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Preface

As an important component of blood, blood cells are divided into three types:
erythrocytes (red blood cells), leukocytes (white blood cells) and thrombocytes
(platelets). They play a vital role in the human body. Erythrocytes are the most
numerous of the blood cells. The primary function of erythrocytes is the transport
of oxygen and carbon dioxide. Although leukocytes are generally larger than ery-
throcytes, they are fewest in number. Leukocytes are immune system cells who can
defend the body against both infectious disease and foreign invaders. Thrombocytes
are the smallest of the three types of blood cells. The principal function of platelets
is that aggregate at the wound and formate blood cot, when the blood vessel wall
is damaged, to prevent bleeding. It is well known that abnormality in the number
of these three kinds of blood cells causes disease and leads to death.

Mature blood cells are produced in the bone marrow. They develop from hematop
oietic stem cells that have the capacity to self-replicate and differentiate into other
blood cells. These hematopoietic stem cells differentiate into myeloid progenitor
cells and lymphoid progenitor cells as an intermediate stage in order to become
various immature blood cells who will fully mature in the bone marrow. When
the immature blood cells grow into mature blood cells and become functional, they
will leave the bone marrow and enter into the blood circulation. In the whole pro-
duction process of blood cells, hematopoietic stem cells, immature blood cells at
various stages that they are proliferating and differentiating and mature blood cells
that have just been completed are coexisted. All blood cells have inherent life spans.
The life span of a blood cell will be terminated when it is normally phagocytized by

macrophages of splenic and hepatic sinusoids, etc. as an aged blood cell. For the



basic knowledge of the specific production process of blood cells, for example, see
the book [4, Chap. 18].
The production process of blood cells is well-known as hematopoiesis process. In

1977, Mackey and Glass [18] proposed the hematopoiesis model

ba(t —T)

l‘/(t) = — (I$(t) + 1_{_.%”—(75_7_)

with n > 0, which describes the hematopoiesis process. Here, the coefficients a, b

and the delay 7 are positive constants. Let

U
= f > 0.
f(u) T oru>0

We can rewrite the above equation as

' (t) = —ax(t) +bf (z(t — 71)).

The function f is also called by the production function. It is well known that the
periodic environmental changes due to seasonal variations have important influence
on the dynamics of blood cell number. This impact can not be considered by au-
tonomous differential equation with constant coefficients and constant delay. On
the other words, the coefficients a, b and the delay 7 should be assumed as periodic
functions rather than constants. The second term with a time lag 7 on the right-
hand of the above model represents the production term in hematopoiesis process.
In the clinical studies, it has been confirmed that the time for immature blood cells
to become mature blood cells (time lag) is different depending on the type of blood
cells. It can be said that a hematopoiesis model that only consider one production
term is not accurate. Blood cells are in fact discrete entities, they work effectively
one by one and are represented by the number contained in one microliter of blood.
They are never continua. In that sense, a discrete model is more suitable than a
continuous model to study the dynamics of the number of blood cells.

Taking the above reasons into account, this thesis concerns a discrete hematopoie-



sis model with periodic coefficients and multiple production terms dominated by

different delays. We consider
Ax(k) = —a(k)z(k) + Z bi(k) f (x(k — 7:(k))) (H)

with n > 1 and m € N, where Az(k) = x(k+ 1) — x(k), and a : Z — (0,1),
b;: Z — (0,00) and 7,: Z — Z7 “NU {0}(1 < i < m) are w-periodic discrete
functions with w € N. The function f is defined by f(u) = u/(1 + u") for u > 0.
Specifically, we focus on the positive periodic solutions of (H). The purpose of
this thesis is to investigate the existence and global asymptotic stability of positive
periodic solution. This thesis is divided into four chapters.

In Chapter 1, theoretical knowledge needed for mathematical analysis is given.
We first introduce a nonlinear delay difference equation with periodic coefficients.
Some basic stability definitions of the zero solution and a positive periodic solution of
this equation are presented. The continuation theorem of coincidence degree theory
often used to explore the existence of positive periodic solutions is given afterwards.
Finally, we present the well-known Schauder fixed point theorem.

In Chapter 2, we study existence of positive w-periodic solutions of hematopoiesis
model (H). A sufficient condition is established for the existence of positive w-
periodic solutions. This sufficient condition is constructed by the relationship be-
tween coefficient a(k) and " b;(k) for K = 1,2,...,w. The existence region of
positive w-periodic solutions is also clarified. To achieve the above goals, the para-

metric delay difference equation
Ax(k) = = Aa(k)z(k) + A Z bi(k) f (z(k — 7i(k))) (L)

for each parameter A € (0, 1) is considered. We estimate the upper bound and lower
bound of any positive w-periodic solution of (L) under a proper condition. In fact,
the upper and lower bounds of positive w-periodic solution of (L) ensure that we

can make clear the region where positive w-periodic solutions of (H) located in.



In Chapter 3, a new theorem of the global asymptotic stability of a unique pos-
itive w-periodic solution of (H) is presented by the mathematical analysis method.
Obviously, this theorem shows that equation (H) has the exactly one positive w-
periodic solution. It is undoubted that we get global asymptotic stability of the
unique positive w-periodic solution based on the existence result given in Chapter
2. In order to complete the investigation of this section, the information about the
fluctuation range of general positive solutions of (H) is needed. By using this in-
formation, we estimate the difference between any positive solution and a certain
positive w-periodic solution. Thereby, the result that this certain positive w-periodic
solution is globally asymptotically stable can be obtained. That is to say, the unique
positive w-periodic solution is globally asymptotically stable.

In Chapter 4, we obtain a result of global attractivity of a unique positive w-
periodic solution of (H) by Schauder fixed point theorem, which is different from
the method used to get the global asymptotic stability in Chapter 3. It is worth
mentioning that the global attractivity of the unique positive w-periodic solution is
obtained only under the condition for the existence of positive w-periodic solutions.
This means that as long as positive w-periodic solutions exist (maybe only one
exists), then all positive periodic solutions are globally attractive. On the other
words, equation (H) has the unique positive w-periodic solution which is globally

attractive.



Chapter 1

Preliminaries

1.1 First order nonlinear difference equation with
time delays

Consider the general first order nonlinear delay difference equation
Aw(k) = —a(k)x(k) + Y bi(k)F(x(k — 7:(k))) (1.1)

for k € Z and m € N. Here, A is the forward difference operator defined by
Ax(k) = x(k+1) —z(k) for k € Z. In equation (1.1), a: Z — (0,1), b;: Z — (0, 00)
and7,: Z — 7+ < NU{0}(1 < ¢ < m) are w-periodic discrete functions with w € N.
The function F: R — R is continuous.

Since 7; (1 < i < m) are w-periodic, we can get the maximum value 7 of them;

namely,
T = max { max TZ(]{J)} ezt
1<i<m | 1<k<w
For any given discrete initial function ¢: [—7,0] N Z — R, we assume that there

exists a unique solution of (1.1). We denote it by z(-;¢). A solution z(-;¢) of (1.1)
is said to be the zero solution, if z(k;¢) = 0 for all k € Z. We assume F(0) = 0,
then it is obvious that equation (1.1) has the zero solution. About the zero solution

of (1.1), we introduce the definition of global attractivity.



Definition 1.1. The zero solution of (1.1) is said to be globally attractive, if for
any initial function ¢, the solution x(-; ¢) of (1.1) satisfies

lim z(k; ¢) = 0.

k—o0

Next, we consider the positive w-periodic solution of (1.1). To distinguish a
positive w-periodic solution of (1.1) from other solutions, we denote it by z.(-; ).
Of course, the positive w-periodic solution x,(-; 1) satisfies x,(k + w;¥) = x.(k; )
for all k£ € Z. Assume x(-,¢) is an arbitrary solution of (1.1). With regards to a

positive w-periodic solution, we introduce the following important definitions.

Definition 1.2. A positive w-periodic solution x.(-;1)) is said to be stable, if for

any € > 0, there exists a 6(g) > 0 such that ||¢ — || < & implies
2(k; @) — w.(ks )| <& for kEN.

The norm || - || above denotes the maximum norm ||¢|| = max_»<x<o |@(k)]|.
Definition 1.3. A positive w-periodic solution x.(-;1) is said to be globally attrac-

tive, if any solution x(-; @) of (1.1) satisfies

lim ‘x(k:,gb) - :L‘*(k:,w)’ = 0.

k—o0

Definition 1.4. A positive w-periodic solution x.(-;1) is said to be globally asymp-
totically stable, if it is stable and globally attractive.

1.2 Continuation theorem of coincidence degree
theory

In the exploration of the existence of positive periodic solutions for difference
equation in the form (1.1), there are many methods that can be utilized. The two

common are Krasnoselskii’s fixed point theorem and the fixed point theorem in



cone for decreasing operator. However, in the case that I included in equation (1.1)
is unimodal, the above two methods are not applicable. The unimodal function
mentioned above means a function which has different monotonicity at left side
and right side of the point where the only one peak of the function is obtained. A
different approach which has less special restrictions and more wider range of use
is urgently needed to solve such equation. The continuation theorem of coincidence

degree theory [9] is one of efficient methods.

Definition 1.5. Let X be a Banach space and L : DomL C X — X a linear
mapping. The mapping L is said to be a Fredholm mapping of index zero if

e dim Ker L = codimIm L < +o0,
e Im L is closed in X.

Throughout this thesis, we assume that X always represents a Banach space. It
is well known that if L is a Fredholm mapping of index zero and P, (): X — X are
continuous projectors such that

Im P = Ker L;
Ker@Q =Im L =Im(/ — Q),
where [ is the identity mapping from X to X, then the restriction Lp: Dom L N

Ker P — Im L is invertible. We denote the inverse of the restriction by Kp: Im L —

Dom L N Ker P.

Definition 1.6. Let N: X — X be a continuous mapping and 2 an open bounded
subset of X. The mapping N is said to be L-compact on S if

e QN(Q) is bounded,
o Kp(I —Q)N:Q — X is compact.

Lemma 1.1. Let L be a Fredholm mapping of index zero and let N be L-compact
on Q. Suppose that



e for each parameter X € (0,1), every solution x of Lx = ANx satisfies x ¢ 082;

e QNz # 0 for each x € 02N Ker L and

deg{QN, QNKerl, 0} # 0.

Then the equation L = Nx has at least one solution staying in X N €.

Remark 1.1. A significant advantage of continuation theorem of coincidence degree

theory is that the existence range of positive periodic solutions can be evaluated.

1.3 Schauder fixed point theorem

In this section, we introduce the well known Schauder fixed point theorem [2].

Definition 1.7. A subset U of Banach space ) is said to be convez, if for all
A€ [0,1], x € U and y € U, the segment Az + (1 — N)y also belongs to U.

For more details of a convex set, we refer to [22].

Definition 1.8. A subset U of Banach space ) is said to be relatively compact, if

any sequence in U has a convergent subsequence in €.

Theorem A. (Schauder fized-point theorem). Let U be a closed convex subset of
Banach space Q). Suppose T is a mapping such that T(U) is a subset of U. If T is

continuous and T(U) is relatively compact, then T has a fized point in U.



Chapter 2

Existence of positive w-periodic

solutions

2.1 Previous research and main result

To express the hematopoiesis process, the first order nonlinear delay differential

equation
bx(t —7)

:r;’(t) = — aoc(t) + 1—0—13”—(75—7')

(2.1)

with n > 0 was proposed by Mackey and Glass [18] as a hematopoiesis model. Here,
the coefficients a, b and the delay 7 are positive constants. To be exact, the variable
x is the density of mature blood cells in the blood circulation; the coefficient a is the
rate of blood cells lost by the circulation; the second term of the right-hand is the
influx of blood cells into the blood circulation from hematopoietic stem cells; the
coefficient b is positive; the number 7 is the time delay that immature cells made in

the bone marrow are released into the circulating blood stream as mature cells. Let

flu) = — for u > 0.
Equation (2.1) can be rewritten as

2(t)=—ax(t)+bf(x(t —71)).



This model is composed with an extinction term and a production term. The func-
tion f in the production term is called as production function of model (2.1). It is a
unimodal function who increases monotonically at the beginning and then decreases
monotonically. Hence, it has only one peak. The extensive research of (2.1) can be
referred to [3,10-12, 15,21, 24, 25, 30].

