n∗ < D − d < D < B.

Hence, we see that f(D − d) > f(D) > f(B). From (3.10), we see that there exists

a K2 ∈ N such that

D − d < x(k) < B for k ≥ K2 − τ .

Hence, we have

f(x(k − τi(k))) > f(B) for k ≥ K2 and i = 1, 2, . . . ,m.

Using this inequality instead of (3.12), we can obtain

D ≥ γf(B)

as in the proof of the case of Case (i). This is a desired evaluation.

Subcase (b) Let e =
(
f(D)−f(B)

)
/2 > 0. Then it is clear that f(D) > f(D)−e >

f(B). From (3.10), we see that there exists a K3 ∈ N such that

f−1(f(D)− e)) < x(k) < B for k ≥ K3 − τ .

Hence, we have

f(x(k − τi(k))) > f(B) for k ≥ K3 and i = 1, 2, . . . ,m.

This inequality gives the same conclusion as subcase (a).

We therefore conclude that

lim inf
k→∞

x(k) = D ≥ min
{

n
√
γ − 1, γf(B)

}
= A.

Thus, the proof of Lemma 3.3 is complete.
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3.3 Proof of main result

In this section, we will prove Theorem 3.1 by Lemmas 3.1-3.3.

Proof. Note that the condition (2.8) guarantees that there is at least one positive

ω-periodic solution of (H). Let x∗(·;ψ) be such a positive ω-periodic solution, where

ψ belongs to S and satisfies the initial condition x∗(s;ψ) = ψ(s) > 0 for s ∈ [−τ , 0]∩

Z. For simplicity, we denote x∗(k) = x∗(k;ψ) for k ≥ −τ . We will evaluate the

difference between the positive ω-periodic solution x∗(k) and any positive solution

x(k) of (H). Let the initial function of the positive solution x(k) be ϕ ∈ S. Then it

follows from (3.2) that

x(k)− x∗(k) =
(
1− a(k − 1)

)(
x(k − 1)− x∗(k − 1)

)
+

m∑
i=1

bi(k − 1)
(
f(x(k − 1− τi(k − 1)))− f(x∗(k − 1− τi(k − 1)))

)

for k ∈ N. Hence, by the mean-value theorem, we have

|x(k)− x∗(k)|

≤ (1− a) |x(k − 1)− x∗(k − 1)|

+
m∑
i=1

bi
∣∣f(x(k − 1− τi(k − 1)))− f(x∗(k − 1− τi(k − 1)))

∣∣
= (1− a) |x(k − 1)− x∗(k − 1)|

+
m∑
i=1

bi
∣∣f ′(ηik)

∣∣ |x(k − 1− τi(k − 1))− x∗(k − 1− τi(k − 1))|, (3.13)

where ηik is a value between x(k − 1 − τi(k − 1)) and x∗(k − 1 − τi(k − 1)) for

i = 1, 2, . . . ,m and k ∈ N.

Since

f ′(u) =
1− (n− 1)un

(1 + un)2
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and

f ′′(u) =
nun

(
(n− 1)un − (n+ 1)

)
(1 + un)3

for u ≥ 0, we see that the derivative f ′ has the properties as follows:

1. f ′(0) = 1 and f ′(n∗) = 0,

2. f ′ is decreasing on
[
0, n
√

(n+ 1)/(n− 1)
)
and increasing on[

n
√
(n+ 1)/(n− 1),∞

)
,

3. f ′(u) ↗ 0 as u→ ∞.

For simplicity, let n∗ = n
√
(n+ 1)/(n− 1). From the above properties, it turns out

that f ′ takes the minimum value

− (n− 1)2

4n

at u = n∗. Since n is a number greater than 1, we see that

∣∣f ′(u)
∣∣ ≤M for u ≥ 0,

where

M =


(n− 1)2

4n
if n ≥ 3 + 2

√
2,

1 if 1 < n < 3 + 2
√
2.

Note that M depends on n, but it is a constant that is not less than 1 (see Figures

3.1 and 3.2).

From (3.13) it follows that

|x(k)− x∗(k)| ≤ (1− a) |x(k − 1)− x∗(k − 1)|

+M
m∑
i=1

bi |x(k − 1− τi(k − 1))− x∗(k − 1− τi(k − 1))| (3.14)
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for k ∈ N. Needless to say, the following inequality holds:

|x(k)−x∗(k)| ≤ max
−τ≤s≤0

|x(s)−x∗(s)| = ||ϕ−ψ|| for k = −τ ,−τ+1, . . . , 0. (3.15)

From (3.14) and (3.15), we see that

|x(1)− x∗(1)| ≤ (1− a) |x(0)− x∗(0)|

+M

m∑
i=1

bi |x(−τi(0))− x∗(−τi(0))|

≤ (1− a) ||ϕ− ψ||+M
m∑
i=1

bi ||ϕ− ψ||

=

(
1− a+M

m∑
i=1

bi

)
||ϕ− ψ||. (3.16)

As stated immediately after Theorem 2.1, assumption (2.8) implies that B > γ > 1.

Since a > 0 and M ≥ 1, we see that

1− a+M
m∑
i=1

bi ≥ 1− a+
m∑
i=1

bi = 1 + (B − 1) a > 1. (3.17)

From (3.14) it follows that

|x(2)−x∗(2)| ≤ (1−a) |x(1)−x∗(1)|+M
m∑
i=1

bi |x(1− τi(1))−x∗(1− τi(1))|. (3.18)

If τi(1) ∈ N for some i = 1, 2, . . . ,m, then by (3.15) we have

|x(1− τi(1))− x∗(1− τi(1))| ≤ ||ϕ− ψ||.

If τi(1) = 0 for some i = 1, 2, . . . ,m, then by (3.16) we have

|x(1− τi(1))− x∗(1− τi(1))| ≤

(
1− a+M

m∑
i=1

bi

)
||ϕ− ψ||.
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Hence, it turns out from (3.17) and (3.18) that

|x(2)− x∗(2)| ≤ (1− a)

(
1− a+M

m∑
i=1

bi

)
||ϕ− ψ||

+M
m∑
i=1

bi

(
1− a+M

m∑
i=1

bi

)
||ϕ− ψ||

=

(
1− a+M

m∑
i=1

bi

)2

||ϕ− ψ||.

Mathematical induction leads the inequality

|x(k)− x∗(k)| ≤

(
1− a+M

m∑
i=1

bi

)k

||ϕ− ψ|| for k ∈ N. (3.19)

By Lemmas 3.2 and 3.3, there exists a K4 ∈ N with K4 ≥ τ such that

A− ε0 < x(k) < B for k ≥ K4 − 1− τ , (3.20)

where ε0 is a positive constant given in Lemma 3.1. Let

β =

(
1− a+M

m∑
i=1

bi

)K4−1

.

