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This paper is concerned with a gamonic functional on the space of continuous functions
defined on the product of two compact Hausdorff spaces. Some componentwise properties of
the gamonic functional are discussed with its projective gamonic functionals. Symmetric
properties of the gamonic functional are also studied from the viewpoint of componentwise sum
and product. A new gamonic functional is generated by means of projective gamonic func-
tionals and a set-to-set mapping.

Introduction

The value of a game may be regarded as a functional of its pay-off function.
N. J. Kalton [3] called this a gamonic functional and established a minimax represen-
tation of it. This paper is concerned with a gamonic functional on a product space.
Such a gamonic functional often appears not only in mathematical programming
problems but in the theory of capacities (cf. [6]).

In this paper, some properties of a gamonic functional V on a product space are
discussed with its projective gamonic functionals V; and V, in §3. Symmetric pro-
perties of V are studied in §4. For a further study of V, we introduce in §5 a new
gamonic functional W, generated by the projective functionals V; and V, of V and a
set-to-set mapping 4. In case W, =V, some properties of " may be expressed in terms
of some properties of the mapping 4. Our theory is applied to some useful gamonic
functionals in §6.

§1. Preliminaries

Let S be a compact Hausdorff space, let R be the set of all real numbers and let
R* be the set of all non-negative real numbers. Denote by C(S) the set of all real
valued continuous functions on S, by C*(S) the subset of C(S) which consists of non-
negative functions, by M(S) the set of all real Radon measures on S of any sign, by
M*(S) the subset of M(S) which consists of non-negative measures. Let P(S)=
{Ae M*(S); A(S)=1} and let PP(S) be the class of all convex subsets of P(S) which
are nonempty and vaguely compact.
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DeriNITION 1.1, We say that a real valued functional ¥ on C(S) is gamonic if the
following conditions are fulfilled:

(1.1) V(f)=V(g) whenever f >g with f, ge C(S),
(1.2) V(f+a)=V(f)+a whenever fe C(S) and aeR,
(1.3) V(af)=aV(f) whenever fe C(S) and a e R*.

Denote by ad[ V] the class of all admissible sets C for V, i.e., C € PP(S) such that
(1.4) V(f)<max S fdA  forall feC(S).
eC

Let m[V] be the subclass of ad[ V] which consists of minimal subsets with respect to
the inclusion relation. Kalton [3] proved

Tumorem K. V(f)= min maxg fiA forall feC(s).

Cem[V] AeC

We say that a subclass e[ V'] of ad[V] is essential for V if

as V(f)= inf maxg fdr  forall fec(s).

Ceel[V] ieC

Clearly ad[V] and m[V'] are essential for V.
We have

THEOREM 1.1. The gamonic functional V is sublinear if and only if ad[V] is
a singleton.

Proor. If ad[V] is a singleton, then m[V] is a singleton and V is sublinear by
Theorem K. Assume that V'is sublinear and let fe C(S). Then we see by (1.1) that
V(f) is equal to the value of the following programming problem:

(1.6) Find inf{V(g); g€ C(S), 9> fon S}.

The dual problem to (1.6) can be written as follows:

1.7 Find sup {Sfdl; reCy},

where Cp={le M*(S); g gdA<V(g) forall geC(S)}. By a duality theorem [7;
Theorem 4], we have

(1.8) V(f)=max {S fdd; AeCy}.



Gamonic Functionals on a Product Space 3

Since V(1)=1 and V(—1)=—1by(1.2), we see that CyePPS), and hence Cye
ad[V]. Suppose that there exists Cead[V] such that C#Cy. Then we see by a
separation theorem [1; p. 73, Proposition 4] and by (1.8) that there exists fo e C(S)
such that

V(f,)=max S fodA>max g FodA= TV (fo).
AeCyv AeC

This is a contradiction. Thus ad[V]={Cy}.

The adjoint gamonic functional V* of V is defined by
(1.9 V¥(f)=—=V(—f) forall feC(S).
Note that V is sublinear if and only if V* is superlinear.

THEOREM 1.2. The gamonic functional V is superlinear if and only if there
exists a unique Cy € PP(S) such that

(1.10) V(f)=min S fdi forall feC(S).