Although the fact that blood cells are discrete entities, they are usually treated
as a continuum because of their enormous number. Hence, a hematopoiesis model
is usually governed by a differential equation in many studies. However, blood cells
play a role one by one, and they are represented by the number contained in one
microliter of blood. They are never continua. In that sense, a discrete hematopoiesis
model is more suitable than a continuous one to investigate the dynamics of the blood
cells number. Moreover, from the perspective of continuously obtaining historical
data of the blood cell count in actual measurement work, the fact that discrete
hematopoiesis model are superior to continuous hematopoiesis model can also be
confirmed. Why can we say something like that? In fact, to solve differential
equation (2.1) using the method of steps (or step by step method), we need an
initial function ¢ defined on [—7,0] that is continuous and satisfies the property
that

#(s) >0 for —7<s<0 and ¢(0)>0.

For a given initial function ¢, let

g1(t) =bf(o(t — 7)) for 0 <t <.

Then, the solution x of (2.1) with the initial condition that x(t) = ¢(t) for —7 <

t < 0 satisfies the nonhomogeneous linear differential equation

/ .

¥ =—azr+ ¢ (t)

10



for 0 <t < 7. It is easy to find this solution. Let ¢/ be this solution and let
g2(t) =bf((t—71)) for 7 <t <27

Then, the solution z of (2.1) with the initial condition that z(t) = ¢(t) for —7 <

t < 0 satisfies the nonhomogeneous linear differential equation

, j—

¥ =—ax+ go(t)

for 7 <t < 27. By repeating this process, it is possible to obtain the solution x of

(2.1) on the whole interval [0, c0). Equation (2.1) is a hematopoietic model, and the
initial function ¢ corresponds to past data. As shown from the above consideration,
it is important to know a continuous initial function ¢. However, it is difficult to
obtain such an initial function from the realistic side because it is impossible to
continuously measure past data of the density of mature blood cells. For example,
it is reported that red blood cells turn into mature cells from immature cells after
7 days of maturity (see [29, Sect.1]). Let us assume that 7 is 7 (days). In order
to obtain continuous historical data, healthcare workers will have to measure the
number of red blood cells at all the time of one week. Clearly, they cannot engage
in such a vast measurement task. It is necessary to simplify the measurement work
such as measuring the number of red blood cells at a fixed time every day (this work
will be possible enough because the number of measurements is 8 times). In other

words, instead of continuous initial functions, only the set

{6(=7),6(=6),6(=5), 6(=4), 6(=3), 6(=2), 6(~1),6(0) }

of eight initial data will be used to predict the density of mature blood cells. If we
think like that, it can be said that the equation

o'(t) = —ax(t) + bf (z([t — 7)) (2.2)
is more appropriate than equation (2.1) as a hematopoietic model. Here, 7 is a

11



natural number and the symbol [(-)] means the greatest integer not exceeding (-).

In equation (2.2), the set of the initial data is

{6(=7),001=7),...,6(-1),600)}. (2.3)
Equation (2.2) becomes the first-order linear differential equation with constant
coefficients,
' =—ar+0bf(¢p(—7)) for 0<t <1
because [t — 7] = —7if 0 <t < 1 and z(—7) = ¢(—7). Hence, we have

(1) = B(0)e ™+ F(6(-))(1 )

for0 <t < 1. Let c=1—¢"*and d = bc/a. Then

2(1) = lim x(t) = (1 - ¢)¢(0) + df(6(—7)).

t—1-0

Similarly, equation (2.2) becomes
¥=—ax+bf(p(1—7)) for 1<t <2

and we get

b(t) = 2L 4 L f(o(1 — )1 — D)

for 1 <t < 2. Hence, we have
2(2) € lim 2(t) = (1= )a(l) + df(o(1 — 7).

t—2—0

Repeat this calculation, we can obtain the data sets
{2(0), 2(1),....,2(r = 1),2(n)},

{a:(T),x(T +1),..., 227 — 1),x(27)},

12



and so on. Note that ¢(0) = z(0). The following relationship holds between these
data:
Ax(k) o x(k+1) —x(k) = —cx(k) + df (x(k — 7))

with k € Z* € NU {0}. For convenience, this relationship can be rewritten as the

difference equation

Ax(k) = —ax(k) +bf(x(k — 7)) (2.4)

by letting c as a and d as b again. What should be noted here is that the coefficients
a and b in equation (2.4) satisfy 0 < a < 1 and b > 0 because of the definitions ¢
and d, respectively.

As mentioned above, using the set (2.3) of the initial data, we can uniquely
determine the solution of equation (2.4). All data values are positive because the
data imply the number of mature blood cells. Also, we can see that x(k) is also

positive for all k& € N because the solution z of (2.4) satisfies the equality
r(k+1)=(1-a)z(k)+bf(z(k—71)) for keZ™

The studies of (2.4) can be refer to [31,32].

It is unnatural to think that the environment remains constant. The seasons
which periodically vary greatly affect the weather, temperature, food supply and
sexual activity of organisms. It has been reported that the population density of
organisms and the constituents inherent in organisms also change due to changes in
various environments surrounding living organisms and behaviors of organisms (see
[20]). Of course, blood cells which are important components inherent in organisms
periodically influenced by periodic environmental variations due to seasonal changes
(see [8,17,26]). Unfortunately, models (2.1) and (2.2) have ignored this important
fact. The coefficients with actual biological significance should not be assumed to be
constants. Based on this discrete perspective, many studies of the modified discrete

hematopoiesis model
Ax(k) = —a(k) x(k) + b(k) f(x(k — 7(k))), (2.5)

13



have appeared, for example, refer to [13,19,33] and the references cited therein. In
equation (2.1), a: Z — (0,1), b: Z — (0,00) and 7: Z — Z* ' NU {0} are

w-periodic discrete functions with w € N; namely,

a(k) =a(k+w), bk)=bk+w) and 7(k)=7(k+w)

for all k € Z. In this model, periodic environmental changes are taken into account
by making coefficients and time lag represented by periodic functions with the same
period.

Jiang et al. [13] considered equation (2.1) and obtained a sufficient condition for

the existence of positive w-periodic solutions.

Theorem B. Assume that a, b and T are w-periodic. If

a(k) < b(k) for k€ [0,w],

then equation (2.5) has at least one positive w-periodic solution.

Blood cells are divided into three types: erythrocyte, leukocyte and thrombocyte.
Among them, leukocytes are mainly composed of neutrophils, basophils, eosinophils,
lymphocytes, and monocytes. It has confirmed that neutrophils mature in bone
marrow in about 2 weeks and are released into the bloodstream after 2 days (see
[23] ) in clinical studies. Also, basophils differentiate and mature in the bone marrow
during 7 days (see [7,16]). These clinical results suggest that at least two types of
leukocytes take different time to enter the bloodstream. Therefore, it is not accurate
that assume all types of blood cells mature through the same maturation period. On
the other words, a hematopoiesis model should be expressed by multiple production
functions.

In this chapter, we take the above factor into account and consider a discrete

hematopoiesis model with periodic coefficients and multiple production terms dom-

14



inated by different delays,

Ax(k) = —a(k)z(k) + Z bi(k) f (x(k — 7i(K))). (H)

Here, m is a natural number; a: Z — (0,1), b;: Z — (0,00) and 7,: Z — Z*(1 <

i < m) are w-periodic discrete functions; namely,
a(k) =alk+w), bi(k)="b(k+w) and 7;(k)=m7(k+w) (2.6)

for all k € Z and i = 1,2,--- ,m. The function f is defined by f(u) = u/(1 + u™)

foru>0and n > 1.

Remark 2.1. Note that in the Mackey and Glass model (2.1), the production func-
tion f(u) = u/(1 + u™) is defined for n > 0. However, it is monotonically increas-
ing.when 0 < n < 1. This means that as blood cells increase, the rate of increase
of blood cells also increases. Since it fails to apply the brakes to increase of blood
cells, it seems not suitable as a mathematical model describing the hematopoiesis

process. Hence, in our main result, we only dealt with the case that n > 1.

Because of the periodicity of 7; (1 < ¢ < m), the maximum of them can be

determined by
T = max { max Tz(k>} ez,
<i<m

1 1<k<w

Let S denote the space of positive discrete functions on [—7,0] N Z endowed with

the maximum norm

¢l = _T?Il§8§>§0|¢(5)| for ¢ € S.

For any ¢ € S, since 0 < a(k) < 1 for k € Z and f(u) > 0 for u > 0, equation (H)

has a unique positive solution z(-; ¢) satisfying the initial condition
z(k) =¢(k) >0 for ke[-7,0]NZ. (2.7)

Since equation (H) is a biological model, it is natural to assume that the initial

function ¢ satisfies ¢(k) > 0 for k € [—7,0] N Z.

15



The purpose of this chapter is to give a sufficient condition for the existence
of positive w-periodic solutions of (H). To state our results simply, we denote the

maximum value of b;(1), b;(2), ..., bj(w) by

b; = max b;(k) for 1 <i<m.
1<k<w

The main result is as follows:

Theorem 2.1. Suppose that (2.6) holds. If there exists a -y > 1 such that

m

va(k) <Y bi(k) for k=12, w, (2.8)

i=1

then equation (H) with n > 1 has at least one positive w-periodic solution located

in the region [A, B, where

| vy b } Ly
A <ming /v — 1, —— and B = — b;,
{ a"+ (37, bi) 453

in which a = miny <<, a(k).

Note that the region [A, B] is not empty. In fact, since n > 1, we see that
f(u) =u/(1+u™) <1 for u> 0. Hence, it follows that A < vf(B) < 7. On the
other hand, from (2.8) it turns out that

Ialv—‘

Te w2 am
for some k € [1,2,...,w].

Remark 2.2. In Theorem 2.1, we assume that the coefficients a, b; and the time
delays 7; (i = 1,2,...,m) have the same period w. However, this assumption is
for the sake of convenience and is not essential. In the case that these periods
are different, Theorem 2.1 holds for their least common multiple w € N. If any
coefficient or time delay is a constant (that is, if there is no period), then we may

regard its period as 1.

16



Remark 2.3. Under the assumptions of Theorem 2.1, even if there are two or more

positive w-periodic solutions, they exist in the same range [A, B].

2.2 Parametric delay difference equation

Consider the parametric delay difference equation

Aa(k) = = da(Ra(k) + A Y fflﬁ ((’Z - 77'((’;2))) (2.9)

for each parameter A € (0,1). We give the following result:

Proposition 2.1. Suppose that (2.8) holds. Then every positive w-periodic solution
z of (2.9) with n > 1 satisfies that

A<zk)<B for k=1,2,... w,

where A and B are constants given in Theorem 2.1.
Proof. Let x be any positive w-periodic solution of (2.9) with the initial condition

(2.7). For convenience, let

T = max x(k) and z = min z(k).
1<k<w 1<k<w

Since b; (1 <i < m) and z are positive w-periodic, we see that 0 < b;(k) < b; for all

k€ Z and x < x(k) <7 for all k£ € Z*. Equation (2.9) can be rewritten to

vk +1) = (1= Ma(k)z(k) + A3 f(fl"ff(’; — ;((?))) (2.10)

Hence, it follows from the periodicities of a, b; and 7; (1 < i < m) that

T = max{z(k+1)}

o bi(k)z(k — 7:(K))
< @gﬁ(l — Aa(k))x(k)} + A e {; 1+ an(k — 7:(k)) }

17



< max {(1 — Aa(k))} max {z(k)} + A max {Z fikli({/iiii?f)}

1<k<w 1<k<w 1<k<w

< (1 —=Xa)T + A max {i buk)atk — 7i(k)) } ;

1sh<w | & 1+ an(k — mi(k))

where a is a constant given in Theorem 1. Hence, we have

1=1

1 - bi(k)x(k — 7i(k))
rs é <ka<w{z 1+xn(/g_7i(k))} . (2.11)

Since 0 < A < 1land 0 < a(k) < 1 for all k € Z, we see that 1 — Xa(k) > 0 for k € Z.
Multiply both sides of (2.10) by [T*_, 1/(1 — Aa(r)) to obtain

L i ol T
(2.12)

Let k; be a natural number such that
T<k <T+w-1 and z(k)==z.