Then it follows from (3.17) that β is a constant larger than 1. Hence, by (3.15) and

(3.19), we can evaluate that

|x(k)− x∗(k)| ≤ β ||ϕ− ψ|| for k = −τ ,−τ + 1, . . . , K4 − 1. (3.21)

Note that

k − 1− τi(k − 1) ≥ k − 1− τ ≥ K4 − 1− τ for k ≥ K4.
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Hence, it turns out from (3.20) that

A− ε0 < x(k − 1− τi(k − 1)) < B for k ≥ K4.

On the other hand, Theorem 2.1 guarantees that

A ≤ x(k − 1− τi(k − 1)) ≤ B for k ∈ N.

Since ηik is between x(k− 1− τi(k− 1)) and x∗(k− 1− τi(k− 1)) for i = 1, 2, . . . ,m

and k ∈ N, we see that A− ε0 ≤ ηik ≤ B for i = 1, 2, . . . ,m and k ≥ K4+1. Hence,

we obtain ∣∣f ′(ηik)
∣∣ ≤ Cε0 for i = 1, 2, . . . ,m and k ≥ K4.

From this inequality and (3.13), we see that

|x(k)− x∗(k)| = (1− a) |x(k − 1)− x∗(k − 1)|

+ Cε0

m∑
i=1

bi |x(k − 1− τi(k − 1))− x∗(k − 1− τi(k − 1))| (3.22)

for k ≥ K4.

Using (3.21) and (3.22), we obtain

|x(K4)− x∗(K4)| = (1− a) |x(K4 − 1)− x∗(K4 − 1)|

+ Cε0

m∑
i=1

bi |x(K4 − 1− τi(K4 − 1))− x∗(K4 − 1− τi(K4 − 1))|

≤ (1− a) β ||ϕ− ψ||+ aB Cε0 β ||ϕ− ψ||

≤
(
1− a (1−B Cε0)

)
β ||ϕ− ψ||.

Recall that 0 < a = min1≤k≤ω a(k) < 1. From Lemma 3.1 and the assumption (3.1),

we see that

0 < 1− a (1−B Cε0) < 1. (3.23)
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Hence, we get

|x(K4 + 1)− x∗(K4 + 1)| = (1− a) |x(K4)− x∗(K4)|

+ Cε0

m∑
i=1

bi |x(K4 − τi(K4))− x∗(K4 − τi(K4))|

≤(1− a)

(
1− a (1−B Cε0)

)
β ||ϕ− ψ||+ aB Cε0 β ||ϕ− ψ||

≤
(
1− a (1−B Cε0)

)
β ||ϕ− ψ||.

Similarly, we have

|x(k)− x∗(k)| ≤
(
1− a (1−BCε0)

)
β ||ϕ− ψ|| for k = K4, K4 + 1, . . . , K4 + τ .

(3.24)

Using (3.21), (3.22) and (3.24), we obtain

|x(K4 + τ + 1)− x∗(K4 + τ + 1)| ≤ (1− a)

(
1− a (1−BCε0)

)
β ||ϕ− ψ||

+ aB Cε0

(
1− a (1−B Cε0)

)
β ||ϕ− ψ||

≤
(
1− a (1−B Cε0)

)2

β ||ϕ− ψ||.

Similarly, we have

|x(k)− x∗(k)| ≤
(
1− a (1−B Cε0)

)2

β ||ϕ− ψ||

for k = K4 + τ + 1, K4 + τ + 2, . . . , K4 + 2τ + 1. Repeating the same calculation

process, we can derive the evaluation formula

|x(k)− x∗(k)| ≤
(
1− a (1−BCε0)

)µ

β ||ϕ− ψ||

for k = K4 + (µ − 1)(τ + 1), K4 + (µ − 1)(τ + 1) + 1, . . . , K4 + µτ + µ − 1, where

µ ∈ N. Note that if k diverges to infinity, then µ also diverges to infinity. From

(3.11) it follows that
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|x(k)− x∗(k)| ≤ β ||ϕ− ψ|| for k ∈ N

and

|x(k)− x∗(k)| → 0 as k → ∞.

Hence, from the former we see that the positive period solution x∗(·;ψ) is stable,

and from the latter we see that it is globally attractive.

3.4 On the condition of Theorem 3.1

Let us examine when condition (3.1) will be satisfied. Needless to say, the value

C = maxA≤u≤B

∣∣f ′(u)
∣∣ changes depending on the numbers

A = min
{

n
√
γ − 1, γf(B)

}
and B =

1

a

m∑
i=1

bi.

The properties of the derivative f ′ of the production function f were already de-

scribed in Section 3.3. In particular, we have to take into account of the maximum

value 1 and the minimum value

− (n− 1)2

4n

of f ′.

u

f ¢

PSfrag repla
ements

−

n∗ n∗

(n−1)2

4n

1

Figure 3.1: This curve is a graph of the derivative f ′ of the production
function f in the case that n is less than 3 + 2

√
2. The graph intersects

the u-axis at u = n∗, and takes the minimum value less than 1 at u = n∗.
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If 1 < n < 3+2
√
2, then (n−1)2/(4n) < 1 (see Figure 3.1). From the properties

of f ′, six classifications are required. We see that

C =



f ′(A) if A < B ≤ n∗,

max {f ′(A), − f ′(B)} if A ≤ n∗ < B < n∗,

max {f ′(A), (n− 1)2/(4n)} if A ≤ n∗ < n∗ ≤ B,

− f ′(B) if n∗ < A < B < n∗,

(n− 1)2/(4n) if n∗ < A < n∗ ≤ B,

− f ′(A) if n∗ ≤ A < B.

In either case, the value C is less than 1. Hence, though B > γ > 1, there is a

possibility that condition (3.1) holds.

u

f ¢

PSfrag repla
ements

−

−

n∗ n− n∗ n+

1

1
(n−1)2

4n

Figure 3.2: This curve is a graph of the derivative f ′ of the production
function f in the case that n is larger than 3+2

√
2. The graph intersects

the u-axis at u = n∗, and takes the minimum value larger than 1 at
u = n∗. The value of the derivative f ′ becomes −1 at u = n− and at
u = n+.

If n ≥ 3 + 2
√
2, then (n− 1)2/(4n) > 1 (see Figure 3.2). Let

n− =
n

√
n− 3−

√
n2 − 6n+ 1

2
and n+ =

n

√
n− 3 +

√
n2 − 6n+ 1

2
.
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Then f ′(n−) = f ′(n+) = − 1 and

− 1 <f ′(u) ≤ 1 for 0 ≤ u < n−,

−(n− 1)2

4n
<f ′(u) < − 1 for n− < u < n+,

− 1 <f ′(u) < 0 for u > n+.