In this case m[V]={{A}; 1€ Co}.

~ PrOOF. Assume that V is superlinear. Then the adjoint gamonic functional
V*is sublinear. By Theorem 1.1, there exists a unique Co € PP(S) such that ad[V*]=
{Co}, or equivalently (1.10) holds. The “if’’ part is clear. Let Cem[V]. If
C N Co=0, then there exists f, € C(S) such that

V(f,)< max S fodi< min S FodA=V(f).
AeC AeCo

This is a contradiction. Therefore Cn Co#@. Since {A} ead[ V] for every 1€ C,
and C is minimal, we see that C is a singleton.

§2. Projective gamonic functionals

For a further study of gamonic functionals, we prepare some fundamental notion
on a product space.

Let K, and K, be compact Hausdorff spaces and let S be the product space
K,xK,. For p;e C(K;))(i=1, 2), let us define the componentwise sum p;@p, and
the componentwise product p; ®p, by

(p1®pr) (%, Y)=p1(x)+ 20y,

(p1®p2) (%, Y)=p1(X)P2(»)
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for all (x, y)e K; xK,. Then p,®p, and p,@p, belong to C(S).

Hereafter we always assume that each of the spaces M(S) and M(K)(i=1, 2)is
equipped with the vague topology. Let T;(i=1, 2) be the continuous linear trans-
formation from M(S) into M(K;) defined by

gpld(Tl/l) =S P ®1d), szd(m =g 1® p,di.

for all p;e C(K;)(i=1, 2) and e M(S). The measure T:A is the projection of A onto
K;. Let T be the linear transformation from M(S) into M(K,)x M(K,) defined by
TA=(TA, T,A) for Ae M(S). Note that T is continuous and that T(C)e PP(K;)
for every C e PP(S).

For y;e P(K;)(i=1, 2), let us define u, @u, by

[, @) = £, sty

for every fe C(S)(cf. [2]). For C,e PP(K,)(i=1, 2), denote by C,®C, the closed
convex hull of the set {u; @pu,; ;€ C; (i=1, 2)}.
We prepare

LemMA 2.1, Let C;e PP(K,)(i=1,2). Then T(C;®C,)=C, x C,.

PrOOF. Let Ae C;®C,. In case A belongs to the convex hull D of the set {u;®
bz; i€ Ci(i=1, 2)}, there exist u{’eC; and a;eR* (i=1, 2; j=1,..., n) such that

@1 =% a(uP@us”) and ¥ a;=1.
i=1 =1
Since C; is convex, we have
TA:(_ZI aj.ugj)s '21 a;u5") e Cy x Cy.
J= J=

In the general case, there is a net {A,} in D which converges vaguely to A. Since T'is
continuous and C, x C, is vaguely compact, we have T1e CyxC,. Therefore T(C,®
C3)=C;xC,. On the other hand, for every (u,, 1,) € C,xC,, we have 1, ®u, € C,®
C; and T(u; ®uy)=(uy, py). Therefore C; x C,< T(C,®C,).

LEMMA 2.2. Let C;e PP(K;) and p;e C*(K;)(i=1, 2). Then
max {{ 5, @padl; 1e C,@C) = (max | p,dp) (max { p,dv).
rely vel2

Proor. Let A€ C;®C,. In case A belongs to the set D defined in the above
proof, it can be written in the form (2.1), so that
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S P1®p2di= 2. a; S P1@paduidus” =,-21 a; S pydui” S p2du§”
j= P

< (max S pldu)(m%x S padv).

neCy

In the general case, there exists a net {J,} in D which converges vaguely to A. Then
we have

S p1®p,di=lim S 2 ®pzd/1a£(m%x S 21 du)(m%x S p2dv),
peCy veCa
and hence
max {S P1®p,di; Ae C;®Cy} < (me}:x S p,du)(m%xg p2dv).
nelCq vela2

The converse inequality follows from the fact that C;®C, contains the set {y, @u,;
weCi(i=1,2)}

We can easily prove

TrreoreM 2.1. Let V be a gamonic functional on C(S) and define functionals
V; on C(K;) by
(2.2) Vi(p)=V(p,®1) and Vy(p2)=V(1®p2)
for p;e C(K)(i=1, 2). Then eachV;is gamonic on C(K;).