Summing both sides of (2.12) over k ranging from k; to k; + w — 1 and using
z(k1 +w) = x(k1) = z, we get

k1—1 1 k1+w—1 1 k1+w—1 m S—Ti(s)) s 1
£ 1—)\a(r)( H 1— Xa(r) _1>_)\ Z (Zl—l—x”(s—T(s))Tl;[Ol—)\a(r))'

r=kq s=k1

Since a is a positive w-periodic function, we see that

T (- 2a6) =TT~ ralr)) 2.13)

Hence, we have

T =

a2

r=k1 s=k1

1+a27(s —7(s)) L 1 — Aa(r)

ATTES (1 — Aa(r) (i bi<s>x<s—n<s>>ﬁ 1 )

i=1 r=0
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Lo H;};Ol(l B )\Cl(’f‘)) s=k =1 + xn(s - TZ(S)) =0 1— )\a(’l“)
_ A kitw—1 / m bi(s x(s Tz(S)) k1 +w—1 o

(2.14)

Note that we have not used the condition that n > 1 so far. Using (2.11) and
(2.14), we will estimate the upper bound T and the lower bound z. Since n > 1, we
see that

u<u'<1l+u" for u>0.

Hence, it follows from (2.11) that

T < — max bi(
a 1<k<w {Z }

Recall that the function f, defined by f,(u) = u/(1 + u™) for u > 0 is a unimodal

IQI'—

i=1

function. Since z < x(k) <7 for all k € Z, it turns out that

z(s — 7i(s))
1+ 27(s —7(s))

> min{f,(z), f.(T)} for s>T7.

Note that k; > 7. Then, by using (2.8), (2.13) and (2.14), we obtain

R S (B )
‘ _\ Fitw-1 k1tw—1
- Amin {f, f)’ In(@)} > (ryats) JT - MO“)))

s=k1 r=s+1

Aa(s) J] (1= a(r)

_ ’ymin {fn E), fn(f)} kidw—l k1tw—1
1 1211 = da(r)) 8:2];1 (1 —(1— Aa(s))) 7:111 (1= Xa(r))

(
(
(
(
yin {fule), @SN (e TT
0 |
(
(
(
(

IT @=2atr) = ] (1= ra(r))

s=k1 r=s+1 r=s

@), fn(f)} k14+w—1 [k1+w—1 k14+w—1
A 2
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: — k1+w—1 k1+w—1
_ ;’flﬁifqéf)_fjf:)}) ( I1 =) — [] - Aa(r))) .

r=k1+w r=k1

Since Hf:,:l‘:i(l — Aa(r)) can be regarded as 1, we can conclude that

z >vymin{f.(z), fu(2)}. (2.15)

Here, we divide the argument into two cases to be considered: (i) f,(z) < f.(T);

(i) fu(z) > fu(T).
Case (i): It follows from (2.15) that z > 7 f,,(z); namely,

Case (ii): The function f, has the only peak value at 1//n — 1, and f, is monotone
increasing on [0, 1/ \/H) and monotone decreasing on (1 /3 —1, oo). Hence,
we see that T > 1/{/n—1. In fact, if T < 1/{/n— 1, then f,(2) < f.(T) <
fn(1/3/n —1). This is a contradiction. Since T > 1/{/n — 1, it follows from (2.15)

that _
n— m
7 a ! Zi:l bz

x> 7 fu(®) > 7 fu(B) = e (ZWi Z_))n

Thus, in both cases, we can estimate that

wnilzﬁlg" } > A
ar + (221 bi) B

x > min {" v —1,
Thus, every positive w-periodic solution x of (2.9) satisfies
A<z <uz(k)<T<B

for all k£ € Z*. The proof is now complete. n

20



2.3 Proof of main result

We will apply Proposition 2.1 and the continuation theorem introduced in Chap-
ter 1 to prove Theorem 2.1.

Proof. To this end, we define a Banach space X by
X ={zeC(Z" R): x(k+w)=uz(k)}.

It is clear that X is endowed with the maximum norm ||z|| = Jax |z(k)|. Also, we

define two mappings L and N by

Ly =x(k+1) —x(k)
and

- bi(k)a(k — 7i(k))

Nz = —a(k)x(k) + 2_; 14 an(k — (k)

If x € X, then
Le(k+w)=z(k+w+1)—zk+w)=a(k+1) —x(k) = La(k)
for all k£ € Z*. This means that Lz € X. Let x1, 7o € X and ¢, co € R. Then

L(cixy + coma) = (121 + coxe)(k + 1) — (c121 + cox2) (k)
= C1 (ZL‘l(k‘ + 1) — ZL‘l(k')) + 02(1'2(]{3 + 1) — fL’Q(k’))
= Clel(k) + CQL(L’Q(/C).

Hence, L is a linear mapping from X to X. Since a, b; and 7; (1 < i < m) are

positive w-periodic, if x € X, then

Nz(k+w)=—alk+w)z

bi(k +w)z(k +w—1;,(k +w))
(k
e +Z T+ (k+w—r(k+w)
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for all k € Z*. Hence, N is a continuous mapping from X to X.

From the definition of L it turns out that

KerL = {z € X:z(k)=ceR}

and
Im [ = {x €X:> (k) :0}.
k=1

In fact, if Lz (k) =0 for all k € Z*, then z(k + 1) = x(k). Let x € X. Then

ZLx(kj) =z(w+1) —2z(1) =0.

It is clear that dim Ker L = 1 = codim Im L < +00 and Im L is closed in X. Hence,
L is a Fredholm mapping of index zero.
Define P: X — X by
Pz =

> ak),

k=1

gl

and let @ = P. Then P and () are continuous projectors. For any z € X,

Pa(k +1) — Pa(k) = iix(/ﬂ +1) - éix(k)

=SB - = k) = = (e + 1) — (1) =0

for all k € Z*. Hence, Im P = Ker L. Tt is clear that x € Ker Q C X if and only if
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Yo i x(k) = 0; namely, z € Im L. For any z € Im L,

y(k) = 2(k) — = 3" (k) = a(k)

W
k=1

for all k € Z". Hence, x =y € Im(I — Q). Conversely, for any y € Im(I — Q), there

exists an x € X such that

=
=z
[l
VN
=
=z
|
g~
e
€
=
=
~
Il
€
=
=z
|
gl
€
gy
=
€
—_

This means that y € Im L. Thus, we see that Ker Q@ = Im L = Im(] — Q).
From the relations have shown in the immediately preceding paragraph, the
restriction Lp: Dom L NKer P — Im L has the inverse Kp: Im L — Dom L NKer P.

The inverse Kp is given by

k—1 1 w—1 s
Kpxr =) x(s)—— x(r)
s=0 w s=0 r=0
for x € Im L. In fact, since
k4w—1 1 w—1 s k—1 1 w—1 s
Kpr(k+w) — Kpa(k) = Y x(s) — = o(r) =Y x(s) + — z(r)
w w
s=0 s=0 r=0 s=0 s=0 r=0
k+w—1 w—1
= Z z(s)=)» z(s)=0
s=k s=0

for all k € Z*, it follows that x € Im L implies Kpz € Dom L. It also turns out that
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k=1 k=1 s=0 s=0 r=0
1 w k-1 w w—1 s 1 w k-1 w k-1
=— (Z x(s) — — 93(7“)) = — < x(s) — x(r)) =0
w k=1 s=0 w s=0 r=0 w k=1 s=0 k=1 r=0

Hence, x € Im L implies Kpx € Ker P. For any x € Im L, we have

LPKPIB = Kp$(]€ + 1) — Kpl’(k)

k 1 w—1 s k—1 1 w—1 s
= Zx(s) - — Z Zx(r) - x(s) + - x(r)
s=0 s=0 r=0 s=0 s=0 r=0

In addition, for any x € Dom L N Ker P, we have

KpLpr = Kp(z(k + 1) — z(k))

Since € Ker P = Ker @ = Im L, we see that Y o x(s) = 0. Hence, KpLpzr =
z(k) = Ix. We therefore conclude that Kp = L'

We next show the mapping N defined above is L-compact on Q, where
Q={reX:A<uzk) <B}.

To this end, we will check that

(a) QN(9Q) is bounded,

(b) Kp(I —Q)N:Q — X is compact.
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By a straightforward calculation, we obtain

and

for r € X.

Since

w

Z (— a(k)x(k) + Z fz_(f)xi((]]z : Z((Z))))> < Z < bz(k)) = wz b;

k=1 i=1 k=1

for z € Q, the mapping QN is bounded on Q. Hence, the above sentence (a) is true.

To show that the sentence (b) is also true, from the definition of the compactness
of mappings, we have only to prove that Kp(I — Q)N (E) is relatively compact for
any bounded subset £ C Q C X. As a matter of fact, we can even show that it is
compact.

Since E' is a subspace of a finite dimensional Banach space X, we see that FE is
closed. Hence, E is compact. Note that a metric space is compact if and only if it
is sequentially compact. Hence, F is sequentially compact; namely, every infinite
sequence in £ contains a convergent subsequence {z;};cy whose limit x, belongs to
E. Let y, = Kp(I — Q)Nz,. Since lim;_, x; = z, € E, it turns out that

k-1 k=1 m
I K (1 = Q)N = lim 3 (~a(s)a;(s)) + lim Y- 32 A 2]

j—oo o0 =1 1+ I'j (S — TZ'(S))
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Lt Y03 (- ar)e (1)
1 Ca s o= bi(n)ay (r = (r))
a ;thgo; ; zzl L+a%(r —7(r))
= S —a(s)lim x;(s LS bi(s) im0 (s — 7(s))
_Z;< (Uﬂw](0‘*pOZ;1+hmjmwﬂs—n@»
_(k_ w2——:}1> Z (— a(s)}g&x (8))

Eoow+ 1Y o= x= bi(s) limy o (s — 7i(s
B_wT >ZZ () (s = 7i(s))

w 2w — — 1 +1lim; 0 x?(s —7(8))
w—1 s
I (—aim )
j—00
s=0 r=0
1 ) iy 2, = (1)
w s=0 r=0 i=1 1 + hmj_mo IE;L(’I“ - Ti(r))

Hence, K,(I — Q)N(E) is compact.

Next, we check the first condition of Lemma 1.1 is satisfied. From the definitions
of L and N, we see that any w-periodic solution of (2.6) corresponds one-to-one to
a solution of Lz = ANz with A\ € (0,1). Proposition 2.1 shows that every positive
solution of Lx = ANx stays in the open bounded subset 2. Let y be an element of
0f). Suppose that y is a solution of Lz = ANz. Of course, y € X. Then, we can
find a k* € {1,2,...,w} so that y(k*) = minj <4<, y(k). There are three cases to be
considered. If y(k*) > A, then y is a positive solution of Lz = ANz. Hence, we see
that A < y(k) < B for k =1,2,...,w. It turns out from the fact that there exists
a neighborhood of y whose all elements belong to €2. This contradicts the fact that
y € 00 If 0 < y(k*) < A, then y is a positive solution of Lx = ANz. However,

this contradicts the conclusion of Proposition 2.1. If y(k*) < 0, then there exists a
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neighborhood of y whose all elements do not belong to €2. This also contradicts the
fact that y € 0€2. Hence, if y € 0€), then y is never any solution of Lx = ANx. This
means that the first condition of Lemma 1.1 holds.

Finally, we check the second condition of Lemma 1.1 is also satisfied. If x €
I NKer L, then (k) = A or x(k) = B for all k € Z*. Let z; and x5 be sequences
satisfying z1(k) = A and z5(k) = B, respectively. Then, by (2.5) we have

w

QNzy = éz (— Aa(k) +

k=1

w

A & A
re®) > 3 () Lo

k=1

Since A < /v — 1, we see that QNz; > 0. Recall that

_ 1 _
b; = max b;(k) and B = _Zbi‘

1<h<w a

Then we obtain

w

1 B & B B <~
QN@:;Z(—Ba(k‘HHBnZ’%(k)) S-0 “(k)+1+3nzbi
X i=1

k=1

We therefore conclude that QNxz # 0 for each x € 92 N Ker L. To seek the degree
deg {QN, QNKer L, O}, we define a continuous mapping H: QNKer L x [0,1] — X
by

H(z,p) =—p <]m - MTB) + (1 —p)QNuz.