Using these inequalities, we see that

C =



f ′(A) if A < B ≤ n∗,

max {f ′(A), − f ′(B)} if A ≤ n∗ < B < n−,

− f ′(B) if A ≤ n∗ < n− ≤ B < n∗,

(n− 1)2/(4n) if A ≤ n∗ < n∗ ≤ B,

− f ′(B) if n∗ < A < B < n−,

− f ′(B) if n∗ < A < n− ≤ B < n∗,

(n− 1)2/(4n) if n∗ < A < n∗ ≤ B,

− f ′(A) if n∗ ≤ A < B.

In three cases that A < B ≤ n∗, A ≤ n∗ < B < n− and n∗ < A < B < n−, the value

C is less than 1, but otherwise it becomes greater than or equals to 1. Hence, only

the three cases have the possibility that the condition (1.5) holds. In other cases,

condition (1.5) does not hold because neither B nor C are less than 1.

3.5 Examples

Example 3.1. To illustrate Theorem 3.1, we consider the difference equation
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∆x(k) = − a(k)x(k) +
b1(k)x(k − τ1(k))

1 + x2(k − τ1(k))
+
b2(k)x(k − τ2(k))

1 + x2(k − τ2(k))
, (3.25)

where

a(k) =



1/2 if k = 0,

8/15 if k = 1,

8/13 if k = 2,

1/2 if k = 3,

b1(k) =



5/8 if k = 0,

4/5 if k = 1,

1 if k = 2,

7/8 if k = 3,

b2(k) =



1 if k = 0,

14/15 if k = 1,

1 if k = 2,

3/4 if k = 3,

τ1(k) =



4 if k = 0,

4 if k = 1,

3 if k = 2,

4 if k = 3,

τ2(k) =



3 if k = 0,

4 if k = 1,

3 if k = 2,

4 if k = 3,

and a(k) = a(k + 4), bi(k) = bi(k + 4), τi(k) = τi(k + 4) for k ∈ Z and i = 1, 2.

We will confirm that equation (3.25) can be applied to Theorem 3.1.

First note that m = n = 2 and the production function f is given by

f(u) =
u

1 + u2
for u ≥ 0.

Since the coefficients a, b1, b2 and the time delays τ1, τ2 are 4-period discrete func-

tions, the period ω is 4. These discrete functions satisfy

0 < a(k) < 1, b1(k) > 0, b2(k) > 0, τ1(k) > 0 and τ2(k) > 0
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for k ∈ N. Let γ = 3 > 1. Then the inequality

γa(k) < b1(k) + b2(k)

holds for k = 1, 2, 3, 4. Hence, condition (2.5) is satisfied. Since

a = min
1≤k≤ω

a(k) = 1/2, b1 = max
1≤k≤ω

b1(k) = 1 and b2 = max
1≤k≤ω

b2(k) = 1,

we see that

B =
1

a

(
b1 + b2

)
=

1 + 1

1/2
= 4,

√
γ − 1 =

√
2 and γf(B) = 3× 4

1 + 42
=

12

17
,

and therefore,

A = min
{√

γ − 1, γf(B)
}
=

12

17
.

Since

n∗ =
1√
n− 1

= 1 and n∗ =

√
n+ 1

n− 1
=

√
3.

we see that

A =
12

17
< 1 = n∗ < n∗ =

√
3 < 4 = B.

As we have examined in Section 3.4, in this case,

C = max

{
f ′(A),

(n− 1)2

4n

}
= max

{
1− (12/17)2

(1 + (12/17)2)2
,
1

8

}
< 0.23.

Hence, we obtain

B C < 4× 0.23 = 0.92 < 1;

namely, condition (3.1).

Thus, we can apply Theorem 3.1 to this example and conclude that equation

(3.25) has exactly one positive 4-periodic solution which is globally asymptotically

stable. The periodic solution is in the region [12/17, 4]. Indeed, we can use hand

55



calculations to find the positive periodic solution. Note that

τ = max
1≤i≤2

{
max
1≤k≤4

τi(k)

}
= 4.

As a set of initial points ψ(− τ), ψ(− τ + 1), . . . ,ψ(0), we choose

ψ(k) =



2/3 if k = −4,

2/3 if k = −3,

∗ if k = −2,

3/2 if k = −1,

3/2 if k = 0,

(3.26)

where ∗ indicates any positive real number. Then we can calculate as follows:

x(1) =
(
1− a(0)

)
x(0) +

b1(0)x(0− τ1(0))

1 + x2(0− τ1(0))
+
b2(0)x(0− τ2(0))

1 + x2(0− τ2(0))

=

(
1− 1

2

)
× 3

2
+

5

8
× x(0− 4)

1 + x2(0− 4)
+ 1× x(0− 3)

1 + x2(0− 3)

=
1

2
× 3

2
+

5

8
× 2/3

1 + 4/9
+ 1× 2/3

1 + 4/9
=

3

2
,

x(2) =
(
1− a(1)

)
x(1) +

b1(1)x(1− τ1(1))

1 + x2(1− τ1(1))
+
b2(1)x(1− τ2(1))

1 + x2(1− τ2(1))

=

(
1− 8

15

)
× 3

2
+

4

5
× x(1− 4)

1 + x2(1− 4)
+

14

15
× x(1− 4)

1 + x2(1− 4)

=
7

15
× 3

2
+

4

5
× 2/3

1 + 4/9
+

14

15
× 2/3

1 + 4/9
=

3

2
,

x(3) =
(
1− a(2)

)
x(2) +

b1(2)x(2− τ1(2))

1 + x2(2− τ1(2))
+
b2(2)x(2− τ2(2))

1 + x2(2− τ2(2))

=

(
1− 8

13

)
× 3

2
+ 1× x(2− 3)

1 + x2(2− 3)
+ 1× x(2− 3)

1 + x2(2− 3)

=
5

13
× 3

2
+ 1× 3/2

1 + 9/4
+ 1× 3/2

1 + 9/4
=

3

2
,
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x(4) =
(
1− a(3)

)
x(3) +

b1(3)x(3− τ1(3))

1 + x2(3− τ1(3))
+
b2(3)x(3− τ2(3))

1 + x2(3− τ2(3))

=

(
1− 1

2

)
× 3

2
+

7

8
× x(3− 4)

1 + x2(3− 4)
+

3

4
× x(3− 4)

1 + x2(3− 4)

=
1

2
× 3

2
+

7

8
× 3/2

1 + 9/4
+

3

4
× 3/2

1 + 9/4
=

3

2
,

x(5) =
(
1− a(4)

)
x(4) +

b1(4)x(4− τ1(4))

1 + x2(4− τ1(4))
+
b2(4)x(4− τ2(4))

1 + x2(4− τ2(4))

=

(
1− 1

2

)
× 3

2
+

5

8
× x(4− 4)

1 + x2(4− 4)
+ 1× x(4− 3)

1 + x2(4− 3)