We call V; and V, the projective gamonic functionals obtained from V. Note
that the class {T(C); C e m[V]} is essential for V.

§3. Componentwise sum and product

Hereafter we shall be concerned with some relations between a gamonic functional
¥ on C(S) and its projective gamonic functionals V3 and V, from the viewpoint of the
componentwise sum and product. Let us consider the following relations:

(CS)  V(p1®p2)=Vi(p)+Vap2) whenever p;e C(K) (i=1, 2),
(CSL) V(p,®p2)=Vi(py)+Vap2) whenever p;e C(K) (i=1, 2),
(CSR) V(p1®p2)<Vi(py)+Valp2) whenever p;e C(K) (i=1, 2),

(CP) V(p;®p,r)= Vi(p1)Va(p2) whenever p;e CH(K) (i=1, 2),
(CPL) V(p;®p2)=Vi(p)Va(p2) whenever p;e C*(K)(i=1, 2),
(CPR) V(p1®@p2)<Vi(p)Va(p2) whenever p;e C*(K)) (i=1, 2).

First we show by examples that any one of the above relations does not hold in
general.
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ExampLE 3.1. Let K, =K,={x,, x,} and define Py and p, by py(x,)=p,(x,)=1
and p,(x,)=p,(x;)=0. For Ce PP/(S), we consider the gamonic functional:

V() =max S fdr  for feC(s).

This V is sublinear by Theorem 1.1. In case C ={AeP(S); M({x, x,)})=1/4}, we
have Vi(p,)=V,(p,)=1, V(p;®p,)=5/4 and V(p1®p,)=1/4, and hence (CSL) and
(CPL) do not hold. In case C={ieP(S); M{(x2, x)})=1/2}, we have Vy(p,)=
Va(p2)=1/2 and V(p; ®p,)=1/2, and hence (CPR) does not hold.

ExAMPLE 3.2. Let K; and p; be the same as in Example 3.1 and define V(f) for
feC(S) by

V(f)=min {(f11+ f12)/2, (fi2+ f22)/2},

where f;;= f(x;, x;). Then V(f)is gamonic and Vi(p)=Va(p2)=1/2 and V(p,;@p,)=
3/2, and hence (CSR) does not hold.
We begin with the relation between (CS) and (CP).

THEOREM 3.1.  (CPL)(resp. (CPR)) implies (CSL)(resp. (CSR)).

PROOF. Assume that (CPL) holds and let p,e C(K))(i=1, 2). First we consider
the case where p;e C*(K;)(i=1, 2). For any aeR* with a+#0, we have by (CPL)

V((ap; + D®(ap, +1)) = Vi(ap; + 1)Vy(ap, +1).

We have by (1.2) and (1.3)

Vi(ap:+D)®(ap, +1)=aV(a(p; ®p;)+(p, ®p,) +1,

Vi(apy +1)Vaap, +1)=a2Vi(p)Va(p2) + alVy(py) + Valpy)] +1,
so that |
(3.1 -~ V(ap1®p2) +(p1@p2)) > aVi(p)Va(p,) + Vi(p) + Va(ps) .
Let b;=max {p(s); se K;}(i=1,2). Then we have by (1.1)

V(p1®p2)<V(ap;®@p,+(p1®p2))<abib, + V(p; ®p,),

and hence V(ap;®p,+(p;®p,)—V(p,®p,) as a—0. By letfing a—0 in (3.1), we
obtain V(p, ®p,)>V,(p;)+ Va(p,). Next we consider the -general case. Let a;=
min {p(s); s€ K;}(i=1, 2). Then p,—a;e C*(K,) and

V((py f‘a1)@(.Pz —a;))>Vi(p1—a,)+Vy(p,—a,) .

by‘the above observation. Since (p, —a)®(p;—a,)=p,®p,—(a,+a,), we see by
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(1.2) that V(p,®p,) = Vi(py)+ Va(p,). Namely (CSL) holds. Similarly we can
prove that (CPR) implies (CSR).

