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In this paper, we introduce the notion of semi-prime radicals and prime radicals in Malcev
algebras and investigate their properties.

§0. Introduction

The notion of radicals plays an important role in the theory of associative algebras.
It seems to be interesting for us to know how the corresponding notion behaves in
Malcev algebras which generalize the class of Lie algebras. In this paper we shall
investigate the semi-prime radicals, prime radicals for Malcev algebras.

Let @ be a field of characteristic 0. A Malcev algebra M over @ is an anti-
commutative algebra satisfying the identity

(xp) (x2) =((xy)2)x +((y2)x)x +((zx)x)y forall x,y,z in M.

Throughout the paper we shall be concerned with a finite dimensional Malcev algebra
M over ®. For an ideal 4 of M, we put AV =A4A4 and A® =A*"DAED (k=2).
An ideal 4 is called solvable if there is a positive integer k such that A%*)=0. Since
M is finite dimensional, it contains a unique maximal solvable ideal R,(M), which is
called the solvable radical of M. We mainly employ the terminology and notation
in [6] and [9].

§1. Preliminaries

Recall that a Lie triple algebra (general Lie triple system) T over a field of charac-
teristic 0 is a vector space with a bilinear composition xy and a trilinear composition
[xyz] satisfying

(1) xx=0

() [xyz]=—[yxz]

(3) [xyzl+[yzx]+[zxy]+(xp)z +(yz)x +(2x)y =0
@) [(xy)zwl+[(y2)xw]+[(zx)yw] =0
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) [xyew)]=[xyzIw+z[xyw]
(©)  [xy[zow]]=[[xyzJow]+[z[xyv]w]+ [zo[xyw]]

for all x, y, z, v, win T (cf. [3], [11]). Any Lie algebra is a Lie triple algebra relative
to xy=[x, y] and [xyz]=[[x, y], z]. If [xyz]=0 for all x, y, z in T, the axioms
stated above are reduced to those of Lie algebras and if xy=0 for all x, y in T, the
axioms are reduced to those of Lie triple system.

In [6, Satz. 1], Loos proved that a Malcev algebra M becomes a Lie triple system
with respect to a ternary composition [xyz]=x(yz)—y(xz)+2(xy)z, which is called
the Lie triple system associated with M and is denoted by Tj,.

Also in [11, Theorem 1.1], Yamaguti proved that a Malcev algbera M becomes
a Lie triple algebra with respect to the composition xy and [xyz]; =(xy)z — y(xz)+
x(yz), which is called the Lie triple algebra associated with M.

If 4 is an ideal of a Malcev algebra M, so are A =AA+M(AA) and A=
AA+[MAA],. Obviously, AV’ 2 A1, Conversely, since A =AA4+M(AA)S AA+
[MAA] +[MAA], =A™, we get AV=A1), The notion of solvability arising from
descending chains of these ideals are called L-solvability [4] and Y-solvability [11]
respectively. Thus L-solvability and Y-solvability are coincident for Malcev algebras.
Let R,(M) (resp. R3(M)) denote the unique maximal L-solvable ideal (resp. Y-solvable
ideal), which is called the L-solvable radical (resp. Y-solvable radical).

REMARK 1. In [8, Theorem 1.1], Ravisanker proved that for an ideal 4 of a
Malcev algebra M, the following statements are equivalent:

(1) A is solvable.

(2) Ais L-solvable.

(3) A is Y-solvable.
Therefore we have R,(M)=R,(M)=R;(M).

§2. Semi-prime radicals and prime radicals

Let M be a Malcev algebra. As in associative rings (cf. [7]), we say that an ideal
Q of M is semi-prime if the following condition is satisfied: If H<><Q for an ideal
H of M, then H=Q.

REMARK 2. (1) A Malcev algebra M is a semi-prime ideal of M.

(2) Let Q be a semi-prime ideal. If there is a positive integer k such that I*>< Q
for an ideal I of M ; then I Q.

(3) The intersection of all the semi-prime ideals of M is a semi-prime ideal.