=
1

2
× 3

2
+

5

8
× 3/2

1 + 9/4
+ 1× 3/2

1 + 9/4
=

3

2
,

x(6) =
(
1− a(5)

)
x(5) +

b1(5)x(5− τ1(5))

1 + x2(5− τ1(5))
+
b2(5)x(5− τ2(5))

1 + x2(5− τ2(5))

=

(
1− 8

15

)
× 3

2
+

4

5
× x(5− 4)

1 + x2(5− 4)
+

14

15
× x(5− 4)

1 + x2(5− 4)

=
7

15
× 3

2
+

4

5
× 3/2

1 + 9/4
+

14

15
× 3/2

1 + 9/4
=

3

2
,

x(7) =
(
1− a(6)

)
x(6) +

b1(6)x(6− τ1(6))

1 + x2(6− τ1(6))
+
b2(6)x(6− τ2(6))

1 + x2(6− τ2(6))

=

(
1− 8

13

)
× 3

2
+ 1× x(6− 3)

1 + x2(6− 3)
+ 1× x(6− 3)

1 + x2(6− 3)

=
5

13
× 3

2
+ 1× 3/2

1 + 9/4
+ 1× 3/2

1 + 9/4
=

3

2
,

x(8) =
(
1− a(7)

)
x(7) +

b1(7)x(7− τ1(7))

1 + x2(7− τ1(7))
+
b2(7)x(7− τ2(7))

1 + x2(7− τ2(7))

=

(
1− 1

2

)
× 3

2
+

7

8
× x(7− 4)

1 + x2(7− 4)
+

3

4
× x(7− 4)

1 + x2(7− 4)

=
1

2
× 3

2
+

7

8
× 3/2

1 + 9/4
+

3

4
× 3/2

1 + 9/4
=

3

2
,

and so on. The value x(k) of this solution is the constant 3/2 for k ∈ N. Hence, we

may say that this solution is only one positive 4-period solution x∗(·;ψ) of (3.25)
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(see Figure 3.3).
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Figure 3.3: These line graphs are trajectories of four solutions of (3.25).

In Figure 3.3, we draw the trajectories of only one periodic solution x∗(·;ψ)

and other three solutions x(·;ϕ) of (3.25). The periodic solution satisfies the initial

condition (3.26), where ∗ = 13/4. The initial conditions of the other solutions x(·;ϕ)

are

ϕ(k)=



2/3 if k = −4,

30/7 if k = −3,

1/2 if k = −2,

2 if k = −1,

1 if k = 0,

ϕ(k)=



21/10 if k = −4,

1/3 if k = −3,

5/6 if k = −2,

1/2 if k = −1,

11/4 if k = 0,

ϕ(k)=



11/3 if k = −4,

11/12 if k = −3,

17/16 if k = −2,

16/5 if k = −1,

13/4 if k = 0,

respectively. As can be seen from Figure 3.3, the three solutions x(·;ϕ) other than

the periodic solution approaches 3/2 while becoming larger or smaller than 3/2.

In other words, the three solutions x(·;ϕ) gradually approach the periodic solution

x∗(·;ψ). Similarly, for any ϕ ∈ S, the solution x(·;ϕ) of (3.25) approaches the

periodic solution x∗(·;ψ); namely, the periodic solution x∗(·;ψ) is globally asymp-

totically stable.

Example 3.2. In Chapter 2, the practical Example 2.2 based on the actual mea-

surement value of red blood cells is considered. The difference equation is presented
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by

∆x(k) = − a(k)x(k) +
b1(k)x(k − 7)

1 + x1.02(k − 7)
+

b2(k)x(k − 7)

1 + x1.02(k − 7)
, (3.27)

where

a(k) =



0.60 if k = 0,

0.66 if k = 1,

0.60 if k = 2,

0.72 if k = 3,

0.66 if k = 4,

0.60 if k = 5,

0.66 if k = 6,

b1(k) =



0.8× 106 if k = 0,

0.5× 106 if k = 1,

0.6× 106 if k = 2,

0.8× 106 if k = 3,

0.7× 106 if k = 4,

0.2× 106 if k = 5,

0.6× 106 if k = 6,

b2(k) =



2.2× 106 if k = 0,

2.8× 106 if k = 1,

2.4× 106 if k = 2,

2.8× 106 if k = 3,

2.6× 106 if k = 4,

2.8× 106 if k = 5,

2.7× 106 if k = 6,

and a(k) = a(k+7), b1(k) = b1(k+7), b2(k) = b2(k+7) for k ∈ Z. In this example,

m = 2, n = 1.02, a = 0.6, b1 = 0.8 × 106 and b2 = 2.8 × 106. The reason that the

maximum time delay is equal to 7 is that it takes about 7 days for immature cells to

mature into red blood cells within the bone marrow and be released into the blood

stream.

Let γ = 4.91887265× 106. Then it is easy to check that

γa(k) < b1(k) + b2(k) for k = 1, 2, . . . , 7,

that is, condition (2.8) holds. Hence, Theorem 2.1 obtained in Chapter 2 guarantees
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that there exists at least one positive 7-periodic solution of (3.27) located within the

region [A,B], where

B =
1

a

(
b1 + b2

)
=

1

0.6

(
0.8× 106 + 2.8× 106

)
= 6.0× 106

and

A = min
{
1.02
√
γ − 1, γf(B)

}
= min

{
1.02
√
4.91887265× 106 − 1, 4.91887265× 106 × 6.0× 106

1 + (6.0× 106)1.02

}
= 3.6× 106.

By using Theorem 3.1, we can show that the positive 7-periodic solution of (3.25)

guaranteed by Theorem 2.1 is unique and the unique periodic solution is globally

asymptotically stable. Indeed, since

n∗ =
1.02

√
1

1.02− 1
= 46.30808 . . . and n∗ = 1.02

√
1.02 + 1

1.02− 1
= 92.26159 . . . ,

we see that

n∗ < n∗ < 93 < A < B.

Hence, as we have shown in Section 3.4,

C = − f ′(A) =
0.02× (3.6× 106)

1.02 − 1(
1 + (3.6× 106)1.02

)2 < 4.2× 10−9,

and therefore,

BC < 6.0× 106 × 4.2× 10−9 = 0.0252 << 1.

Thus, condition (3.1) is satisfied.
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Chapter 4

Global attractivity of a unique

positive ω-periodic solution

4.1 Main result

In Chapter 3, we considered the discrete hematopoiesis model

∆x(k) = − a(k)x(k) +
m∑
i=1

bi(k)f(x(k − τi(k))) (H)

with m ∈ N. Here a : Z → (0, 1), bi : Z → (0,∞) and τi : Z → Z+(1 ≤ i ≤ m)

are ω-periodic discrete functions satisfying periodic relation (2.6). The function f

is defined by

f(u) =
u

1 + un
for u ≥ 0 and n > 1.