CoRrROLLARY. (CP) implies (CS).

If V is linear, then (CS) holds. If V is sublinear (resp. superlinear), then (CSR)
(resp. (CSL)) holds. More generally we have

THEOREM 3.2. The following condition implies (CSR):
(3.2) For every C;em[V;1(i=1, 2), Cy x C, contains an element of T(ad[V]).

Proor. Let p,e C(K;)(i=1, 2). For any ¢>0, we can find C; e m[V;] such that

(3.3) Vi(p:)+e>max Spidu
uneli

for i=1,2. By (3.2), there exists C’'e€ad[V] such that C,;xC,>T(C"), so that

Vi(p1) + Va(p2) +26>max Spldu+m%x szdv
unetly vela
=max {{p, @padudv; (1 )€ Cyx Ca)
> max {{ p, @padpdv: (4, V)& T(C))

>max Sm@pzdlz V(p1®p,)-

Thus Vy(py)+ Va(p2) +2¢> V(py ®p,), and hence (CSR) holds.

REMARK 3.1. If Vis sublinear, then condition (3.2) is fulfilled. 1In fact, any one
of ad[V] and m[V;](i=1, 2) is a singleton by Theorem 1.1.

Tt is easily verified that neither (CPR) nor (CPL) holds even if V is linear. We have
TueoreM 3.3. If Vis linear, then any one of (CPR) and (CPL) implies (CP).

PrOOF. If Vis linear, then ad[V]={{1}} with 1eP(S). Let TA=(u,v). Sup-
pose that (CPR) holds. Then

S p®qdﬂ§gg P®qd(u®v)

for all pe C*(K;) and g€ C*(K,). Let feC(S). For any ¢>0, there exist p;e C(K)

and g,e C(Ky)(i=1,..., n) such that [f(x, )= 3 (n®4)(x, y)l<e on S (cf. [2]).
i=1

We can find a number M such that p,+Me C*(K,) and g;+M e C*(K,) for all i.
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We have

| @adi={ (i MO+ M) Mp@a) - M)

(» +M>®<q,~+M)d(u®v)—Mg(pi@qi>d(y®v)—M2

|
o o+ M)@(ai+ M)dL =M | pdu—M { qdv—
<|
~{ p@aduem.

It follows that
[rai-e<2 (poadis ¥ | p@aduen< | fauen+e.
so that
sar<| sacuem.

Since f is arbitrary, we conclude that A=u®v. Thus V satisfies (CP). Similarly we
can prove that (CPL) implies (CP).

COROLLARY. Let V be linear and let ad[V]={{A}} and TA=(u, v). Then V
satisfies (CP) if and only if A=p®v.

THEOREM 3.4.  The following condition implies (CPR):

3.4) Ci®C,eadl[V] Sfor each C;em[V](i=1,2).

PrOOF. Let p;e C*(K;)(i=1, 2). For any ¢>0, we can find C;e m[V](i=1, 2)
which satisfy (3.3). We have by Lemma 2.2 and (3.4)

(V4(p1)+) (Va(p) +2) > (max Spldu)(maxgpzd\’)

ueCy
=max {X P1®p.di; Ae Ci®C,)
>V(p®p,).
Thus (CPR) holds.

We see by Lemma 2.1 that (3.4) implies (3.2).

THEOREM 3.5. The following condition implies (CPL):



Gamonic Functionals on a Product Space 9
(3.5) For every Cem[V], there exist Ciead[V] (i=1, 2) such that C{®C,=C.

Proor. Let p;e C*(K;)(i=1,2). For any >0, there exists C € m[V] such that

V(p,®p,)+e> Teag( S P1® poda.

We can find Cjead[V;](i=1, 2) such that C;®C5=C by (3.5). It follows from
Lemma 2.2 that

max S P1® p,dA>max {S P ®prdi; e C1RCH}
ieC

= (max { pydu) max § podv) > Va(po)Va(p).

peCi veCh

Thus V(p,®@p,)+&>V(p1)Va(p2), and hence (CPL) holds.