REMARK 3. ([11, Lemma 2.1]) If 4 and B be ideals of a Malcev algebra M,
then AB+[MAB],+[MBA], is an ideal of M.
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An ideal P of M is called prime if the relation HK+[MHK],+[MKH], &P
for ideals H, K of M implies H=S P or K< P.

As in commutative rings, we define the irreducibility of ideals as follows: An
ideal N of M is said to be irreducible if N=H n K with ideals H, K of M implies
N=H or N=K.

PrOPOSITION 1. Let M be a Malcev algebra.

(1) Any prime ideal is semi-prime.

(2) Any prime ideal is irreducible.

(3) Any maximal ideal is irreducible.

(4) Among prime, semi-prime, irreducible and maximal ideals, there are no
implications except (1), (2) and (3).

Proor. (1) From [xyz],=(xy)z—y(xz)+x(yz), it follows that the identity
2xy)z+[zxy], —[zyx]; =0 holds.
Hence

M(AB)<[MAB], +[MBA],.

Therefore if P is a prime ideal then it is also semi-prime.
(2) Suppose that H N N is a prime ideal. Then (2) is immediate since

HN+[MHN],+[MNH],<HnN.

(3) This is clear.

(4) Let M, be a 2-dimensional non abelian Malcev algebra, that is, My=<x, y) with
xy=x. Then the ideals of M, are (0), {x) and M,. The ideal (0) is irreducible but
neither prime nor semi-prime, for xx=0. Clearly (0) is not maximal. Since
MoMy=(MoMy)M,=<x), {x) is maximal, but neither prime nor semi-prime. By
the definition of M, it is prime but not maximal. Let M, M, and M; be simple
Malcev algebras. Let M'=M,®M,®M;. Then the ideals containing M, properly
are M;@M,, M;®M; and M'. Therefore M, is semi-prime, and since

(M;@M,)(M,®@M3)s(M @M,)n (M, ®M;)=M;,

(M, ®M,®M3)(M; ®@M,) (M, ®M3)], (M @M,)n(M,@M3)=M,
and

(M, @M, @M 3)(M;®M3)(M,®M,)]; (M, ®M3) N (M;®M,)=M;,

M, is neither prime nor irreducible. Obviously, M, is not maximal. This completes
the proof.

PRrROPOSITION 2. If M is a Malcev algebra then P is a prime ideal of M if and only
if P is irreducible and semi-prime.
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PrROOF. Suppose that P is irreducible and semi-prime, and let H, K be ideals of
M satisfying

HK +[MHK], +[MKH], cP.
If we put N=(H+P) n (K + P), then
NN+M(NN)s(H+P)(K+P)+[M(H+P)(K+P)];+[M(K+P)(H+P)],cP.
Hence NP and P=(H+P)n(K+P). Then

P=H+P or P=K+P:
that is,
HcP or KcP.

Therefore P is prime. The converse was shown in Proposition 1. This completes
the proof.

We denote by R, (M) (resp. Rs(M)) the intersection of all the semi-prime ideals of
M (resp. prime ideals of M) and call it the semi-prime radical of M (resp. prime
radical of M).

THEOREM 3. For a Malcev algebra M, the semi-prime raidcal R, (M) is equal
to the L-solvable radical R,(M).

ProOF. It is obvious by (2) of Remark 2 in this section that
Ry(M)2R,(M).

Conversely, if H <*>< R,(M) for anideal H of M, then H is L-solvable, since H<"+1>=
(HP)w> =(0) for some positive integer n. Hence H £ R,(M), i.e. Ry(M) is semi-prime.
Therefore

RyM)ESR,(M).
This completes the proof.

THEOREM 4. The prime radical Rs(M) of a Malcev algebra M is equal to the
Y-solvable radical R5(M).

