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Abstract 

We construct a spherically symmetric and time dependent real solution to a classical SU(2) 

gauge theory. The coordinate transformations under which the differential equation remains 

invariant are discussed. 

Since the discovery of the non-abelian gauge fields [1], physicists have obtained 

many useful results in the quantum gauge theories such as in the unified theory of the 

weak and the electro-magnetic interactions or in the quantum chromodynamics (QCD) 

More ambitious people of them now attempt to unify all the types of the particle inter-

actions on the gauge pnnciple (grand unification theory, GUT) and they have got many 

mterestmg consequences. In spite of such great success, however, in the quantum 

gauge theories are there several difficulties which are not yet resolved : problems of the 

Gribov ambiguity, the quark confinement and U(1) etc. . It seems that non-

perturbatrve approaches are needed in order to solve these problems. Usually the 

quantum fluctuations around the classical solutions are discussed in such non-

perturbative treatments. Thus the construction of classical solutions in the gauge 

theories is the first step of these investigations 

The present author have found axially symmetric and static solutions to a classical 

SU(2) gauge theory [2], but these solutions are complex numbers and are not 
acceptable as physical ones though they may be mathematically interesting 

In this paper we construct a real solution to the classical SU(2) gauge theory, 

which is spherically symmetric and has time dependence. 

The classical field equation of the SU(2) gauge fields is given by 

~b u~ 

where 

V~b = 6.bep + g8acbA~, (2) 
G~~ = auA~ - e~A~ + 98.b.AtA~. (3) 
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Here we use the same notations as in ref. [2] 

Let us rmpose an ansatz for the spatial components of the potentials A~ as follows 

A~ = 1 8*klxlf(r l) (4) g
 

where r=~x2 +y2 + z2. f(r, t) is a function of r and time coordinate t. The time 

component of the potentials A6 should be determined from (1) and (4). Putting 

v =0, we get from Eq. (1) 

V~bV~ ･A~ = O, (5) 
where we have used the antisymmetric property of 8.b.. A~ = O is a solution of Eq. (5). 

Substituting A~ = O into Eq. (1) we have 

f - f" - ~ f' - 3f2 +r2f3 =0, (6) 

where f= af and f . This equation is rewritten as ,_ af 

al ~ ar 
r2(h" - h) + (1 - h2)h = O, (7) 

f= I -h(r, t) 

The trivial solutions of ~q. (7) are h = O, i I or f= r~2, O, 2r~2, respectively; which are 

all static. Another solution is found by Actor [3], which is given by 

h(r t)= + I ~2-x2 
' { I (~2 - x2)2 + ~2r2} 2 

4
 

where x2 = - t2+ r2 and A is a parameter which has the dimension of length. 

Now let us construct a solution of (7) which does not have any dimensional para-

meters. If h does not have such parameters, it must be a function of t/r ( ~ T), because 

h is a dimensionless quantity. Then Eq. (7) is rewritten as 

d 2~~ 

smh2y dy2+~~(1 ~~ ) O (.10) 
where we put 

h(r, t)=~~(y) , (11) 
( . y 1 In T~1 (12) 2 t+1 

A. _ sQlutiQn of Eq. (10) is given by 
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~~ = :!! cosh y 

~~/~~ 
From Eq. (4) we have the potentials 

1 ~t2 - r2 :Ft 

A~= g e*klxl ~ (14) r2~f;T ' 

It is seen that A~ is complex for t2 

(14) is available as a physical solution only inside the light cone, and that on the light 

cone there must be a charged matter which sustains the gauge field and moves with 

the light velocity. The charge density must be expressed as a distribution which 

- t2 + r2. It is difficult, however, to obtain the concrete expression depends on x2 = 

of this density and we don't discuss this subject here. 

Now coming back to Eq. (7), Iet us discuss the coordinate transformations under 

which Eq. (7) remains invariant. If such a transformation (r, t)->(r', t') is found, from 

a solution of Eq. (7) we can obtain another one by substituting (r', t') for its arguments 

(r, t). 

The most trivial one of such transformations is the scale transformation : 

r =pr, 

t' ~ Pt, 

where p is a constant. But under this transformation (13) is not altered and .only 

the parameter ~ changes in (9) 

Another simple one is the time translation 

t--> t' = t +0c 

The parameter oc is a real number. Otherwise the transformed solution is not real 

and not a physlcal solution. Putting oc Imaginary, however, we can connect Eq. (13) 

with Eq. (9). Substituting t + i~ for t into (9) we get 

_ 1 2i~t + t2 - r2 h(r, t + i~) E~ h'(r, t) + 

--2 { I (t2+2iAl - r2)2 + ~2r2} 
4
 

Then putting ~~, oo we have 

1 2iAt lim h'(r, t) = 2 { _ ~2t2 + ~2r2}~ d: Iim 

A+* jL+* 
=+ t 
V 2' ~ t2-r 
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/･7'(r, t) is an unphysical solution of Eq. (7) because it is a complex number, but it 

becomes physical again by taking ~-> co 

In order to make Eq. (7) invariant the transformation must satisfy 

x2 a2 ,2 a2 (15) =x 1 exuaxu I ex~ex'p ' 

where we put t = xO, r = x and x x = - t2 + r2. The left hand side of (15) is written 

as 

x 2 a2 - a2x~ a +ax~ ax~ a2 ) 
2
(
 

x 1 a_~cpexP ~ axpaxu ax;, axp axP ex'ax~. 

Thus the necessity condition for (15) is 

a2x~ =0. (16) axpaxu 

This condition leads to 

t' = x'O = A(t + r) + B(t - r) , 

r =x'l = C(t+ r) + D(t - r) , (1 7) 

where A, B. C and D are arbitrary functions. Then Eq. (15) gives 

ax~ ex~ r'2 
exp axu r2 9~h' (.18) 

Putting v=0 and ~= I or v = I and ~=0 in (18) we get 

A D +B'C' =0, (19) 
and when v ~ O or v=~=1, we have 

4A'B' = (C+ D)2 (20) 
and 

4C'D' = - (C+ D) (21) 
respectively, where A' stands for the differential of A with respect to its argument 

Eqs. (_19), (20) and (21) Iead to 

A = C, 
(23) 

B= -D, 
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' . Then Eq. (20) or (21) rs up to the space-time inversion and the time translation 

rewritten into 

4A'(t+r)B'(t-r) = {A(t+r) B(t r)} (24) 

This equation is easily integrated as 

A(x+)~B(_x'_)=0c(x )p(x )(x+ x ) (.25) 
where oc and p are arbitrary functions and we put x +_ = t i 1'. It seems that the functions 

ac and p which satisfy Eq. (25) are only given either by constants or by 

a a oe(x+) = x+ ~ t+r ' (26) 
p(~c_)= b _ b 

x ~t-r' 
When oc and p are constants, the transformation is the scale one, which has no effect 

to the solutions (9) and (14). In the second case we can see that 

ab 
A(t + r) = - t+r ' 

ab 
B(t - r) t _ r 

or 

t' - 2abt 
12-r2 ' 

(27) 

, - 2abr 
r t2 _ r 

But unfortunately this transformation is also uneffective, because it changes ~ mto 

2ab/~ in Eq. (9) and does not cause any changes in Eq. (13) 

The physical meaning of the solution (13) will be discussed in some other place 
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