§4. Symmetric properties of V'
In the case where K, =K, =K, we consider the following symmetric properties of
V:

(SYS) V(p®p,)=V(p,®p,)  whenever p;eC(K)(i=1,2),
(SYP) V(111®p2)=V(p2®p1) whenever p;e C(K)(i=1, 2),
(SY) V(H=V() whenever fe C(K),

where fe C(S) is defined by f(x, y)=f(y, x) for all x, ye K.
Obviously (SY) implies (SYP). By the analogous reasoning to the proof of
Theorem 3.1, we can prove

THEOREM 4.1. (SYP) implies (SYS).
We show by the following example that (SYS) does not imply (SYP) in general:

ExaMmpLE 4.1, Let K={x,, x5, x3}. Denote by g; the unit point measure at
(x;, x;)€ S and by ¢; the unit point measure at x; € K. Let us consider the gamonic
functional V defined by

V(f)=gfd/1 with A=(1/4)(e;; +813+21+832)-

Then TA=(u, v) with p=v=(1/2)e, +(1/4) (e, +¢&;3). We see easily that (SYS) holds.
On the other hand, let p and g be the functions defined by

p(x))=1, p(x;)=p(x3)=0; g(x3)=1, g(x;) =q(x3)=0.
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Then we have V(p®q)=0<1/4=V(q®p). Namely (SYP) does not hold.
Since p®1=p@®0 for all pe C(K), we have
THEOREM 4.2.  If (SYS) holds, then V,(p)=V,(p) for all pe C(K).

In order to obtain a sufficient condition for (SYS), let us put p© p=p®(—p) for
peC(K). We have

THEOREM 4.3.  Assume that V(p@p)=0 for all pe C(K). If V is sublinear or
superlinear, then V satisfies (SYS).

PrOOF. Let V be sublinear and let p;e C(K)(i=1, 2). Putf=p,®p,, g =p,®p,
and h=f—g. Then h=p,Op,;+(-p,)O(—p,) and

V(<V(p,©p)+V({(—p)O(—p,)=0,
so that
V(H=V(@g+h<V(g)+V(h)<V(g).

By interchanging the role of p, and p,, we obtain V(g)< V(f). Thus V satisfies (SYS).
In case V'is superlinear, it suffices to note that V(h)>0.

Now we study property (SY). -For Ae M(S), define de M(S) by
S fd1=§ JiA forall fec(s).

For Ce PP/(S), put C= {I; AeC}. Then Ce PP(S).
We have

THEOREM 4.4. (SY) holds if and only if éead[V] for every Cem[V].

PROOF. Assume that Ce ad[V] for every Cem[V]. Let feC(S). For any
&>0, there exists C e m[V] such that

V(f)+&>max g faa.
We have
max Sfdl=max {vad/l; Ae é} > V(f),
so that V(f)>V(f). By replacing f by f, we have V(f)>V(f). Thus (SY) holds.

On the other hand, assume that (SY) holds. Suppose that there exists C e m[V7] such
that C¢ad[V]. Then we can find f, e C(S) such that
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max {S Fodd; 2€CY <V (o).

Since C e m[V], we have
max {Sfod,l; he Cy =max Sfod;f:macx Sfodlz V() =V(fo).
Ae Ae

This is a contradiction. Thus Ce ad[V] for every Ce m[V].

COROLLARY. Let V be sublinear and ad[V]={C}. ThenV satisfies (SY) if and
only if C=C.

In case V is linear, (SYP) implies (SY). In the general case, we do not know
whether (SYP) implies (SY) or not.

§5. A-convolution of ¥, and V',

Let V; be the projective gamonic functionals on C(K;) obtained from V. We shall
construct a new gamonic functional on C(S) from ¥; and V.

Let A be a set-to-set mapping from PP (K,)x PP(K,) into PP(S), ie., A(C,,
C,) e PP(S) for each C;e PP(K;). Denote by m(4) and a(A) the images of m[V,]x
m[V,] and ad[V,]x ad[V,] under A respectively, i.e.,

m(4)={A(C;, C,); C;em[V;](i=1, 2)},
a(4) ={A(Cy, C,); Ciead[V;1(i=1, 2);.
Let us define a functional W,(f) on C(S) by

(5.1) W(f)= inf max S fda.