It is clear that H connects two continuous mappings QN, — I + (A + B)/2: QN
Ker L — X. Recall that the elements of 02 N Ker L are only two sequences x; and
xy satisfying x1(k) = A and z2(k) = B, respectively. We have

A-B

A+ B> +(1—p)QNz; = (1) (—) +(1— QN

H(%M):—M(]%‘— 5

for i = 1,2 and p € [0,1]. Since A < B and QNzy < 0 < QNzy, we see that
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H(zg, 1) <0< H(xy,p). Hence, H(x, p) # 0 for all (z, ) € 02NKer L x [0, 1], and
therefore, H is a homotopic mapping. Since the mappings QN and — I+ (A+ B)/2
are homotopy equivalent, it turns out that

A+ B
2

deg{@N,QﬂKerL, O}:deg{—]+ , QN Ker L, 0}:17&0.

Hence, the second condition of Lemma 1.1 holds.

Since all assumptions of Lemma 1.1 are satisfied, the equation Lx = Nz has
at least one solution lying in X N Q. In other words, equation (H) has at least
one positive w-periodic solution located in the region [A, B]. The proof is now

complete. O

2.4 Examples

In this section, we give two examples to illustrate Theorem 2.1. One is a math-
ematical example, we can find a positive w-periodic solution by using hand calcula-
tions. The other one is a practical example related to the red blood cells. In this
example, by use of the actual measurement data of red blood cells number obtained
in clinical examination, we can know that a positive w-periodic solution exists in

the region determined by the actual data. We now introduce the first example.

Example 2.1. Consider the equation

bi(k)x(k — (k)  ba(k)x(k — 2(k))
1+ 22(k—7m(k) 1+ a2k —n(k))’

(2.16)

where )
1/2 if k=0,
5/6 if k=1,
a(k) =
1/4 if k=2,
K1/5 if k=3,
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( (
3/2 if k=0, 1 if k=0,
12 if k=1, 7/6 i k=1,
b1(k) = 4 by(k) =

2 if k=2, 5/8 if k=2,

1/4 if k=3, 3/4 if k=3,

( (
8 if k=0, 5 if k=0,
6 if k=1, 8 if k=1,

71 (k) = 6+ 2cos (gk) = T2(k) =5+ 3sin (gk) =

4 if k=2, 5 if k=2,
6 if k=3, 2 if k=3,

\ \

and a, b;, and 7; are 4-periodic for i = 1,2. Then equation (2.16) has at least one

positive 4-periodic solution.

It is clear that 0 < a(k) < 1, b;(k) > 0 and 7;(k) > 0 for k € Z and i = 1,2. Let

L%mm{ﬁ@Lﬂﬂ@}

1<k<4 a(k) 3
7 2 2

Then it is easy to check that condition (2.8) is satisfied. Hence, Theorem 2.1 shows
that equation (2.16) has at least one positive 4-periodic solution.
Theorem 2.1 ensures that we can evaluate the existence range of the positive

w-periodic solutions of (2.16). In this example, since m =n =2, v = 3/2,

a= min a(k) =1/5, b = max bj(k) =2 and by = max by(k) =

1<k 1<k<w 1<k<w 6’

we can calculate that

Vo1

1 - 19 neIN b 45
—, Zbi/Q:_ and % 27;:1_ =
V2o 0 am+ (7 bi) ol

Hence, from Theorem 2.1 we see that positive 4-periodic solutions locate in the
4
A,B = | 2 B
511" 6

29

region



Choosing a set of initial points ¢(—7), ¢(—7 + 1),...,¢(0), where
T = max { max Tl(k‘)} = 8.
1<i<2 | 1<k<4
We can find a positive 4-periodic solution by using hand calculations. Let

(

§ 2 if k= —4,
1/2 if k= -8,

2 if k= -3,
1/2 if k= -7,

¢(k) = and ¢(k) =11 if k=—-2,
x if k= —6,

2 if k=—1,
(172 if k=5,

2 if k=0,

where * can be any positive real number. Note that the initial points ¢(k) (—8 <

k < 0) have no periodicity. Then we have

b1(0)z(0 — 71(0))  be(0)z(0 — 72(0
1) =(1—-a(0 0

o) = (1= a0)20)+ T 55— ) T T+ 20 =m0

B 1 3 z(—8) r(=5)
—(1—5) X2+§X1+$—2(—8)+1X1+$—2(—5)_2’

bi(1)z(1 —7ni(1)) N by(1)z(1 — m(1))
1+ 22(1—7(1) 1+ a22(1— (1))
o5 T a=D)

6

= 1—§ ><2+1><——|— X ————"— =
B 6 2 " 1+ 22(-5) 1+ a22(=7)

z(2) = (1 —a(1))z(1) +

) bi(2)a(2 = 11(2) | ba(2)2(2 = 72(2))
o)== a@)e @+ 56 7o) 122 m)

1 2(=2) 5 x(=3)
=(1-2)x142x— 2 4 x_ __9
( 4)x + o +8>< :

o BB n() | b - n)
)= 0@ T o) T T+ 26 -n0)

B 1 1 z(—3) 3 x(l)
_(1__)X2+4_1X1+33—2(—3)+ZX1—|—TQ(1>_27
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v) = (L= a)e )+ T 50 —0@) T 1+ 2 —na)
B 1 3 z(—4) x(=1)
_(1_§)X2+§X1+$—2(—4)+1X1—|—[L‘—2(—1)_2’
sy 2 )6 = () | B(5)r(5 — (5))

2(0) = (1= a®)20)+ T 567 6) T T+ 26 —n0)
- 5 1 z(—1) 7 z(—3)
= (1—5) e T Ty
_ b1(6)z(6 — 71(6)) | b2(6)(6 — 72(6))

o(7) = (1= al0)20) + T 56 —76) T 1+ 26 = n©)
B 1 z(2) 5 r(1)
_<1_Z)X1+2X1 (2)+§><1+—x?(1)_,

2(8) = (1 — a(T) 2 bi(T)z(7T—711(7)) | ba(7)2(7 — 72(7))
(8) = (1= a®)e(D) + ) T 11 27— (7))
B 1 1 z(1) 3 z(5)

= (1—3) X2+‘IX1+TQ(1)+ZXT$2(5)_ ,

and so on (see Figure 2.1).

Certainly, the solution z is positive and 4-periodic

satisfying
45 95
A=—<1< <2< —=28B
i < lsrl) s2<5
for all k € Z™.
x(k)
8,
6,
4,
NN N
R S T TR P R S S S S SR k
-8 -6 -4 -2 2 4 6 8 10 12

Figure 2.1: A graph of the solution of (2.16)

In Example 2.1, for the given positive numbers m, n, the coefficients a, b; and

the time delays 7; (i = 1,2,...,m), we estimated the existence range [A, B| of the
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positive periodic solutions of (H). Conversely, for the given value A and B, we can
choose the positive numbers m, n, the coefficients a, b; and the time delays 7; so
that the positive periodic solutions of (H) exist in the range [A, B]. We will explain
this situation below.

It is reported that the number of red blood cells per microliter is different de-
pending on sex and race, even for healthy humans. The lower and upper limits of
the measured value are slightly different depending on health agencies. For exam-
ple, according to the guidelines for clinical examination (JSLM2012) by Japanese
Society of Laboratory Medicine, the standard value of red blood cells is 4.1 x 106 to
5.3 x 10° per 1/ for adult males, 3.8 x 10° to 4.8 x 10° per 1/ for adult females. Let
A be the lower limit and let B be the upper limit. In the case of Japanese people,
even if A and B are regarded as 3.6 x 10% and 6.0 x 10° per 1uf respectively, there
would be no big difference from the reality. Of course, it is also possible to change
the values A and B.

It is known that red blood cells start a immature cells in the bone marrow and
after about 7 days of maturation they are released into the bloodstream (see [29,
Sect. 1]). For this reason, we assume that time lag is 7 days; namely, 7;(k) = 7 for
1=1,2,...,mand k=1,2,...,w. To simplify hand calculations, we set m = 2 and

w="1.

Example 2.2. Let A = 3.6 x 10% and B = 6.0 x 10°. If

(060 if k= 0,
0.66 if k=1,
0.60 if k=2,
a(k) =40.72 if k=3, (2.17)
0.66 if k=4,
0.60 if k=5,
0.66 if k=6,

\
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( (

0.8 x 106 if k=0, 2.2x 10 if k=0,
0.5x 106 if k=1, 2.8 x 105 if k=1,
0.6 x 105 if k=2, 2.4 x 105 if k=2,

bi(k) = € 0.8 x 106 if k=3, ba(k) = €28 x 106 if k=3,  (2.18)
0.7 x 106 if k=4, 2.6 x 105 if k=4,
0.2 x 106 if k=5, 2.8 x 10° if k =5,
(0.6 % 10° if k=6, (2.7 % 10° if k=6,

and a(k) = a(k +7), by(k) = bi(k + 7), bo(k) = by(k + 7) for k € Z. Then the

equation

b(k)a(k—7)  ba(k)a(k —7)
1 +a2(k—7) " 1+ 220k —7)

Ax(k) = —a(k)x(k) + (2.19)
has at least one positive 7-periodic solution z satisfying

A<z(k)<B for keZ"

In the case that n > 1, the production function f, given by

falu) = . fu” for u>0

<<n - 1)”-1)”"

at u* = {/1/(n —1). As n approaches 1, the maximum value f,(u*) increases and

has the maximum value

converges to 1, and the value u* diverges to oco. Hence, we can find n > 1 so that
fn(B) > A/B, because A/B < 1. In the case that A = 3.6 x 10 and B = 6.0 x 106,

we can choose n as 1.02. In fact,

6.0 x 106 A
6.0 x 10%) = =0.7318--- > 0.6 = —.
J102(6:0 % 10%) = 5 oeyien ~0b=5
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Next, we choose a ~ satisfying

A
v > max{%, A" + 1}.

Since n = 1.02, A = 3.6 x 10° and B = 6.0 x 10°, we see that A/f,(B) =

4,918,872--- and A" + 1 = 4,868,875 --. Hence, we can choose v as 4.95 x 10°.
It is clear that a, by and by are 7-periodic discrete functions satisfying 0 < a(k) <

1, by(k) > 0and by(k) > 0 for k € Z. Since a = 0.60, b; = 0.8x10° and by = 2.8x 106,

it turns out that

1 1, -
B=6.0 x 106:ﬁ(0.8x 10°+2.8 x 10°) = = (b1 +b»)

From (2.17) and (2.18), we see that condition (2.8) holds for v = 4.95, m = 2 and
w = 7. Hence, Theorem 2.1 ensures that equation (2.19) has at least one positive

7-periodic solution located in the region [A, B] under the assumptions (2.17) and

(2.18).

2.5 The case that 0 <n <1

As is said in Section 2.1, equation (H) is not suitable as a mathematical model
describing the hematopoiesis process when 0 < n < 1. However, from pure mathe-
matical side, it is worth considering the case that 0 < n < 1. We have the following

result.

Theorem 2.2. Suppose that (2.6) and (2.8) hold. Then equation (H) with 0 < n <

1 has at least one positive w-periodic solution located in the region [C, D], where

mobr
C=13v—1 and D= "%—1,

a

in which v and a are constants given in Theorem 2.1 and b} = (> _, bi(k)) /w for

1< <m.
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By using continuation theorem, we can show that Theorem 2.2 holds in the same
way as the proof of Theorem 2.1. To apply continuation theorem to the proof of
Theorem 2.2, it is only necessary to show the following proposition (leave the details

to the reader).
Proposition 2.2. Suppose that (2.8) holds. Then every positive w-periodic solution
x of (2.9) with 0 <n <1 satisfies

C<uz(k)y<D for E=12,...,w,

where C' and D are constants given in Theorem 2.2.

Proof. As in the proof of Proposition 2.1, we can show that the inequalities (2.11)
and (2.14) hold. Since 0 < n < 1, the function f,, defined by f,(u) = u/(1 + u") is

increasing for u > 0. Hence, it follows from (2.11) that

Arranging this inequality, we obtain

m b*

T Z“’ —1=D.

