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Invariant forms of Lie triple algebras have been introduced in [3] as generalizations of those
of Lie algebras and Lie triple systems. In this paper, the meaning of the definition ((2.1) and
(2.2)) of invariant forms is clarified from a viewpoint of invariance under endomorphisms of the
Lie triple algebra (Proposition 3). The main theorem shows that there exists a one-to-one
correspondence between the set of all invariant forms of a Lie triple algebra g and the set of
invariant forms of its standard enveloping Lie algebra A =g@D(g, g) satisfying the orthogonal
condition g L D(g, 9).

§1. Lie algebra generated by L(g) and D(g, g)

Let g be an n-dimensional Lie triple algebra over a field F of characteristic zero
(cf. [2], [3], [4], [8]). For X, Y, Z in g denote by L(X): Y—XY and D(X,Y): Z—
D(X, Y)Z the left multiplication of the anti-commutative algebra and the inner deri-
vation of the trilinear operation of g, respectively. These endomorphisms satisfy the
following axioms; (i) D(X, X)=0, (i) S{(XY)Z+D(X, Y)Z}=0, (il SD(XY, Z)
0, (iv) [D(X,Y), L(Z)]=LDX, Y)Z) and (v) [D(X, Y), D(Z, W)]=D(D(X, Y)Z,
W)+ D(Z, D(X, Y)W). Here, G denotes the cyclic sum with respect to X, Y and Z.
Let K(X, Y) be the endomorphism of g given by K(X, Y)Z=D(X, 2)Y-D(Y, 2)X.
Then the axiom (ii) is written as follows:

(1.1) L(XY)—[L(X), L(Y)]+D(X, Y)—K(X, Y)=0, for X, Yeg.

The axiom (v) implies that the linear subspace D(g, g) of End (g) spanned by all inner
derivations {D(X, Y)| X, Yeg} is a Lie subalgebra of End(g). Let L(g) denote the
Lie subalgebra of End (g) generated by all left multiplications {L(X)|X € g}, and let
A(g) be the linear subspace of End (g) spanned by L(g) and D(g, g).

PROPOSITION 1. (1) A(g)=L(g)+D(g, g) is a Lie subalgebra of End (g), and L(g)
is an ideal of A(g).
(2) The endomorphism K(X, Y) belongs to A(g) for X, Yeg.

Proor. The axiom (iv) implies [D(g, g), L(g)]<=L(g), which shows (1). (2)
is an immediate consequence of (1.1). _ A ) g.e.d.

Set K,(X)Y=D(X, Y)X for X, Ying. The endomorphism K,(X) is quadratic in
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X and satisfies the following;
(1.2) 2D(X, Y)Z=K(X, V)Z+K (X +Y)Z—K«(X)Z-K.(Y)Z.

PROPOSITION 2. A subspace }) is an ideal of g if and only if it is invariant under
A(9)=L(g)+D(g, 9) and K4(g)={K«(X)| X eg}.

Proor. The subspace b is, by definition, an ideal of g if gh<h and D(g, h)g<h.
If b is an ideal, then the axiom (ii) implies D(g, g)h<h. Hence § is invariant under
L(X), D(X, Y) and K.(X) for any X, Y in g. Conversely, if a subspace | is A(q)-
invariant, then it is invariant under L(X), that is, gh<h. On account of Proposition 1,
b is also invariant by K(X, Y). Moreover, if b is invariant by K,(g), then (1.2) implies
2D(X, ) Y=K(X, Y)h+K(X + Y)h— K (X)h—K.(Y)hch for X, Y in g. Thus §
satisfies gh =h and D(g, h)g<h. q.e.d.

§2. Invariant forms of g

An invariant form of g is a symmetric bilinear form b: gx g—F on g satisfying
2.1) (XY, Z)+b(Y, XZ)=0, and
(2.2) b(D(X, Y)Z, W)-b(D(Z, W)X, Y)=0 (cf. [3]).

This is a generalized concept of invariant forms of Lie algebras and of Lie triple systems

(cf. [7]).

PROPOSITION 3. A symmetric bilinear form b on g is an invariant form if and
only if the following (1) and (2) are satisfied.

(1) b is A(g)-invariant, i.e., (TX, Y)+b(X, TY)=0 for Te A(g) and X, Yeg.

(2) b is Ky(g)-symmetric, i.e., (K (X)Y, Z)—b(Y, K(X)Z)=0 for X, Y, Zeg.