Cem(A4) AeC

Then it is easily seen that W, is gamonic on C(S). We call W, an A-convolution of
V; and V,.
We say that 4 is monotone if C;, C;e PP(K;) and C;=C; (i=1, 2) imply A(CY,
)= A(Cy, C,). If A is monotone, then we have
(5.2) W,(f)= inf max S fai  forall feC(s).

Cea(4) AeC

Hereafter in this section, we always assume that A4 is monotone. Let us study the
relations between V(f) and W (f).

THEOREM 5.1. The inequality V()< W (f) holds for all fe C(S) if and only if
A satisfies the following condition:

(5.3) A(Cy, Cp)ead[V]  for every Ciem[V](i=1,2).
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PrROOF. If A satisfies (5.3), then m(4)=ad[V], so that V() SW,(f) for all fe
C(S). On the other hand, assume that 4 does not satisfy (5.3). Then there exists
Co e m(A) such that Co ¢ ad[V]. We can find f, e C(S) such that

V(fo)>max Sfocm > Wy(fo).
2eCo

We can easily prove

. THEOREM 5.2.  The inequality V(f)>W,(f) holds for all JeC(S) if A satisfies
the following condition:

(5.4) For every Cem[V], there exist Ciead[V]](i=1, 2) such that A(C}, Ch)<=C.

THEOREM 5.3.  The inequality V,(p)< W, (p®1) holds Sfor all pe C(K,) if and
only if A satisfies the following condition:

(5.5) Ty(A(Cy, Cy))ead[V,] forall Ciem[V](i=1,2).

THEOREM 5.4. The inequality V,(p)>W(p®1) holds for all peC(K,) if 4
satisfies the following condition:

(5.6) For every C,em[V,], there exist Ciead[V]](i=1, 2) such that T,(A(C,
cy))=C,.

Next we are concerned with the following relations for the componentwise sum and
product as in §3:

(WCS) Wi(p1®p2)=Vi(p,)+ Va(p,) whenever p;e C(K))(i=1, 2),
(WCSL)  W,y(p;®p2)=Vi(py)+ Va(p,) whenever p;e C(K)) (i=1, 2),
(WCSR) W (p1@p2)<Vi(py)+ Va(p,) whenever p;e C(K)) (i=1, 2),

(WCP) Wp1®p,)= Vi(p)Va(p2) whenever p; e CHKy (=1, 2),
(WCPL) W,(p;®@p,)> Vi(p)Va(p2) whenever p; e CHK)(i=1, 2),
(WCPR) W,(p;®@p,)<Vi(p)Vs(p,) whenever p;e C*(K)) (i=1, 2).

By the same reasoning as in §3, we can prove

THeOREM 5.5. (WCPL)(resp. (WCPR)) implies (WCSL) (resp. (WCSR)). In
particular, (WCP) implies (WCS).

THEOREM 5.6. (WCSR) holds if A satisfies the following condition:

(5.7) For every C;em[V;], there exist C} €ad[Vi](i=1, 2) such that T(A(C}, Cy))<
C{xC,.

THEOREM 5.7. (WCPR) holds if A satisfies the following condition:
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(5.8) For every C;e m[V{1, there exist Ciead[V](i=1, 2) such that A(Ci, C)<
C,®C,.

THEOREM 5.8. (WCPL) holds if A satisfies the following condition:

(5.9) For every C;em[V;], there exist Ciead[V](i=1, 2) such that C\®C5<
A(Cla CZ) ‘

As applications of Theorems 5.5, 5.6 and 5.7 and Lemma 2.1, we have

PROPOSITION 5.1. Let A(Cy, C;)=C,®C, for C;e PP(K)(i=1,2). Then A is
monotone and (WCP) holds.

PROPOSITION 5.2. Let A(C,, C,)=T"(C,x C,) for C;e PP(K;)(i=1, 2). Then
A is monotone and (WCS) and (WCPL) hold.

§6. Applications

In this section, we recall several useful gamonic functionals on a product space
in mathematical programming or in potential theory and apply our theory to them.