From (2.8) and (2.14) it turns out that

k14w—1 m kit+w—1
= — A Z (Z bi( (s — 7i(s))) H (1— )\a(r)))
1— rl;[0<1 — Xa(r)) s=k r=s+1

> A (zw 11 <1—Aa<r>>>
1— ][ (1= Xa(r)) s=m i=1 r=s+1

r=0
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")/f (I’) k1+w—1 k1+w—1
> — s > (M@) IT a- )\a(r)))
11— ];[0(1 —Aa(r)) s=h r=s+1
S F [1CY (1 ~TI0- Aa<r>>> )
1- 1;[0(1 — Aa(r)) r=0

Hence, we can estimate that

We therefore conclude that
C<z<zk)<zT<D

for all k£ € Z*. This completes the proof of Proposition 2.2.
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Chapter 3

Global asymptotic stability of a

unique positive w-periodic solution

3.1 Main result

For continuous hematopoiesis models with unimodal function, we can find a few
research results on the global asymptotic stability of a positive w-periodic solution.
For example, see [25,28]. Though it is not a research result on the global attractivity
of a positive w-periodic solution of discrete hematopoiesis models, there are research
results of a unique positive equilibrium point (see [27,31, 32]). However, there is no
research on the global asymptotic stability of a unique positive w-periodic solution
of discrete hematopoiesis models with unimodal function untill now. In this chapter,
we deal with this problem.

In chapter 2, we considered the discrete hematopoiesis model
Ax(k) = —a(k)a(k) + Y bik) f(a(k —7i(k))) (H)

with m € N. Here a: Z — (0,1), b;: Z — (0,00) and 7;: Z — ZT(1 < i < m)
are w-periodic discrete functions satisfying periodic relation (2.6). The function f
is defined by f(u) = u/(1 + u™) for v > 0 and n > 1. The existence of positive w-

periodic solutions of (H) has been obtained. We will make an attempt continuously
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on model (H) in this chapter. We intend to explore the global asymptotic stability
of a unique positive w-periodic solution of (H) base on the existence result Theorem
2.1.

Recall that function f is defined by f(u) = u/(1 + u") for u > 0. Since

by 1T—(n—1u"
i) = =1

the function f has the only one peak value at 1/3/n — 1. For simplicity, let

1 _ N -1 (n—1)
Ny = — and f = f(n.) = u<1.

n—1 nm

Let us define constants as follows:

C'= max |f'(u)] and C.= max |f(u)|

A<u<B A—e<u<B

for any € > 0, where A and B are positive numbers given in Theorem 2.1. Since
f'(u) is continuous on [0, 00), we see that C. — C as ¢ — 0. Hence, the following

lemma holds.

Lemma 3.1. If
BC <1, (3.1)

then there exists an g > 0 such that BC. < 1 for any € € (0, &¢].
We are now ready to describe our main result.

Theorem 3.1. Suppose that (2.8) and (3.1) hold. Then equation (H) with n > 1
has exactly one positive w-periodic solution located in the region [A, B], which is

globally asymptotically stable.
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3.2 Upper and lower limit values on positive so-
lutions

To complete the proof of global asymptotic stability of a unique positive w-
periodic solution of (H), we need some information on the bound estimate of all
positive solutions of (1.1), which are not necessarily periodic. Recall that the positive
solution of (H) with initial condition (2.7) for any ¢ € S is denoted by z(+; ¢). To
know the fluctuation range of z(k; @) for k € Z* sufficiently large, we examine the
limit superior and limit inferior of z(-;¢). From now on, we write z(k; ¢) as x(k)
for simplicity if necessary.

Equation (H) can be rewritten to

z(k+1) = (1 —a(k))x(k) = Z bi(k) f (x(k — 7i(K))). (3.2)

Multiplying both sides of (3.2) by [[*_, 1/(1 — a(r)) to obtain

k k—1 m k

e )] CREGIE _1a(r> = > stele = (o) [T _1a(r).

r= r=0

We here regard [, 1/(1 — a(r)) as 1.

Lemma 3.2. For any ¢ € S, the positive solution xz(-;¢) satisfies

limsup z(k; ¢) < fB.

k—o00

Proof. Summing both sides of (3.3) from 0 to k — 1, we get

(k) 1:[ 1—;61(7“) —z(0) = i (; bi(s)f(x(s — () [ | - _1a<r)> .

r=0 s=0

This implies that

(k) = 2(0) [T - a)) + Y (Zbi(S)f(ﬂf(s—n(S))) 11 <1—a<r>>>. 3.9

r=0 s=0
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Note that a < a(k) < 1 and 0 < b;(k) < b; (1 <i < m) for all k € Z, and that

function f has the maximum f. It follows from (3.4) that

o(k) < 2(0) [[0 - ) + 7Y (bes) ITo- a(r)))

Since (1 — a)* converges to 0 as k — oo, we see that lim sup z(k) < fB. O]
k—o0

Lemma 3.3. Assume (2.8). Then, for any ¢ € S, the positive solution z(-; )
satisfies

liminf z(k; ¢) > A.

k—o0

Proof. We first show that
liminf z(k) > 0.

k—o0

By way of contradiction, suppose that liminf, .. z(k) = 0. Then there exists a

divergent sequence {k;},ecy such that
lim z(k; +1) =0 (3.5)

]A)OO

and z(k; +1) < z(q) for ¢ =0,1,...,k;. From (3.2) it follows that

w(k; +1) = (1 = a(k;))x(k;

S~—
Il
o
—~
g
S~—
-
—~
8
—~
T
3
—~
T
N~—
N~—
N—

Since x(k; + 1) < z(k;), we see that

a(k;)z(k; +1) Z w(k; — 1i(kj))). (3.6)
Let @ = maxj<k<, a(k) and b; = minj<x<, b;(k) for each i = 1,2,...,m. Then we
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have

ax(k;+1) 2 by f(x(k; — 7i(k;))) = 0.

From (3.5) it turns out that lim; . f(z(k; — 71(k;))) = 0. Recall that f(u) =
u/(14u™) for v > 0. By Lemma 3.2, we see that x(k; — 71(k;)) cannot diverge to
infinity as 7 — oo. Hence, it has to converge to zero as j — oo. Similarly, we obtain
jh—>rgox(kj —7;(kj)) =0 foreach i=1,2,...,m. (3.7)

Let us consider the sequence {a(k;)}. Since the coefficient a is a discrete function
with w-period, each a(k;) coincides with any one of a(1), a(2), ..., a(w). Hence,
there exist a subsequence {k;j} C {k;} and a number a* such that a(kj) = a*
for all j € N, where a*is one of a(1), a(2), ..., a(w). Next, consider the sequence
{b1(k})}. Since the coefficient by is also a discrete function with w-period, each by (k;)
coincides with any one of by(1), b1(2), ..., b;(w). Hence, there exist a subsequence
{k2} € {k;} and a number b} such that b, (k) = b for all j € N, where b is one of
b1(1), b1(2), ..., bi(w). Of course, a(k}) = a*. Similarly, there exist subsequences
{k3} D {k3} D --- D {k"} D {k"*'} and numbers b3, bj,. .. b}, such that by(k¥) =
b3, bs(kj) = b5, ..., b (KJ"*) = by, For simplicity, we write {k7"*'} as {¢;};en.

Then we have
a(l;) =a" and b;(¢;) =b; foreach i=1,2,...,m. (3.8)

Since the coefficients a and b; (i = 1,2,...,m) are w-period discrete functions and

we assume (2.8), we see that
va* < Zb;" (3.9)
i=1

From (3.6) it follows that

- fal —7(0) < bi(¢;) z(l; — 7i(l5))
alts) 2 ;bé(m WGy 2_; Tl —n6) ol +1)
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Taking into account that x(¢; + 1) < x(¢; — 7;(¢;)), we get the inequality

m

> .
; 1+ a2n( e - TZ(@))

Hence, using (3.7)—(3.9), we obtain

i > ya™

This contradicts v > 1. Thus, we can conclude that liminfy_,, x(k) > 0.

Let D = liminfy_,o, x(k) > 0. Then it turns out from Lemma 3.2 that

D = liminf z(k) < limsupz(k) < fB < B. (3.10)

k—o0 k—00

We next show that D > min {8/ =1, vf(B)} = A. It is clear that D > yf(D)
implies D > t/y —1. We will prove that D < ~f(D) implies D > ~f(B). We
proceed our argument by dividing into two cases: (i) f(D) < f(B) and (ii) f(D) >
f(B). Recall that the function f has the only one peak value at n,; namely, it is
strictly increasing on [0, n,) and strictly decreasing on [n., c0). Note that n, < B in
the case (i) and D < n, in the case (ii). Since f is a strictly increasing function on

[0,7.), it has the inverse function on this interval. Let f~! be the inverse function.

Case (i) We choose

Then we have

- D. (3.11)

This means that 0 < f(D) — ¢ < f(D) < f(B). Taking into account of (3.10), we

can choose a K; € N so that

f_l(f(D)_C)<I(k)<B for k> K, —T.
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Hence, we have

flz(k —7(k))) > f(D) —c¢ for k> K; and i=1,2,...,m. (3.12)

Summing both sides of (3.3) from K to k — 1, we get

k—1 k—1 m k—1
o(k) = o(Ky) [T —a(r) + > (Zbi(s)f(x(s -m() [ (- G(T)))-

From (2.8), (3.12) and the definitions of @ and a, we see that

2(8) > (K (1~ 354 (7(D) — ) (bes) 11 <1—a<r>>>

s=K1 r=s+1

S 2 (K)(1 =25 4 (F(D) =) 3 [ als) f[(l—am)
2K - 44 (fD) =) Y (1= (1 —ats)) [] (1 a(r))
—a(K)(L-aF 4y (fD) o) S T <1—a<r>>—ﬁ<1—a<r>>>

1 —

( (1 - a(?”)))

T (1—@)>

= a(K)(L =@ 47 (f(D) —¢) (1= (1= 0™

= 2(K)(1 = @)™ + 7 (f(D) - ¢)

—

l
=

N
—_

> 2(K)(1— @)% 4+~ (f(D) — ¢)

for £ > K. Since 0 < a < @ < 1, we obtain
D =liminfz(k) > v (f(D) — ¢).

k—o00

However, this contradicts (3.11). Thus, Case (i) does not occur.

Case (ii) There are two subcases to be considered:
(a) n,. <D
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(b) n, > D.

Subcase (a) Let d = (D —n,)/2 > 0. Then it is clear that n, < D —d < D < B.
Hence, we see that f(D —d) > f(D) > f(B). From (3.10), we see that there exists
a K9 € N such that

D—-d<uxzk)<B for k>Ky,—T.
Hence, we have
flz(k —7(k))) > f(B) for k> Ky and i =1,2,...,m.
Using this inequality instead of (3.12), we can obtain
D =~f(B)

as in the proof of the case of Case (i). This is a desired evaluation.
Subcase (b) Let e = (f(D)— f(B))/2 > 0. Then it is clear that f(D) > f(D)—e >
f(B). From (3.10), we see that there exists a K3 € N such that

FUAD) — o)) < alk) < B for k> Ky~ 7.
Hence, we have
f(a(k =7i(k))) > f(B) for k> Kz and i=1,2,...,m.

This inequality gives the same conclusion as subcase (a).

We therefore conclude that

liminf x(k) = D > min {W, 'yf(B)} = A.

k—o0

Thus, the proof of Lemma 3.3 is complete. O]
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3.3 Proof of main result

In this section, we will prove Theorem 3.1 by Lemmas 3.1-3.3.

Proof. Note that the condition (2.8) guarantees that there is at least one positive
w-periodic solution of (H). Let x.(+; 1) be such a positive w-periodic solution, where
1 belongs to S and satisfies the initial condition x.(s;v) = ¥ (s) > 0 for s € [-7,0]N
Z. For simplicity, we denote z.(k) = wz.(k;¢) for k > —7. We will evaluate the
difference between the positive w-periodic solution z,(k) and any positive solution
x(k) of (H). Let the initial function of the positive solution x(k) be ¢ € S. Then it
follows from (3.2) that

w(k) =z (k)= (1—alk = 1)) (z(k — 1) — z.(k — 1))

+ 300l = 1) (Falh = 1=k = 1) = faa(k = 1= m(k — 1))))

=1

for k € N. Hence, by the mean-value theorem, we have

(k) — 2. (k)|

— (- a) |2k — 1) — 2.(k - 1)
S n | )l =1 (k= 1) —a (k= 1= m(k— D), (3.13)

=1

where 7, is a value between z(k — 1 — 7;(k — 1)) and z.(k — 1 — 7;(k — 1)) for
1=1,2,...,mand k € N.

Since
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and

nu"((n—1)u" — (n+1))
(14 un)3

() =

for u > 0, we see that the derivative f’ has the properties as follows:

1. f/(0) =1 and f'(n.) =0,

2. f’is decreasing on [0, {/(n+1)/(n— 1)) and increasing on

WD/ =1),00),

3. f'(u) /0 asu— oo.