It is obvious that f takes the maximum value f = n
√

(n− 1)n−1/nn smaller than 1

when u = 1
/

n
√
n− 1. Moreover, the derivative f ′ satisfies

|f ′| ≤ max

{
1,

(n− 1)2

4n

}
.

Hence, for a given n > 1, the derivative of the production function f is bounded.

We obtained the global asymptotic stability of a unique positive ω-periodic solu-

tion of hematopoiesis model (H) through the method of mathematical analysis. In
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this chapter, we investigate the global attractivity of a unique positive ω-periodic

solution of hematopoiesis model (H) by a different approach. The Schauder fixed

point theorem will be applied.

Theorem 4.1. Suppose that (2.8) holds. Then equation (H) has only one positive

ω-periodic solution that is globally attractive.

Remark 4.1. Note that assumptions (2.8) is the condition that guarantee the ex-

istence of positive ω-periodic solutions of (H). The main result Theorem 4.1 shows

that as long as positive ω-periodic solutions exist (maybe only one exists), then all

positive periodic solutions are globally attractive.

4.2 Basic fact

Before going the main topic, we will explain that for any positive initial condition

(2.7), the solution of (H) is bounded. We have

x(k + 1)− (1− a(k))x(k) =
m∑
i=1

bi(k)f(x(k − τi(k))).

Multiplying both sides of this relationship by
∏k

r=01/(1− a(r)), we get

x(k + 1)
k∏

r=0

1

1− a(r)
− x(k)

k−1∏
r=0

1

1− a(r)
=

m∑
i=1

bi(k)f(x(k − τi(k)))
k∏

r=0

1

1− a(r)
.

Note that
∏−1

r=01/(1 − a(r)) = 1. Sum both sides of this evaluation over k from 0

to k − 1 to obtain

x(k)
k−1∏
r=0

1

1− a(r)
− x(0) =

k−1∑
s=0

(
m∑
i=1

bi(s)f(x(s− τi(s)))
s∏

r=0

1

1− a(r)

)
.

Recall that f is the maximum value of the production function f , and a and bi are

ω-periodic discrete functions with the minimum value a and the maximum value bi,

respectively. From the above equality, we see that
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x(k) = x(0)
k−1∏
r=0

(1− a(r)) +
k−1∑
s=0

(
m∑
i=1

bi(s)f
(
x(s− τi(s))

) k−1∏
r=s+1

(1− a(r))

)

≤ x(0)
k−1∏
r=0

(1− a) + f
m∑
i=1

bi

k−1∑
s=0

(
k−1∏

r=s+1

(1− a(r))

)

≤ x(0)(1− a)k + f
m∑
i=1

bi
(
(1− a)k−1 + (1− a)k−2 + · · ·+ (1− a) + 1

)
= x(0)(1− a)k + f

m∑
i=1

bi
1− (1− a)k

a

=

(
x(0)− f

∑m
i=1 bi
a

)
(1− a)k +

f
∑m

i=1 bi
a

< max

{
x(0),

f
∑m

i=1 bi
a

}

for k ∈ N. Hence, the solution x of (H) with the initial condition (2.7) is bounded. In

other words, the solution set for equation (H) consists of bounded discrete functions.

We choose one arbitrarily from the positive ω-periodic solutions whose existence

is guaranteed from Theorem 2.1 and name it x∗(·;ψ). Let Ω be a space of bounded

discrete functions defined on [− τ ,∞)∩Z. It is well known that Ω is a Banach space

endowed with the norm

|||z||| def
= sup

k∈[− τ ,∞)∩Z
|z(k)| for z ∈ Ω.

In fact, we can show that every Cauchy sequence in Ω is convergent. Let {zp}p∈N be

a Cauchy sequence in Ω. For every ε > 0, there exists ζ > 0 such that |||zp−zq||| < ε

for p, q > ζ. Hence,

|zp(k)− zq(k)| ≤ |||zp − zq||| < ε for k ∈ [−τ ,∞] ∩ Z and p, q > ζ.

This means that for each k ∈ [−τ ,∞]∩Z, the sequence of real numbers {zp(k)}u∈N
is a Cauchy sequence in the filed R of real numbers. Since R is complete, sequence

{zp(k)}p∈N is convergent for each k ∈ [−τ ,∞) ∩ Z. Denote the limit of {zp(k)}u∈N
by z∞(k) for each k ∈ [−τ ,∞) ∩ Z, then we obtain a function z∞(k) defined on

[−τ ,∞) ∩ Z. We now prove the function z∞ is the limit of {zp}u∈N. For each

63



k ∈ [−τ ,∞] ∩ Z and p, q > ζ, we have

|zp(k)− z∞(k)| = lim
q→∞

|zp(k)− zq(k)| < ε.

Hence,

|||zp − z∞||| = sup
k≥−τ

|zp(k)− z∞(k)| < ε for p > ζ.

This leads to z∞ is the limit of {zp}u∈N. Since Cauchy sequence {zp}p∈N in normed

space Ω is bounded, the limit z∞ is a bounded discrete function on [−τ ,∞) ∩ Z.

Therefore, we see that z∞ ∈ Ω. In conclusion, the Cauchy sequence {zp}p∈N in Ω is

convergent in Ω.

Denote by U a subset of Ω in which all the elements z satisfy the following

conditions:

(a) there exists an M > 0 such that |||z||| ≤M ;

(b) z(k) ≥ − x∗(k;ψ) for k ∈ [− τ ,∞) ∩ Z;

(c) for any ε > 0, there exists a K(ε) ∈ N independent of z such that |z(k)| < ε

for k ∈ [K,∞) ∩ N.

From condition (c), it is obvious that z satisfies limk→∞ z(k) = 0.

We will show U is closed. Let {zj}j∈N be a convergent function sequence in U

and let z∞ be the limit function of the sequence {zj}. Then it follows from condition

(a) that

|zj(k)| ≤M for all k ∈ [− τ ,∞) ∩ Z and all j ∈ N. (4.1)

Suppose that |||z∞||| = supk∈[− τ ,∞)∩Z |z∞(k)| > M . Then there exists a k1 ∈

[− τ ,∞) ∩ Z such that |z∞(k1)| = limj→∞ |zj(k1)| > M . Hence, there exists a

J1 ∈ N such that |zj(k1)| > M for all j ≥ J1. This contradicts (3.1). Thus, z∞

satisfies condition (a). From condition (b), we see that

zj(k) ≥ − x∗(k;ψ) for all k ∈ [− τ ,∞) ∩ Z and all j ∈ N. (4.2)
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Suppose that there exists a k2 ∈ [− τ ,∞) ∩ Z such that z∞(k2) = limj→∞ zj(k2) <

−x∗(k;ψ). Then there exists a J2 ∈ N such that zj(k2) < −x∗(k;ψ) for all j ≥ J2.