APPLICATION 6.1. Transportation problem

Let o;e P(K)(i=1, 2) be fixed. The value V(f)(feC(S)) of the continuous
transportation problem due to Kantorovich [4] is defined by
6.1) V()= inf {g fd0; de P(S), TA=(ay, az)} -
It is easily seen that V is gamonic on C(S) and its projective gamonic functionals are
given by
(62 V(p)={ pide, for pieCK)(i=1,2).
Let us put C(a;, a,)={1eP(S); TA=(a;, ®y)}. Since V is superlinear, we see by
Theorem 1.2 that m[V]={{1}; L€ C(a,, ,)}. (CRP) holds by Theorem 3.4. However
(CPR) does not hold in general. For the adjoint V* of V, we have ad[V*]={C(ay, a3)}.

In case K; =K, and a, =a,, we have é(al, a,) =C(ay, ;). We obtain by Theorem
4.2 and Corollary of Theorem 4.4

PROPOSITION 6.1. Aussme that K,=K,. Then (SY) holds if and only if
061=0t2.

APPLICATION 6.2. Continuous game

The minimax value V(f)(fe C(S)) of the continuous zero-sum two-person game
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is defined by

(6.3) V(f)= min  max Sf(x, NAuGdvy).

veP(K2) peP(K,)

It is easy to see that V' is gamonic on C(S) and that

Vi(p;)= max Spldu=max pi(x),
ueP(Kjq) xeKy

Va(ps)= min | pdv=min py().
veP(K>) vekK>

Note that the class {P(K,)®{v}; ve P(K,)} is essential for V and that ad[V,]1={P(K,)}
and m[V,]={{v}; ve P(K,)}.

Define a set-to-set mapping 4 from PP (K,) x PP(K,) into PP(S) by A(C 1, Cy)=
C,®C,. Then m(4)={P(K,)®{v}; veP(K,)} and the A- convolutlon W.(f) of
V) and V, is equal to V(f) for every fe C(S).

APPLICATION 6.3. Potential-theoretic gamonic functional

Let K, =K,=K and denote by Sy the support of ue P(K). For fe C(S), let us
consider the following minimax value V(f) which is related to a capacity in potential
theory (cf. [6]):

(6.4) V(f)= min mang(x, »dy)

veP(K)

— min max S £, y)du(x)du(y).

veP(K) peP(Sv)

It is easily seen that ¥'is gamonic on C(S) and that
V(p)=Vap)= min (pdp  for pec().
neP(K)

By Ohtsuka’s theorem [5], we see that (SY) holds.
Let us consider the point-to-set mapping F from P(K) into PP(K) defined by
F(u)=P(Sp). Then F is a convex mapping, i.e.,

aF(p)+(1—a)F(v)= Flap+(1—a)v)

for all y, ve P(K) and aeR, 0<a<1. Define a set-to-set mapping 4 from PP(K,) x
PP(K3) into PP(S) by A(C;, C;)=F(C3)®C; with C;3=(C,+C,)/2, where F(C3)
denotes the closure of F(C;) in M(K) with respect to the vague topology. Then we
have m(A)={F(1)®{u}; pe P(K)} and the A-convolution W,(f) of V, and V, is equal
to V(f) for all fe C(S). Since A satisfies condition (5.9), (CPL) holds.
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APPLICATION 6.4. Quadratic gamonic functional

Let K, =K, =K and consider the value V(f)(fe C(S)) of the following quadratic
programming problem:

(6.5) V(f)= min Sf (x, y)du(x)du(y) .
ueP(K)

This is also related to the energy capacity in potential theory (cf. [6]). Clearly Vis
gamonic on C(S) and

Vip)=Vs(p)= min | pdu for peC(K).
ueP(K)

Define a set-to-set mapping 4 from PP(K;)x PP(K,) into PPLS) by A(C,, C,)=
C;®C; with C3=(C,;+C,)/2. Then we see that m(4)={{p®u}; peP(K)} and
W (f)=V(f) for all fe C(S). Since A satisfies condition (5.9), (CPL) holds. It is
easily seen that (CSR) does not hold.
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