PROOF. Suppose that b is an invariant form of g. Then b is L(g)-invariant by
(2.1). Replacing W=Z in (2.2) we get b(D(X, Y)Z, Z)=0, which implies b(D(X, Y)Z,
W)+b(Z, D(X, Y)W)=0. Hence b is invariant by A(g)=L(g)+D(g, g). On the
other hand, we get b(D(X, Y)X, W)—b(D(X, W)X, Y)=0 by putting X=2Z in (2.2),
that is, b is K,(g)-symmetric. Conversely, let b be a symmetric bilinear form which
is A(g)-invariant and K,(g)-symmetric. Then, (2.1) is clear, and since b is invariant
by K(X, Y), we get

(2.3) b(D(X, 2)Y, W)—b(D(Y, Z)X, W)+b(Z, D(X, W)Y)—b(Z, D(Y, W)X)=0.
Since b is K (X)-symmetric, we have

(2.3) b(D(X, Z2)Y, W)+ b(D(Y, Z)X, W)—b(Z, D(X, W)Y)—b(Z, D(Y, W)X)=0.

From (2.3) and (2.4) we obtain (2.2). Therefore, b is an invariant form of g.
q.e.d.
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PROPOSITION 4. (Cf. Prop. 3in [3]) Let b be an invariant form of g. For any
ideal b of g, b+ ={X e g| b(X, h)=0} is an ideal of g.

PROOF. Since b is A(g)-invariant and K 4(g)-symmetric by Proposition 3, and since
any ideal b is invariant under A(g) and K,(g) by Proposition 2, it is easy to see that
bt is also invariant under A(g) and K(g). q.e.d.

Let g =gg+D(g, g)g be a subspace of g spanned by gg and D(g, g)g. For an
invariant form b of g, denote by R, the orthogonal complement (gV)* of g‘* with
respect to b.

PROPOSITION 5. Let b be an invariant form of g.

(1) R, is an ideal of g.

(2) The center 3 of g is contained in Ry, where3={X € g| Xg={0} and D(g, X)g=
{03} (cf. [3D.

(3) If b is nodegenerate, then 3=R,.

PrOOF. (1) Since g1 is an ideal of g (cf. [2]), R, is also an ideal by Proposition 4
above.

(2) If Xe3, then L(g)X=0, K(g, )X =0 and K.(g)X=0. Since b is A(g)-
invariant and K,(g)-symmetric by Proposition 3, we get b(X, L(g)g)=0, b(X, K(g, 9)9)
=0 and b(X, Ki«(g)g)=0. (1.1) and (1.2) imply g©=L(g)g+K(g, 9)3+K.(9) g,
and X e(g(V)* =R, is shown.

(3) Suppose that X, is an element of R,. Then Xg=0 is obtained from 0=
b(X,, 89)=b(Xeg, g). On the other hand, b(D(g, )Xo, 9)=b(Xo, D(g, 9)g)=0
implies D(g, §)Xo=0. Thus 4(g)X,=0 holds, and especially K(Y, Z)X,=0 holds for
any Y,Z in g. The relations b(X,, Ku(Y)g)=b(X,, D(Y, 9)Y)=b(X,, g)={0}
and b(X,, Ko(Y)g)=b(X(Y)X,, ¢) imply Ku(Y)Xo=0. From K(Y, Z)X,=0 and
K(Y)X,=0 we get D(g, Xo)g=0. Therefore, X, must belong to 3, and we obtain
3=R, from (2). g.e.d.

§3. Associated invariant forms of the standard enveloping Lie algebra

Let W =g@®D(g, g) be the standard enveloping Lie algebra of the Lie triple algebra
g. We consider now invariant forms of the Lie algebra 2 whose restrictions on g
are invariant forms of g.

THEOREM. Let a be an invariant form of the standard enveloping Lie algebra
A of a Lie triple algebra g. If a satisfies a(g, D(g, §))=0, then the restriction b=
alyxg4 is an invariant form of g. Conversely, if b is an invariant form of g, then there
exists a unique invariant form a of the Lie algebra U such that a(g, D(g, 9))=0 and
b=al,x,
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PrROOF. Assume that a is an invariant form of 2 satisfying a(g, D(g, g))=0, and
let b=al,v,. The formulas a([X, Y], Z)+a(Y, [X, Z])=0 and a([D(X, Y), Z], W)
+a(Z, [D(X, Y), W])=0 for X, Y, Z, W in g imply that b is A(g)-invariant. Also,
we get a([[Y, X], X1, Z]+a(Y, [[X, Z], X])=0, which shows that b is K.(g)-
symmetric. Thus, from Proposition 3 it follows that b=a l4xg is an invariant form
of g.