This contradicts (4.2). Thus, z∞ satisfies condition (b). From condition (c), we see

that

for any ε > 0, there exists a K(ε) ∈ N such that

|zj(k)| < ε for all k ∈ [K,∞) ∩ N and all j ∈ N.
(4.3)

Suppose that z∞ dose not satisfy condition (c). Then there exist an η0 > 0 and

a sequence {kn} with kn ∈ [− τ ,∞) ∩ Z and kn → ∞ as n → ∞ such that

|z∞(kn)| = limj→∞ |zj(kn)| ≥ η0. Hence, we find a sequence {jn} with jn ∈ N

such that |zj(kn)| ≥ η0 for j ≥ jn. Since ε is arbitrary, we can choose η0 as ε in

(4.3). However, this is a contradiction. Thus, z∞ satisfies condition (c). Hence, we

can conclude that z∞ belongs to U and U is a closed subset of Ω.

We next show U is convex. To verify this, we choose two elements ẑ and z̃ of U

arbitrarily. Let λ ∈ [0, 1]. From conditions (a) and (c) it follows that

|||λẑ + (1− λ)z̃||| = λ|||ẑ|||+ (1− λ)|||z̃||| ≤ λM + (1− λ)M =M

and

(
λẑ+(1−λ)z̃

)
(k) ≥ −λx∗(k;ψ)−(1−λ)x∗(k;ψ) = −x∗(k;ψ) for k ∈ [− τ ,∞)∩Z,

respectively. From condition (c) it follows that for any ε > 0, there exists aK(ε) ∈ N

such that |ẑ < ε and |z̃ < ε for all k ∈ [K,∞) ∩ N. Hence, we have

|λẑ + (1− λ)z̃(k)| ≤ λ| ˆz(k)|+ |(1− λ)z̃(k)| < λε+ (1− λ)ε = ε

for all k ∈ [K,∞) ∩ N. Thus, λẑ + (1 − λ)z̃ ∈ U . This means that U is a convex

subset of Ω.
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4.3 Equivalence transformation

Assume that x(·;ϕ) is any positive solution of (H), where ϕ ∈ S is the initial

function. We pay our attention to the difference between any positive solution x(·;ϕ)

of (H) and a specific positive ω-period solution x∗(·;ψ) of (H). For simplicity, we

write y(k) = x(k;ϕ)− x∗(k;ψ) for k ∈ [− τ ,∞) ∩ Z. Define

g(w(·)) = f
(
w(·) + x∗(·;ψ)

)
− f

(
x∗(·;ψ)

)
.

Then we have

∆y(k) = ∆x(k;ϕ)−∆x∗(k;ψ) = − a(k)y(k) +
m∑
i=1

bi(k)g
(
y(k − τi(k))

)
(4.4)

for k ∈ Z+. It is clear that equation (4.4) has the zero solution, which corresponds

to the periodic solution x∗(·;ψ) of (H). The global attractivity of the positive ω-

periodic solution x∗(·;ψ) of (H) is equivalent to that of the zero solution of (4.4).

Hence, to prove the positive ω-periodic solution x∗(·;ψ) of (H) is globally attractive,

we have only to show that the zero solution of (4.4) is globally attractive, that is,

for any ϕ ∈ S,

lim
k→∞

y(k) = 0.

4.4 Proof of main result

As explained in the previous section, in order to complete the proof of Theorem

4.1, we only need to prove that y(k) approaches to 0 as k → ∞. We will apply the

Schauder fixed point theorem to achieve it.

Proof. For arbitrarily fixed ϕ ∈ S and a given ψ ∈ S, let

φ(s) = ϕ(s)− ψ(s) for s = − τ , 1− τ , . . . ,−1, 0.

By using the same way as in Section 4.2, we can obtain
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y(k) = φ(0)
k−1∏
r=0

(1− a(r)) +
k−1∑
s=0

(
m∑
i=1

bi(s)g
(
y(s− τi(s))

) k−1∏
r=s+1

(1− a(r))

)
for k ∈ N. Considering this evaluation, we define a mapping T on U as follows:

Tz(k)=


φ(k) for k = − τ , 1− τ , . . . ,−1, 0,

φ(0)
k−1∏
r=0

(1− a(r))+
k−1∑
s=0

(
m∑
i=1

bi(s)g
(
z(s− τi(s))

) k−1∏
r=s+1

(1− a(r))

)
for k∈N.

If there is a fixed point z∗ of the mapping T , then it is a unique solution y of (4.1)

with the initial condition y(s) = φ(s) for s = −τ , 1−τ , . . . ,−1, 0. Of course, z∗∈ U .

Hence, it follows from condition (c) of the subset U ⊂ Ω that limk→∞ z∗(k) = 0,

and therefore, y(k) approaches zero as k → ∞. This is our desired conclusion.

Therefore, in order to complete the proof, we need to find a fixed point in U .

We will show the existence of a fixed point using the Schauder fixed point theo-

rem. To this end, we have to verify the following three points:

(i) T is a mapping from U to U ;

(ii) T is continuous;

(iii) TU is relatively compact.

Proof of point (i): It is sufficient to show that Tz satisfies conditions (a)–(c) in

Section 4.2 for each fixed z ∈ U . Let M̃ = ||φ||+ 2B, where

B =
1

a

m∑
i=1

bi > 0.

It is clear that |Tz(k)| = |φ(k)| ≤ ||φ|| < M̃ for k = −τ , 1− τ , . . . ,−1, 0. Note that

∣∣g(z(·))∣∣ ≤ ∣∣f (z(·) + x∗(·;ψ)
)∣∣+ ∣∣f (x∗(·;ψ))∣∣ ≤ 2f < 2. (4.5)
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We have

|Tz(k)| ≤ |φ(0)|
k−1∏
r=0

(1− a(r)) +
k−1∑
s=0

(
m∑
i=1

bi(s)
∣∣g(z(s− τi(s))

)∣∣ k−1∏
r=s+1

(1− a(r))

)

< |φ(0)|+ 2
k−1∑
s=0

(
m∑
i=1

bi(s)
k−1∏

r=s+1

(1− a(r))

)
≤ |φ(0)|+ 2

m∑
i=1

bi

k−1∑
s=0

k−1∏
r=s+1

(1− a)

= |φ(0)|+ 2
m∑
i=1

bi

k−1∑
s=0

(1− a)k−s−1 = |φ(0)|+ 2
m∑
i=1

bi
1− (1− a)k

a

< ||φ||+ 2B = M̃

for k ∈ N. Hence, we see that Tz ∈ Ω and

|||Tz||| = sup
k∈[− τ,∞)∩Z

|Tz(k)| ≤ M̃,

and therefore, Tz satisfies condition (a).

From the definition of the mapping T and the fact that ϕ ∈ S, we see that

Tz(k) = φ(k) = ϕ(k) − ψ(k) > −ψ(k) = −x∗(k;ψ) for k = − τ , 1 − τ , . . . ,−1, 0.