For simplicity, let n* =%/(n+ 1)/(n — 1). From the above properties, it turns out

that f’ takes the minimum value

(n—1)?
4n

at u = n*. Since n is a number greater than 1, we see that
!f’(u)‘ <M for u>0,

where
(n—1)?

if n>342v2,
4n

1 if 1<n<3+2v2
Note that M depends on n, but it is a constant that is not less than 1 (see Figures
3.1 and 3.2).
From (3.13) it follows that
[2(k) — 2. (k)| < (1 — @) [x(k — 1) — 2.(k — 1)]

+ Mi@ lz(k —1—7i(k—1)) —z,(k—1—7(k—1))| (3.14)

=1
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for £ € N. Needless to say, the following inequality holds:

|z(k) —z.(k)] < max |z(s)—xz.(s)| = ||¢—2| for k=—-7,—7+1,...,0. (3.15)

—7<s<0

From (3.14) and (3.15), we see that

(1) = z.(D)] < (1 = ) [£(0) = 2.(0)]

+ MZ b; [2(—7i(0)) — 2.(—7:(0))]

<(1—a)llg— ||+ MY billo— ol

=1

_ <1 —Q+Mzzi) — (3.16)

As stated immediately after Theorem 2.1, assumption (2.8) implies that B > v > 1.

Since a > 0 and M > 1, we see that

l—a+M» bi>1-a+) bi=1+(B-1)a> 1 (3.17)

pa P
From (3.14) it follows that
2(2) —2.(2)] < (1-a) Ix(l)—w*(l)HMé@ 2(1—7:(1)) — 2. (1=7(1))[. (3.18)
If 7;(1) € N for some i = 1,2,...,m, then by (3.15) we have
2(1 = 7(1)) = 2.(1 = (1) < [|¢ = 2ll.

If 7;(1) = 0 for some i = 1,2,...,m, then by (3.16) we have

[2(1 = 7(1) = 2.(1 = 7m(1)] < (1 —Q+MZ?_%> o —ll.

47



Hence, it turns out from (3.17) and (3.18) that
2(2) = 2.(2)[ < (1 - a) (1 —Q+MZ@) ¢ — |
i=1

+ MY b (1 —Q+MZE¢) o — o]
i=1 =1

2
= (1—Q+M @) o — Il.
i=1

Mathematical induction leads the inequality

3

lz(k) — z. (k)| < (1—Q+MZB,-) ¢ — || for keN. (3.19)

i=1
By Lemmas 3.2 and 3.3, there exists a K, € N with K4 > 7 such that
A—¢gy<uz(k)<B for k>Ky—1-T7, (3.20)

where ¢( is a positive constant given in Lemma 3.1. Let

m Ky—1
i=1

Then it follows from (3.17) that 3 is a constant larger than 1. Hence, by (3.15) and

(3.19), we can evaluate that
|z(k) — x. (k)| < B||lp — || for k=—-7,—T+1,..., K, — L (3.21)
Note that

k—1—-7k—-1)>k—-1-7T>K,—1-7 for k> K,.
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Hence, it turns out from (3.20) that
A—gy<z(k—1—-7(k—1)) < B for k> K,.
On the other hand, Theorem 2.1 guarantees that
A<z(k—1-7(k—1))<B for keN.

Since n;x, is between z(k—1—7(k—1)) and z.(k—1—7(k—1)) fori =1,2,...,m
and k € N, we see that A—eg <myp < Bfori=1,2,...,mand k > K,;+ 1. Hence,
we obtain

|f'(na)| < Coy for i=1,2,...,m and k> K,.

From this inequality and (3.13), we see that

(k) — 2. (k)] = (1 = a) [x(k = 1) — 2.(k = 1)]

+ Caozm:a lz(k —1—7i(k—1)) —z,(k — 1 —7(k = 1)) (3.22)

i=1
for k > K.
Using (3.21) and (3.22), we obtain
(K1) — 2. (Ky)| = (1 — a) [a(Ky = 1) — 2. (Ky = 1)
+ 0 bie(Ky — 1= my(Ky — 1) — 2Ky — 1 — (K4 — 1)
i=1

<(1—a)Bll¢ =¥l +aBC; Bllo — ¢l

< (1-a0-5¢)) 80—l
Recall that 0 < @ = minj<x<, a(k) < 1. From Lemma 3.1 and the assumption (3.1),

we see that

0<l—-a(l-BC,) <1 (3.23)
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Hence, we get

[2(Ka+ 1) = 2. (Ky + 1) = (1 = a) |o(Ky) — 2. (K4)]

Similarly, we have

su—@1—@a—30wym¢—wH@Baww¢—w|

s@—ga—B@o)MW—WL

Iﬂm—m%MSO—QO—BQﬁ)MW—¢Hﬁﬂk=KMQ+L~W&+?

(3.24)

Using (3.21), (3.22) and (3.24), we obtain

2Ky +7+1) —a (K +7+ 1) < (1—a) (1_Q(1_Bceo)> Bllo— ||

Similarly, we have

+yna(1—u1—3aa)mw—wn

SQ_@Q—BQJ>MW—ML

\M@—m%NSO—QO—BQJ)MW—MI

for k=K, +7+1,Ks+7+2,..., K, + 27 + 1. Repeating the same calculation

process, we can derive the evaluation formula

mm»—m%ns(l—al—B@a)?m¢—wr

for k=Ki+(p—1D)T+1), K+ (p—1)FT+1)+1,...,Ks+ pu7 + p— 1, where

i € N. Note that if k£ diverges to infinity, then p also diverges to infinity. From

(3.11) it follows that
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(k) — 2. (k)| < Bll¢ — ¢l for keN

and

|z(k) — z.(k)] = 0 as k — oo.

Hence, from the former we see that the positive period solution x.(

;1) is stable,
and from the latter we see that it is globally attractive. O]

3.4 On the condition of Theorem 3.1

Let us examine when condition (3.1) will be satisfied. Needless to say, the value

C = maxu<u<p | f'(u)| changes depending on the numbers

A:min{”\/v—l, vf(B)} and B:éil_)i.
==l

The properties of the derivative f’ of the production function f were already de-

scribed in Section 3.3. In particular, we have to take into account of the maximum
value 1 and the minimum value

(n—1)°
4n
of f'.
f/
1
Ny N*
H u
ICE L \///
4n

Figure 3.1: This curve is a graph of the derivative f’ of the production

function f in the case that n is less than 3 + 2+/2. The graph intersects
the u-axis at u = n,, and takes the minimum value less than 1 at u = n*.
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If 1 <n < 3+2v2, then (n—1)2/(4n) < 1 (see Figure 3.1). From the properties

of f/, six classifications are required. We see that
f'(A) it A< B <n,,
max { f'(A), — f(B)} if A<n.,<B<n*,

max {f'(A), (n—1)%/(4n)} if A<n,<n*<B,

O:
— f'(B) if n, < A< B < n*,
(n—1)*/(4n) if n. <A <n*<B,
\_f/(A> if n*<A<B.

In either case, the value C' is less than 1. Hence, though B > v > 1, there is a

possibility that condition (3.1) holds.

f/

-1
7(n71)2

4n

Figure 3.2: This curve is a graph of the derivative f’ of the production
function f in the case that n is larger than 3+2+v/2. The graph intersects
the w-axis at u = n,, and takes the minimum value larger than 1 at
u = n*. The value of the derivative f’ becomes —1 at u = n_ and at
U =ng.

If n >3+ 2v/2, then (n —1)2/(4n) > 1 (see Figure 3.2). Let

7i/n—3—\/n2—6n+1 ri/n—3+\/n2—6n—|—1
n_ = 5 and n, = 5 .
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Then f'(n_) = f'(ny) = —1 and

—1<f(u)y<1 for 0<u<n_,

(n—1)
4n

<fllu)<—1 for n_ <u<ng,

—1<f'(u) <0 for u>ny.

Using these inequalities, we see that

(

f'(A) if A< B<n,,

max {f'(A), — f(B)} if A<n,<B<n_,

— f'(B) if A<n,<n_<B<n*
(n—1)%/(4n) if A<n,<n*<B,

C =

— f(B) if n.<A<B<n_,

— f(B) if n,. <A<n_<B<n¥,
(n—1)%/(4n) if n, <A<n*<B,
-1 if n* < A<B.

In three cases that A< B <n,, A<n,<B<n_andn, <A< B <n_, the value
C' is less than 1, but otherwise it becomes greater than or equals to 1. Hence, only
the three cases have the possibility that the condition (1.5) holds. In other cases,

condition (1.5) does not hold because neither B nor C' are less than 1.

3.5 Examples

Example 3.1. To illustrate Theorem 3.1, we consider the difference equation
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bi(k)z(k —1i(k)) | ba(k)z(k — 2(k))
L+ 22(k—7m(k) 1422k —m(k)’

(3.25)

where

1/2 i k=0,
8/15 if k=1,
a(k) =
8/13 if k=2,
(12 it k=3,
( (
5/8 if k=0, 1 it k=0,
45 it k=1, 14/15 if k=1,
bi(k) = ba(k) =
1 if k=2, 1 i k=2,
7/8 it k=3, 34 it k=3,
( (
4 if k=0, 3 if k=0,
4 i k=1, 4 if k=1,
mi(k) = (k) =
3 if k=2, 3 if k=2,
4 if k=3, 4 if k=3,
\ \

and a(k) = a(k +4), bj(k) = bij(k+4), 7;(k) = 1;(k+4) for k € Z and i = 1,2.
We will confirm that equation (3.25) can be applied to Theorem 3.1.

First note that m = n = 2 and the production function f is given by

flu) = lfqﬂ for u > 0.

Since the coefficients a, by, by and the time delays 7, 75 are 4-period discrete func-

tions, the period w is 4. These discrete functions satisfy

0< CL(]{?) < 17 b1<k3) > 07 bQ(k‘) > 07 7'1(]{?> >0 and TQ(k) >0
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for K € N. Let v =3 > 1. Then the inequality
va(k) < by(k) + ba(k)
holds for k = 1,2,3,4. Hence, condition (2.5) is satisfied. Since
g= min a(k)=1/2, b = nax bi(k)=1 and by = Jnax bao(k) =1,

we see that

1 - - 1+1 4 12
a<b1+b2) 2 .Y V2 and ~f(B) =3 x TE =T

and therefore,

A = min {\/m, ’yf(B)} = %

Since
1 / 1
n*:\/nTzl and n* = Z—fl:\@
we see that
12
A:1—7<1:n*<n*:\/§<4:B.

As we have examined in Section 3.4, in this case,

C = max {f’(A), (”4_”1)2} — max { (11;((1122//117?;)2, é} <0.23.