Conversely, suppose that b is an invariant form of g. A bilinear form a: % x A —
F can be defined in the following way: a(X, Y)=b(X, Y), a(X, D(Y, Z2)=a(D(Y, Z),
X)=0 and a(D(U, V), D(X, Y))=b(D(U, V)X, Y) for X,Y,Z, U,V in g. This
bilinear form a is symmetric. In fact, since b is invariant, b(D(X, Y)Z, W)—b(D(Z,
W)X, Y)=0 holds, so that a(D(Z, W), D(X, Y))=a(D(X, Y), D(Z, W)). By defini-
tion, a(g, D(g, )=0. To prove that a is an invariant form of 9 it is sufficient to show
the following (1)-(5): (1) a([X, Y], Z)+a(¥, [X, Z])=0. This is equivalent to
b(XY, Z)+b(Y, XZ)=0 under the condition a(g, D(g, g))=0. (2) a([X, Y], D(Z,
W) +a(Y, [X, D(Z, W)]) =0, which is reduced to the definition a(D(X, Y), Dz, W)=
b(Y,D(Z, W)X). (3) a([D(X,Y), Z], W)+a(Z, [D(X, Y), W])=0, which is obtained
from b(D(X,Y) Z, W)+ b(Z, D(X, Y)W)=0. (4) a([D(X,Y), Z], D(U, V)) +
a(Z, [D(X, Y), D(U, V)])=0, in which each term of the left hand side vanishes by
definition.  Finally, (5) a([D(X, Y), D(Z, W)], D(U, V)) + a(D(Z, W), [D(X, Y),
DU, V)))=0. In fact, since a(D(Z, W), [D(X, Y), D(U, V)])=a(D(Z, W), D(D(X,
U, V) +a(D(Z, W), D(U, D(X, Y)V))=b(D(Z, W)D(X, Y)U, V) + b(D(Z, W)U,
D(X, Y)V), the left hand side of (5) is equal to b([D(X, Y), Dz, W)]JU, V) +
b(D(Z, W)D(X, Y)U, V) + b(D(Z, W)U, D(X, Y)V)=b(D(X, Y)D(Z, W)U, V) +
b(D(Z, W)U, D(X, Y)V)=0. The uniqueness of such a is shown by a([Z, w1, [X,
YD +a([X, [Z, W], Y)=0 and b(ZW, XY)+b(X(ZW), Y)=0. g.e.d.

In this theorem, the invariant form a of the standard enveloping Lie algebra of g
will be said to be associated with the invariant form b of g.

ReMARK 1. In [3] the Killing-Ricci form B of a Lie triple algebra g is treated.
The Killing form o of W=g@®D(g, g) is associated with § if and only if y=0, where
VX, Y, Z)y=a(D(X, Y), Z) for X, Y,Z in g. If g is reduced to a Lie triple system,
then o is associated with the Killing form B of g (cf. [5], [6]). In general, « is not
always associated with the Killing-Ricci form 8.  For instance, let g be a Malcev algebra
(cf. [5]). K. Yamaguti [9] has shown that g becomes a Lie triple algebra (general
Lie triple system) under the operations L(X)=A(X) and D(X, Y)=A(X Y)+[AX),
AY)], where A(X): Y—XY is the left multiplication of the Malcev algebra. The
Killing form « of the standard enveloping Lie algebra of this Lie triple algebra satisfies
UD(X, Y), Z)=—0(XY, Z) which does not always vanish, where (X, Y)=tr MXMY)
denotes the Killing form of the Malcev algebra. .

In [4] the concept of K-radical of g has been introduced as the orthogonal com-
plement Ry =(g‘V)* with respect to the Killing-Ricci form f under the condition y=0.
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It is considered as a generalization of radicals of Lie algebras, by virtue of the theorem
on p. 73 in [1]. Some analogous properties for an invariant form b and R,=(gV'})
with respect to b are mentioned in the following:

Let b be an invariant form of g and a the invariant form of U=g®D(g, 9)
associated with b.

PROPOSITION 7. The form b is nondegenerate if and only if a is nondegenerate.

PrROOF. If a is nondegenerate, so is b, since b(X, g)=0 implies a(X, A)=0 for
X in g. Conversely, assume that b is nondegenerate and that a(Xy+ Dy, W)=0 for
some Xoeg and DoeD(g, g). Then, a(Xo+ Do, g)=b(Xo, g)=0 implies X,=0.
On the other hand, a(Dy, D(X, Y))=b(DoX, Y)=0 for any X, Yeg. Hence DoX =0,
that is, Do =0 as an endomorphism of g. g.e.d.

PROPOSITION 8. Let by be an ideal of g and B=bh@D(g, b) an ideal of W generated
by b (cf. [2]). Then, b(h, g')=0 if and only if a(B, [, AP =0.

PROOF. Assume that b(h, g2)=0. Then b is contained in the orthogonal com-
plement of [2U, A] with respect to a. In fact, a(b, [, AN <= ah, gg+D(g, g)g) =
b(h, g)={0}. Hence a(B, [U, AN=a(®@D(g, b), [A, A =a(h+[A, b], [A, A
={0}. The converse is clear since a(h, [X, Y])=b(h, XY) and a(h, [D(X, Y), Z])=
b(h, D(X, Y)Z) for X, Y, Z in g. g.e.d.

REMARK 2. In the case of the Killing-Ricci form f, the proposition obtained
above is reduced to Proposition 2 in [4].
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