We have

x∗(k;ψ) = ψ(0)
k−1∏
r=0

(1− a(r)) +
k−1∑
s=0

(
m∑
i=1

bi(s)f
(
x∗(s− τi(s);ψ)

) k−1∏
r=s+1

(1− a(r))

)

for k ∈ N. Taking into account that

g(z(·)) = f
(
z(·) + x∗(·;ψ)

)
− f

(
x∗(·;ψ)

)
≥ − f

(
x∗(·;ψ)

)
,

we obtain

Tz(k) = φ(0)
k−1∏
r=0

(1− a(r)) +
k−1∑
s=0

(
m∑
i=1

bi(s)g
(
z(s− τi(s))

) k−1∏
r=s+1

(1− a(r))

)

> −ψ(0)
k−1∏
r=0

(1− a(r))−
k−1∑
s=0

(
m∑
i=1

bi(s)f
(
x∗(s− τi(s);ψ)

) k−1∏
r=s+1

(1− a(r))

)
= − x∗(k;ψ)
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for k ∈ N. Hence, Tz satisfies condition (b).

The element z of U satisfies condition (c). Hence, for any ε > 0, let

K1(ε) = K(
ε

2Bmax {1, (n− 1)2/(4n)}
) + τ , (4.6)

where n is a fixed parameter of the production function f . Then we have

|z(k)| < ε

2Bmax {1, (n− 1)2/(4n)}
for k ∈ [K1 − τ ,∞) ∩ N,

By this inequality and the mean value theorem, we have

∣∣g(z(s− τi(s))
)∣∣ = ∣∣f (z(s− τi(s)) + x∗(s− τi(s);ψ)

)
− f

(
x∗(s− τi(s);ψ)

)∣∣
≤ max

{
1,

(n− 1)2

4n

}
|z(s− τi(s)| <

ε

2B
(4.7)

for s ∈ [K1,∞) ∩ N. We can choose a K2(ε) ∈ N with K2 > K1 so that

K2−1∏
r=K1

(1− a(r))) <
ε

2
(
|φ(0)|+ 2B

) (4.8)

because 0 < a(k) < 1 for k ∈ N. Using (4.5), (4.4) and (4.8), we obtain

|Tz(k)|

≤|φ(0)|
k−1∏
r=0

(1− a(r)) +
k−1∑
s=0

(
m∑
i=1

bi(s)
∣∣g(z(s− τi(s))

)∣∣ k−1∏
r=s+1

(1− a(r))

)

=|φ(0)|
k−1∏
r=0

(1− a(r)) +

K1−1∑
s=0

(
m∑
i=1

bi(s)
∣∣g(z(s− τi(s))

)∣∣K1−1∏
r=s+1

(1− a(r))

)
k−1∏
r=K1

(1− a(r))

+
k−1∑
s=K1

(
m∑
i=1

bi(s)
∣∣g(z(s− τi(s))

)∣∣ k−1∏
r=s+1

(1− a(r))

)

≤|φ(0)|
k−1∏
r=0

(1− a(r)) + 2
m∑
i=1

bi

K1−1∑
s=0

(1− a)K1−s−1

k−1∏
r=K1

(1− a(r))

+
m∑
i=1

bi

k−1∑
s=K1

∣∣g(z(s− τi(s))
)∣∣ (1− a)k−s−1
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<|φ(0)|
k−1∏
r=0

(1− a(r)) + 2B
k−1∏
r=K1

(1− a(r)) +B
ε

2B

<
(
|φ(0)|+ 2B

)K2−1∏
r=K1

(1− a(r)) +
ε

2
<
ε

2
+
ε

2
= ε

for k ∈ [K2,∞) ∩ N. This means that Tz satisfies condition (c).

Proof of point (ii): For any ε > 0, let

δ(ε) =
ε

Bmax {1, (n− 1)2/(4n)}
.

We arbitrarily choose two elements ẑ and z̃ of U that satisfy |||ẑ − z̃||| < δ. It is

clear that T ẑ(k) = φ(k) = T z̃(k) for k = − τ , 1− τ , . . . ,−1, 0. Hence, we see that

|||T ẑ − T z̃||| = sup
k∈N

|T ẑ(k)− T z̃(k)|.

Using the mean value theorem, we obtain

|T ẑ(k)− T z̃(k)|

=

∣∣∣∣∣
k−1∑
s=0

(
m∑
i=1

bi(s)
(
g
(
ẑ(s− τi(s))

)
− g
(
z̃(s− τi(s))

)) k−1∏
r=s+1

(1− a(r))

)∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
s=0

(
m∑
i=1

bi(s)
(
f
(
ẑ(s− τi(s)) + x∗(s− τi(s);ψ)

)
− f
(
z̃(s− τi(s)) + x∗(s− τi(s);ψ)

)) k−1∏
r=s+1

(1− a(r))

)∣∣∣∣∣
≤

k−1∑
s=0

(
m∑
i=1

bi(s)
∣∣∣f(ẑ(s− τi(s)) + x∗(s− τi(s);ψ)

)
−f
(
z̃(s− τi(s)) + x∗(s− τi(s);ψ)

)∣∣∣ k−1∏
r=s+1

(1− a(r))

)

≤max

{
1,

(n− 1)2

4n

} k−1∑
s=0

(
m∑
i=1

bi(s)
∣∣ẑ(s− τi(s))− z̃(s− τi(s))

∣∣ (1− a)k−s−1

)

for k ∈ N. It holds that

∣∣ẑ(s− τi(s))− z̃(s− τi(s))
∣∣ < δ for s ∈ Z+
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because |||ẑ − z̃||| < δ. Hence, we have

|T ẑ(k)− T z̃(k)| < max

{
1,

(n− 1)2

4n

}
δ

m∑
i=1

bi

k−1∑
s=0

(1− a)k−s−1

< Bmax

{
1,

(n− 1)2

4n

}
δ < ε

for k ∈ N. This means that T is continuous.

Proof of point (iii): We only need to show that any sequence in TU has a

convergent subsequence in Ω. Let {zj}j∈N be any sequence in U . By using the

diagonal method, we will find a convergent subsequence of {Tzj} in Ω.

Let i ∈ {1, 2, . . . ,m} be fixed arbitrarily. It follows from zj ∈ U that |zj(0 −

τi(0))| ≤ M for all j ∈ N, that is, {zj(0 − τi(0))} is a bounded sequence. By the

Bolzano-Weierstrass theorem, it has at least one convergent subsequence. Let {zj,0}

be a subsequence of {zj} such that {zj,0(0 − τi(0))} converges. Of course, since

zj,0 ∈ U , it holds that |zj,0(1 − τi(1))| ≤ M for all j ∈ N. Hence, {zj,0(1 − τi(1))}

is also bounded and it has a convergent subsequence {zj,1(1 − τi(1))}. Note that

{zj,1} is a subsequence of {zj,0}. Repeating the same process, we can find a set of

subsequences {zj,ℓ} with ℓ ∈ Z+ so that

{zj} ⊃ {zj,0} ⊃ {zj,1} ⊃ {zj,2} ⊃ · · · · · ·

and {zj,ℓ(ℓ− τi(ℓ))} converges.