Hence, we obtain

BC <4x023=092< 1;

namely, condition (3.1).
Thus, we can apply Theorem 3.1 to this example and conclude that equation
(3.25) has exactly one positive 4-periodic solution which is globally asymptotically

stable. The periodic solution is in the region [12/17,4]. Indeed, we can use hand
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calculations to find the positive periodic solution. Note that

As a set of initial points ¢¥(—7), ¥ (=7 + 1),...,9(0), we choose

2/3 if k= —4,
2/3 if k= -3
Y(k)=19q % if k=—
3/2 if k=—
3/2 if k=0,

(3.26)

where * indicates any positive real number. Then we can calculate as follows:

b1(0)x(0 — 71(0)) | b2(0)z(0 — 72(0))
T 20-m00) " 1+ 22(0=n(0))

:<1—1)x2+§xM+1x z(0—3)
1
2

8 1+4+2%(0—4) 14 22(0 — 3)
2/3 3

1+4/9 " “1v4/9 " 2

bi(Dz(1—71(1)) | ba(l)a(l —7(1))
T 20=n0) 1+20=-n0)

8 3 4 z(1—4) 14 z(1—4)
=(l-— ) X-F-X—r——F — X ——————
15 2 5 1422(1—4) 15 1+422(1—4)
T 3 4 2/3 14 2/3 3
_—X—+— —X = -,
15 2 5 1+44/9 1+4/9 2

b (2)z(2—71(2)  ba(2)x(2 — 7(2))
1+ 222—7(2) | 1+22(2 - 2(2))

:<_§ ><§—|—1 (2 —3) ) (2 —3)
)

13) 27 Tr20-3) " “1ra2(2-3)
3 3/2 32 3

2 1 _
B 2T N Troa T X Troa 2
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- bi(3)2(3—71(3))  ba(3)x(3 — 72(3))
o) = (1 =a®)rB) + T 55 =76) T 1+ 26 -n0)
3 7 z(3-4) 3. x(3—4)
=<1—5) SR Ty Rl Ty
1
2

8
3/2 3 3/2 3

14+9/4 4 1+9/4 2

hi(@)z(4 —7(4)  bo(4)r(4 = 1(4))
20) = (= a®)e) + 507 @) T T U =)

1
2

8 1+4a%(4—4) 1+ 22(4 —3)

32 32 3

“Tvoa X Toa 2

01(5)z(5 —71(5)) | b2(5)x(5 — 72(5))
1+ 225 —7(5) 14 22(5—72(5))

8\ 3 4  z(5-4) 14 z(5-4)
=(l-—= )X+ X—+—"—+— X ———"—
15) 72" 5 1+225-4) 15 1+a2(5—4)
7 3 4 3/2 14  3/2 3
=—X=-4+=x + — X ==,
1572 5 149/4 15 149/4 2

01(6)x(6 — 71(6)) | b2(6)2(6 — 72(6))
14+ 22(6 —71(6)) 1+ 22(6 —72(6))

8 3 z(6 — 3) z(6 — 3)
=|ll-—= ) Xz+1X ——7—— X ——
13 2 1+ 22(6 — 3) 1+ 22(6 — 3)
:3x§+1>< 3/2 1 x 3/2 :§,
13 2 14+9/4 1+9/4 2

0(N)x(7T =1 (7)) | ba(T)2(7 — 7(7))
o(®) = (1= aD)e() + T 57 —mm) 1+ 20 —n)
( 1) 307 (-4 3 a(T—4)
1
2

R T oy e Rl T Ty

3/2 3 3/2 3

“Tyo/a 41494 2

and so on. The value z(k) of this solution is the constant 3/2 for k € N. Hence, we

may say that this solution is only one positive 4-period solution z.(-;%) of (3.25)
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(see Figure 3.3).
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Figure 3.3: These line graphs are trajectories of four solutions of (3.25).

In Figure 3.3, we draw the trajectories of only one periodic solution z,(+; )
and other three solutions z(-; ¢) of (3.25). The periodic solution satisfies the initial
condition (3.26), where * = 13/4. The initial conditions of the other solutions z(+; ¢)

are

( ( (

2/3  if k= —4, 21/10 if k = —4, 11/3  if k= —4,
30/7 if k= -3, 1/3  if k= -3, 11/12 if k = —3,
o(k)=q1/2 iftk=-2 ok)=15/6 ifk=-2 ¢k)=417/16 ifk=—2,

2 if k= —1, 1/2  ifk=—1, 16/5 ifk=—1

1 if k=0, 11/4 if k=0, 13/4  if k=0,
\ \

\

respectively. As can be seen from Figure 3.3, the three solutions z(+; ¢) other than
the periodic solution approaches 3/2 while becoming larger or smaller than 3/2.
In other words, the three solutions z(-; ¢) gradually approach the periodic solution
x.(-;1). Similarly, for any ¢ € S, the solution z(-;¢) of (3.25) approaches the
periodic solution x,(-;%); namely, the periodic solution x,(-;%) is globally asymp-

totically stable.

Example 3.2. In Chapter 2, the practical Example 2.2 based on the actual mea-

surement value of red blood cells is considered. The difference equation is presented
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bi(k)x(k—7) | by(k)z(k—7)

Aa(k) = = alk)a(h) + T S eg— e * Ty e (3.27)
where
(0.60 if k=0,
0.66 if k=1,
0.60 if k=2,
a(k) =072 if k=3,
0.66 if k=4,
0.60 if k=5,
0.66 if k=6,
ﬁsxm6ﬁkzm szmﬁﬁkza
0.5 x 106 if k=1, 2.8 x 106 if k=1,
0.6 x 10° if k =2, 2.4 %106 if k=2,
b1 (k) 0.8 x 106 if k=3, ba(k) = 2.8 x 106 if k =3,
0.7 x 106 if k =4, 2.6 x 106 if k =4,
0.2 x 10 if k=5, 2.8 x 106 if k =5,
0.6 10° if k=6, 2.7 10° if k=6,

and a(k) = a(k+7), bi(k) = bi(k+7), ba(k) = ba(k+7) for k € Z. In this example,
m=2,n=102 a=0.6, b =08 x10% and b, = 2.8 x 10°. The reason that the
maximum time delay is equal to 7 is that it takes about 7 days for immature cells to
mature into red blood cells within the bone marrow and be released into the blood

stream.

Let v = 4.91887265 x 10°. Then it is easy to check that

va(k) < bi(k)+by(k) for k=1,2,...,7,

that is, condition (2.8) holds. Hence, Theorem 2.1 obtained in Chapter 2 guarantees
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that there exists at least one positive 7-periodic solution of (3.27) located within the
region [A, B], where
L oo 1 6 6 6
B:—(h+®):66m8x10+28x10):60xm
a .

and

A = min {LOW, fyf(B)}

= min {0\2/4.91887265 x 106 — 1, 4.91887265 x 10° x

6.0 x 108
1+ (6.0 x 100)102

= 3.6 x 10°.

By using Theorem 3.1, we can show that the positive 7-periodic solution of (3.25)
guaranteed by Theorem 2.1 is unique and the unique periodic solution is globally

asymptotically stable. Indeed, since

1 1.02+1
>|(:1.02 :4 *:1'02 = 221
n o5 1 6.30808 and n \/ 105 — 1 92.26159.. .,

we see that

n.,<n*<93< A< B.

Hence, as we have shown in Section 3.4,

002 % (3.6 x 109" —1

(14 (3.6 x 106)+9%)

C=—f(A) <4.2x107%

and therefore,

BC <6.0x10°%x4.2x 1072 =0.0252 << 1.

Thus, condition (3.1) is satisfied.
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Chapter 4

Global attractivity of a unique

positive w-periodic solution

4.1 Main result

In Chapter 3, we considered the discrete hematopoiesis model
Ax(k) = —a(k)e(k) + > bi(k) f(x(k — 7:(k))) (H)

with m € N. Here a: Z — (0,1), b;: Z — (0,00) and 7;: Z — Z*(1 < i < m)
are w-periodic discrete functions satisfying periodic relation (2.6). The function f

is defined by

_u
C1l4un

foru>0 and n > 1.

f(u)

It is obvious that f takes the maximum value f = {/(n — 1)»~!/n" smaller than 1

when u =1 / y/n — 1. Moreover, the derivative f’ satisfies

|f'] < max{l, (n 4_n1)2} .

Hence, for a given n > 1, the derivative of the production function f is bounded.
We obtained the global asymptotic stability of a unique positive w-periodic solu-

tion of hematopoiesis model (H) through the method of mathematical analysis. In
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this chapter, we investigate the global attractivity of a unique positive w-periodic
solution of hematopoiesis model (H) by a different approach. The Schauder fixed
point theorem will be applied.

Theorem 4.1. Suppose that (2.8) holds. Then equation (H) has only one positive

w-periodic solution that is globally attractive.

Remark 4.1. Note that assumptions (2.8) is the condition that guarantee the ex-
istence of positive w-periodic solutions of (H). The main result Theorem 4.1 shows
that as long as positive w-periodic solutions exist (maybe only one exists), then all

positive periodic solutions are globally attractive.

4.2 Basic fact

Before going the main topic, we will explain that for any positive initial condition

(2.7), the solution of (H) is bounded. We have
2k +1) = (1= a(k)a(k) = 3 bilk)f(2(k = 7:(k))).

Multiplying both sides of this relationship by Hf:ol /(1 —a(r)), we get

k k-1 m k

o+ ) [[=s — o0 [ =5 = S Wtk = o) [ =

r=0 =0 =1 r=0

<

Note that [, 2,1/(1 — a(r)) = 1. Sum both sides of this evaluation over k from 0
to k — 1 to obtain

r=0 s=0

(k) ﬂl_;cm) —2(0) = i (Z bi(s) f(w(s = 7i(s)) [ [7—— _1a(r)> '

Recall that f is the maximum value of the production function f, and a and b; are
w-periodic discrete functions with the minimum value @ and the maximum value b,

respectively. From the above equality, we see that
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= (x(()) — ﬂ) (1—a)*+ % < max{x(O), ﬂ}

for k € N. Hence, the solution z of (H) with the initial condition (2.7) is bounded. In
other words, the solution set for equation (H) consists of bounded discrete functions.

We choose one arbitrarily from the positive w-periodic solutions whose existence
is guaranteed from Theorem 2.1 and name it z,(-;1). Let 2 be a space of bounded
discrete functions defined on [— 7, 00) NZ. It is well known that €2 is a Banach space

endowed with the norm

|||Z|||déf sup |z(k)| for z € Q.

ke[—T,00)NZ

In fact, we can show that every Cauchy sequence in 2 is convergent. Let {z,},en be
a Cauchy sequence in €. For every ¢ > 0, there exists ¢ > 0 such that |||z, —z,||| < ¢

for p,q > (. Hence,
2p (k) = 24 (k)| < [l|2p — Zll| <& for k € [-7,00]NZ and p,q > .

This means that for each k € [-7, 00] N Z, the sequence of real numbers {z,(k) }uen
is a Cauchy sequence in the filed R of real numbers. Since R is complete, sequence
{#p(k)}pen is convergent for each k € [—7,00) N Z. Denote the limit of {z,(k) }uen
by zeo(k) for each k € [—7,00) N Z, then we obtain a function z. (k) defined on

—7,00) N Z. We now prove the function z., is the limit of {z,},cn. For each
P p Ju€
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k € [-T,00]NZ and p,q > ¢, we have
2(K) — 2] = Jim [2,(8) — ()] < =

Hence,

112y = Zoclll = sup [2p(k) = 200 (k)| < for p>¢.

>_7
This leads to 2o is the limit of {z,}4en. Since Cauchy sequence {z,},en in normed
space ) is bounded, the limit z,, is a bounded discrete function on [—7,00) N Z.
Therefore, we see that z,, € Q. In conclusion, the Cauchy sequence {z,},en in € is
convergent in ).

Denote by U a subset of 2 in which all the elements z satisfy the following

conditions:

(a) there exists an M > 0 such that |||z||| < M;
(b) z(k) > — . (k; ) for k € [—T,00) N Z;

(c) for any € > 0, there exists a K(¢) € N independent of z such that |z(k)| < e
for k € [K,00) NN.

From condition (c), it is obvious that z satisfies limy_,, z(k) = 0.

We will show U is closed. Let {z;},en be a convergent function sequence in U
and let z be the limit function of the sequence {z;}. Then it follows from condition
(a) that

|z; (k)] <M forall ke|-7,00)NZ and all j € N. (4.1)

Suppose that ||[2x||| = SUDPyel_700)z [200(k)| > M. Then there exists a ky €
[—7,00) N Z such that |zoo(k1)| = lim;_ |2;(k1)] > M. Hence, there exists a
J1 € N such that |z;(k1)| > M for all j > J;. This contradicts (3.1). Thus, 2

satisfies condition (a). From condition (b), we see that
zi(k) > —x.(k;p) forall k€ [-T,00)NZ and all j € N. (4.2)
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Suppose that there exists a ky € [—7,00) N Z such that z.(ks) = im; o 2;(ka) <
— 2,(k;1). Then there exists a J, € N such that z;(ks) < —x.(k; ) for all j > Js.
This contradicts (4.2). Thus, z., satisfies condition (b). From condition (c), we see

that
for any € > 0, there exists a K(¢) € N such that

4.3

|z;(k)| < e for all k € [K,00) NN and all j € N. .

Suppose that z., dose not satisfy condition (¢). Then there exist an 7y > 0 and

a sequence {k,} with k, € [-T,00) NZ and k, — oo as n — oo such that

1200 (kn)| = limj,oo |2j(ky)| > mo. Hence, we find a sequence {j,} with j, € N

such that |z;(k,)| > no for j > j,. Since ¢ is arbitrary, we can choose 7y as ¢ in

(4.3). However, this is a contradiction. Thus, 2z, satisfies condition (c). Hence, we
can conclude that z.,, belongs to U and U is a closed subset of 2.

We next show U is convex. To verify this, we choose two elements Z and Z of U

arbitrarily. Let A € [0,1]. From conditions (a) and (c) it follows that
A2 + (1= NI = A+ (L= A)IEI] < AM + (1= \)M = M
and
(A2+(1=N)Z) (k) > = Az (k) — (1=N)au (k; ) = — 2. (k;00)  for k € [-7,00)NZ,

respectively. From condition (c) it follows that for any € > 0, there exists a K(¢) € N

such that |2 < e and |Z < ¢ for all k € [K,00) N N. Hence, we have

~

N2+ (1= NER)] < Me(k)| + (1= NEE)] < Ae+(1—Ne=¢

for all k£ € [K,00) NN. Thus, A2 + (1 — A\)Z € U. This means that U is a convex
subset of 2.
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4.3 Equivalence transformation

Assume that z(-; @) is any positive solution of (H), where ¢ € S is the initial
function. We pay our attention to the difference between any positive solution z(-; ¢)
of (H) and a specific positive w-period solution ., (-;4) of (H). For simplicity, we
write y(k) = x(k; ¢) — x.(k; ) for k € [—T,00) N Z. Define

g(w() = f(w() +2.(59)) = f(z.(19)).

Then we have

Ay(k) = Ax(k; @) — Az, (k)

I
|
I
—
=y
N~—
<
e
w‘
S~—
_|_
s
=
7
N—
N
—~
<
—~
T
|
3
—~
2y
~
~
~—
—~
e~
I
N—

for k € Z*. 1t is clear that equation (4.4) has the zero solution, which corresponds
to the periodic solution . (-;4¢) of (H). The global attractivity of the positive w-
periodic solution z,(-;%) of (H) is equivalent to that of the zero solution of (4.4).
Hence, to prove the positive w-periodic solution z,(+; 1) of (H) is globally attractive,
we have only to show that the zero solution of (4.4) is globally attractive, that is,
for any ¢ € S,

lim y(k) = 0.

k—o0

4.4 Proof of main result

As explained in the previous section, in order to complete the proof of Theorem
4.1, we only need to prove that y(k) approaches to 0 as k — co. We will apply the
Schauder fixed point theorem to achieve it.

Proof. For arbitrarily fixed ¢ € S and a given ¢ € S, let

o(s) =o¢(s) —(s) for s=—-7,1-7,...,—1,0.

By using the same way as in Section 4.2, we can obtain

66



yk) = o) [T —a(r) + 3 (Z () (s — (o) T (1~ a<r>>>

r=0 s=0 =1 r=s+1

for £ € N. Considering this evaluation, we define a mapping 7" on U as follows:

p(k) for k=-7,1—-7,...,—1,0,
Tz(k)= k—1 k=1 / m k—1
O [ —a(r)+ Z(Z bi(s)g(z(s — mi(s))) [] (1 - a(r))) for keN.

If there is a fixed point z* of the mapping 7', then it is a unique solution y of (4.1)
with the initial condition y(s) = ¢(s) for s = —7,1—7,...,—1,0. Of course, z*€ U.
Hence, it follows from condition (c) of the subset U C Q that limy_,, 2*(k) = 0,
and therefore, y(k) approaches zero as k — oo. This is our desired conclusion.
Therefore, in order to complete the proof, we need to find a fixed point in U.

We will show the existence of a fixed point using the Schauder fixed point theo-

rem. To this end, we have to verify the following three points:

(i) T is a mapping from U to U;

(ii) 7" is continuous;

(iii) TU is relatively compact.

Proof of point (i): It is sufficient to show that Tz satisfies conditions (a)—(c) in
Section 4.2 for each fixed z € U. Let M = ||g|| + 2B, where

1 _
B=- Zlb >0

It is clear that |Tz(k)| = |o(k)| < ||¢|| < M for k = —7,1—7,...,—1,0. Note that

19(z())] < (20) +z(50) | + [ (2(50)) | < 2f < 2. (4.5)
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We have

k—1 k—1 m k-1
T=2(k)] < [e(0) [ [(1 = a(r) + (Z bi(s)|g(=(s = 7)) | [T (1 - a(ﬂ))

s=0 i=1 r=s+1

< (0 |+2Z<Zb (1—af )))QMG)]HZ&Z_: 1:[(1—@

r= s+1 =1 s=0 r=s+1

S ksl 1_ _a)k
|+2sz = |p(0 |+2ZbT

< |||l +2B = M
for k € N. Hence, we see that Tz € () and

[IT2)]| = sup  |Tz(k)| < M,
ke[—7,00)NZ
and therefore, Tz satisfies condition (a).
From the definition of the mapping T and the fact that ¢ € S, we see that
Tz(k) = p(k) = ¢p(k) — (k) > —(k) = —xu(k;¢) for k = -7, 1 —7,..., —1,0.
We have

> —(0) 1:[(1 —a(r)) — i <Z bi(s)f (w.(s = 7i(s); 9)) 1:[ (1- a(r)))
r=0 s=0 i=1 =s+1
= — (ks )

68



for k € N. Hence, Tz satisfies condition (b).

The element z of U satisfies condition (c). Hence, for any € > 0, let

(2Bmax{1, (n — 1)2/(4n)}>

Ki(e) =K +7, (4.6)

where n is a fixed parameter of the production function f. Then we have

2Bmax {1, (n—1)2/(4n)}

2(k)| < for k € [K, —7,00) NN,

By this inequality and the mean value theorem, we have

|9(2(s = 7i(s)))| = | £ (2(s = 7i(s)) + 2u(s = 7i():9)) — f (s — Til5);9))|

< max {1, (n A:nl) } |2(s — 7i(s)| < % (4.7)

for s € [K{,00) NN. We can choose a Ks(¢) € N with Ky > K so that

THK1(1 —a(r)) < > (907 25) (4.8)
because 0 < a(k) < 1 for k € N. Using (4.5), (4.4) and (4.8), we obtain
| T2(k)
§|30(0)|1:[(1—a(7“))+ (Zbi(S)\g (s = 7i(s)))] H (1—a(r )
r=0 5=0 i=1 r=s+1
k—1 Ki—-1/ m Kq1—-1 k—1
=le)[ ] J(1 —a(r)) + <Z bi(s)]g(2(s — 7i(s)))]| H (1- a(T)))H(l —a(r))
k=1 / m
—l—Z(Zbi(s)‘g 2(s — (s |H (1—a(r )
k—1 m  Ki-1 k—1
<|g0(0)| (1—@(T))+225i2(1—a>l{1 s IH (1—a(r))
+ ZI_% Y ‘g(z(s - TZ(S)))‘ (1-— g)k’s’l
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for k € [K»,00) N N. This means that 7z satisfies condition (c).

Proof of point (ii): For any € > 0, let

Bmax{l, (n—1)2/(4n)}

i(e) =

We arbitrarily choose two elements 2 and Z of U that satisfy |||Z — Z||| < J. It is
clear that T2(k) = p(k) =TZ(k) for k= —-7,1—-7,..., —1,0. Hence, we see that

|72 — TZ||| = sup |T2(k) — TZ(k)|.
keN

Using the mean value theorem, we obtain

IT2(k) — T3(k)]
- (Z i(s) (925 = () — (25 —m(s1)) ) T (1 - a<r>>) ‘
-1y (bes) (F(:05 = () + s = mls); )

i —ne) +nls—neiw) [T —a<r>>> ‘

< y (Z bi(s) ‘f(é(s—n(s)) +2.(s — 7i(s); )
—f(2(s = 7i(s)) + (s — 7i(s); ¢>)] [Ja- a(r)))

< {1, 21 };(Zb (s - s )5(8n(5))(1@)k81>

=1

for £ € N. It holds that
2(s = 7i(s)) = Z(s — 7i(s))| <0 for s € ZT
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because |||Z — Z||| < §. Hence, we have

. 2 m o k—1
IT2(k) — T3(k)| < max {1, (”4—1)} 03 0y (1—a)f—!
n
=1 s=0
_ 2
< Bmax{l, %}(5 <e

for k£ € N. This means that T is continuous.

Proof of point (iii): We only need to show that any sequence in TU has a
convergent subsequence in . Let {z;};en be any sequence in U. By using the
diagonal method, we will find a convergent subsequence of {7'z;} in Q.

Let i € {1,2,...,m} be fixed arbitrarily. It follows from z; € U that |2;(0 —
7;(0))] < M for all j € N, that is, {z;(0 — 7;(0))} is a bounded sequence. By the
Bolzano-Weierstrass theorem, it has at least one convergent subsequence. Let {z;0}
be a subsequence of {z;} such that {z;,(0 — 7;(0))} converges. Of course, since
zijo € U, it holds that |z;0(1 — 7;(1))] < M for all j € N. Hence, {2;0(1 — 7:(1))}
is also bounded and it has a convergent subsequence {z;;(1 — 7;(1))}. Note that
{z;1} is a subsequence of {z;0}. Repeating the same process, we can find a set of

subsequences {z;¢} with ¢ € Z* so that

{z;} D{zj0} D{z1} D {72} D -+~

and {z;,(¢ — 7;(¢))} converges.

For any ¢ € N, we take the j-th element z;; out from the subsequence {z;,}
and denote {w;}jen the new sequence consisting of them. From how to make the
sequence {w;}, we see that for each k € Z%, {w;(k — 7;(k)))} convergence a limit as
j — oo. Hence, for any ¢ > 0 and any k € Z™, there exists an J;(¢,k) € N with

i =1,2,...,m such that if p and ¢ are integers greater than J;, then

fuplle = 7)) = w0 = 70 < e (49)

We show that J;(e, k) is bounded with respect to k. Note that w, € U and w, € U.
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From condition (c) of U, we see that there exists a K(¢) € N such that

[wp(k —7i(k))| < 2Bmax {1, (n—1)2/(4n)}

and
€

< 2 Bmax{L, (n — 1)2/(dn)}

|y (k = 7:(k))]

for k € [K1,00) NN., where K is a constant defined by (4.6) that depends only on

e. Note that K dose not depend on p or q. We have

|wp(k = 7i(k)) = wy(k = 7i(k))| < Jup(k = 7a(k))| + [y (k = 7(F))]
= Bmax {1, (n—1)?/(4n)}

for k € [K4,00) N N. Hence, when k is greater than or equal to Ki(g), the equality
(4.9) holds provided that p > J;(e, K;) and ¢ > J;(e, K;). This means that J;(¢, k)
can be regarded as J;(e, K1) for all k € [K;,00) N N. Thus, we concluded that

maxJ;(e, k) = max J;(g,0), Ji(e,1..., Ji(e, Ky);

kezt

namely,J;(g, k) is bounded with respect to k. In other words, maxyez+J;(¢, k) is de-
termined only by ¢ € 1,2,...,m and € > 0. Hence, we an represent maxyez+J;(g, k)
as Ji(e).

Let J*(€) = maxy, (), Jo(e),....Jm(s)- Lhen, fori e {1,2,...,m}, p> J"and ¢ > J*

-----

€

k—7i(k)) — w,(k — 7 (k : 4.1
kseuzlihup( Tl( )) wq( Tl( ))| < Bmax{l, (TL o 1)2/(4n)} ( 0)
It is clear that Tw,(k) = p(k) = Twy(k) for k = —7,1 —7,...,—1,0. It follows

from (4.8) that

Ty (k) — Ty (k)|

S (Z bi(s) (9 (s — 73(5))) — (g5 — () T[ (0 - a(r») ‘

s=0 i=1 r=s+1
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s=0 i=1 r= s+1
k—1 m
gmaX{L }Z (Zb Yy (s — 7i(s)) — wy(s — ()] (1 — @)~ 81>
s=0 i=1
(n — 1)2} N e k—s—1
<max< 1, su —7;(k -7 b; (1—a)"*
<max {1, T I sup oy - ) TRy
(n—1)? £
1 B =
<max{ " dn [ Bmax{l, (n—1Z/(dn)} 0 ©
for k € N. Hence, we can conclude that
IITw, ~ Twylll = sup  |Tuy(k) — Tok)| < for p= J" and ¢ = J-

ke[—T,00)NZ

From this inequality, we see that {Tw;} is a Cauchy sequence. As mentioned in
Section 4.3, since (2 is a Banach space, {Tw;} is a convergent subsequence of {T'z;}
in 2. Thus, TU is relatively compact.

The points (i)-(iii) were confirmed as shown above. Thanks to the Schauder
fixed point theorem, equation (H) has only one positive w-periodic solution and the

positive w-periodic solution is globally attractive. The proof is complete. O]
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