For any ℓ ∈ N, we take the j-th element zj,j out from the subsequence {zj,ℓ}

and denote {wj}j∈N the new sequence consisting of them. From how to make the

sequence {wj}, we see that for each k ∈ Z+, {wj(k − τi(k)))} convergence a limit as

j → ∞. Hence, for any ε > 0 and any k ∈ Z+, there exists an Ji(ε, k) ∈ N with

i = 1, 2, . . . ,m such that if p and q are integers greater than Ji, then

|wp(k − τi(k))− wq(k − τi(k))| <
ε

Bmax {1, (n− 1)2/(4n)}
. (4.9)

We show that Ji(ε, k) is bounded with respect to k. Note that wp ∈ U and wq ∈ U .
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From condition (c) of U , we see that there exists a K(ε) ∈ N such that

|wp(k − τi(k))| <
ε

2Bmax {1, (n− 1)2/(4n)}

and

|wq(k − τi(k))| <
ε

2Bmax {1, (n− 1)2/(4n)}

for k ∈ [K1,∞) ∩ N., where K1 is a constant defined by (4.6) that depends only on

ε. Note that K1 dose not depend on p or q. We have

|wp(k − τi(k))− wq(k − τi(k))| ≤ |wp(k − τi(k))|+ |wq(k − τi(k))|

<
ε

Bmax {1, (n− 1)2/(4n)}

for k ∈ [K1,∞) ∩ N. Hence, when k is greater than or equal to K1(ε), the equality

(4.9) holds provided that p ≥ Ji(ε,K1) and q ≥ Ji(ε,K1). This means that Ji(ε, k)

can be regarded as Ji(ε,K1) for all k ∈ [K1,∞) ∩ N. Thus, we concluded that

max
k∈Z+

Ji(ε, k) = max Ji(ε, 0), Ji(ε, 1 . . . , Ji(ε,K1);

namely,Ji(ε, k) is bounded with respect to k. In other words, maxk∈Z+Ji(ε, k) is de-

termined only by i ∈ 1, 2, . . . ,m and ε > 0. Hence, we an represent maxk∈Z+Ji(ε, k)

as Ji(ε).

Let J∗(ε) = maxJ1(ε),J2(ε),...,Jm(ε). Then, for i ∈ {1, 2, . . . ,m}, p ≥ J∗ and q ≥ J∗,

sup
k∈Z+

|wp(k − τi(k))− wq(k − τi(k))| <
ε

Bmax {1, (n− 1)2/(4n)}
. (4.10)

It is clear that Twp(k) = φ(k) = Twq(k) for k = − τ , 1 − τ , . . . ,−1, 0. It follows

from (4.8) that

|Twp(k)− Twq(k)|

=

∣∣∣∣∣
k−1∑
s=0

(
m∑
i=1

bi(s)
(
g
(
wp(s− τi(s))

)
− g
(
wq(s− τi(s))

)) k−1∏
r=s+1

(1− a(r))

)∣∣∣∣∣
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≤
k−1∑
s=0

(
m∑
i=1

bi(s)
∣∣g(wp(s− τi(s))

)
− g
(
wq(s− τi(s))

)∣∣ k−1∏
r=s+1

(1− a(r))

)

≤max

{
1,

(n− 1)2

4n

} k−1∑
s=0

(
m∑
i=1

bi(s)|wp(s− τi(s))− wq(s− τi(s))|(1− a)k−s−1

)

≤max

{
1,

(n− 1)2

4n

}
sup
k∈Z+

|wp(k − τi(k))− wq(k − τi(k))|
m∑
i=1

bi

k−1∑
s=0

(1− a)k−s−1

<max

{
1,

(n− 1)2

4n

}
ε

Bmax {1, (n− 1)2/(4n)}
B = ε

for k ∈ N. Hence, we can conclude that

|||Twp − Twq||| = sup
k∈[− τ ,∞)∩Z

|Twp(k)− Tzq(k)| < ε for p ≥ J∗ and q ≥ J∗.

From this inequality, we see that {Twj} is a Cauchy sequence. As mentioned in

Section 4.3, since Ω is a Banach space, {Twj} is a convergent subsequence of {Tzj}

in Ω. Thus, TU is relatively compact.

The points (i)-(iii) were confirmed as shown above. Thanks to the Schauder

fixed point theorem, equation (H) has only one positive ω-periodic solution and the

positive ω-periodic solution is globally attractive. The proof is complete.

73



References

[1] R.P. Agarwal, M. Bohner, S.R. Grace, D. O’Regan, Discrete Oscillation Theory,

New York, USA, 2005.

[2] R.P. Agarwal, S. Arshad, D. O ’Regan, V. Lupulescu, A Schauder fixed point

theorem in semilinear spaces and applications, Fixed Point Theory Appl. 306

(2013), 13pp.

[3] L. Berezansky, E. Braverman, L. Idels, Mackey-Glass model of hematopoiesis

with non-monotone feedback: stability, oscillation and control, Appl. Math.

Comput. 219 (2013) 6268–6283. MR3018470

[4] J.G. Betts, P. Desaix, E. Johnson, et al ., Anatomy & Physiology, OpenStax,

Rice University, Houston, 2017.

[5] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equa-

tions, Dover Publications, Inc., Mineola, New York, 2006.

[6] T.A. Burton, Bo Zhang, A Schauder-type fixed point theorem, J. Math. Anal.

Appl. 417 (2014), 552–558.

[7] M.C. Dinauer, P.E. Newburger, N. Borregaard, Phagocyte system and disorders

of granulopoiesis and granulocyte function, in Nathan and Oski’s Hematology

and Oncology of Infancy and Childhood (eds. S.H. Orkin, D.E. Fisher, D. Gins-

burg, A. Thomas, S.E. Lux, D.G. Nathan), 8th Edition, Chap. 22, pp. 773–

847.e29, Elsevier, Philadelphia, 2015.

74



[8] P. Fortin, M.C. Mackey, Periodic chronic myelogenous leukemia: Spectral anal-

ysis of blood cell counts and aetiological implications, British Journal of Haema-

tology, 104 (1999) 336–345.

[9] R.E. Gaines, J.L. Mawhin, Coincidence degree, and nonlinear differential equa-

tions, Lecture Notes in Mathematics 568, Springer-Verlag, Berlin-New York,

1977. MR0637067 (58 #30551)
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