PrOOF. Let H be a Y-solvable ideal of M. Then there is an integer n =0 such
that HI"1=(0). For any prime ideal P of M we have H<P, since H"1=(0)c P.
Therefore R3(M)< Rs(M). Assume that R5(M) is not Y-solvable. Let 4 be a collec-
tion of ideals H such that Rs(M)["I&H for all n=0. Then 4 is not empty because
(0)e 4. From finite dimensionality of M, it follows that 4 has a maximal element
P. If there are ideals H, K of M such that HXP, K& P and HK+[MHK], +
[MKH], P, then no one of H+ P and K + P is contained in 4. Hence Rs(M)!*1c H
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+P and Rs(M)XIcK+P for some integers h, k=0. Let s=max{h, k}. Then
Ry(M)tst11 < (H 4+ P)(K+P)+[M(H + P)(K+P)]; + [M(K + P)(H + P)],

cHK+[MHK],+[MKH],+P
cP.

This contradicts Ped. Hence P is prime and Rs(M)&P, which contradicts the
definition of Rs(M). Therefore R5(M) is Y-solvable and Rs(M)< R3(M). This com-
pletes the proof.

From the theorems above and Remark 1 in §1, we have the following theorem:

THEOREM 5. For a Malcev algebra M, R;(M) = R,(M) =R3(M) = R, (M) =
Rs(M).

3. Radicals of a Malcev algebra M and its Lie triple system T,

In this section, we shall consider the correspondence between semi-prime ideals
(resp. prime ideals) in a Malcev algebra M and semi-prime ideals (resp. prime ideals)
in the Lie triple system T}, associated with M. For the notion of semi-prime and prime
ideals of Lie triple systems, see [2].

PROPOSITION 6. Let Q be an ideal of M which is semi-prime as an ideal of Ty,.
Then Q is semi-prime as an ideal of M.

PrOOF. Let Q be a semi-prime ideal of T, and A be an ideal of M satisfying
A< Q. From the definition of the ternary composition of the Lie triple system
T, associated with M,

[Ty AA] S Ty AA) + A(Ty A) +(TyA)A
S AA+M(AA)

= AL
Therefore we obtain that A is contained in Q. This completes the proof.

PROPOSITION 7. Let P be an ideal of M which is prime as an ideal of Ty;. Then
P is prime as an ideal of M.

PrOOF. Let P be a prime ideal of T), and H, K ideals of M satisfying
HK+[MHK],+[MKH],cP.

As in the proof of Proposition 6,
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[TyHK] s T)(HK)+ H(TK) +(T;;H)K
S HK+M(HK)
cHK+[MHK],+[MKH],.

From the definition of prime ideals of Lie triple systems in [2], we deduce HS P or
KgP. This completes the proof.

In [6, Satz 2], Loos proved that the solvable radical R;(M) of Malcev algebra
M is equal to the solvable radical R(T,) of the Lie triple system T;,. From R,(Ty,)=
Ry(Ty)=R3(Ty)=Ry(Ty) ([2, Theorem 4]) and R;(M)=R,(M)=R;3(M)=R,(M)=
Rs(M), the next theorem follows.

THEOREM 8. Let M be a Malcev algbera and T, the Lie triple system associated
with M. Then the semi-prime radical (resp. prime radical) of M is equal to the
semi-prime radical (resp. prime radical) of Ty;.

4. Appendix (Radicals of generalized standard algebras)

In [1] Albert defined the class of standard algebras, including all associative and
commutative Jordan algebras.. Now we recall that the class of generalized standard
algebras A over a field of characteristic 0 is defined by the conditions (i)-(iv) below

(cf. [10]).

(i) Ais flexible, i.e. (x, y, x)=0 for all x, y in A.
(ii) H(x, y, z)x=H(x, y, xz) for all x, Yz in A.
i) (x, y, w2)+w, y, x2)+(z, y, xw)=[x, (w zZ, 1+, w, [y, z])
for all x, y, z, w in A.
(iv) D,,=[L,LJ+[L,, RJ+[R,, R,] is a derivation of A4 for all x, y in A.

Here (x, y, 2)=(xy)z—x(yz)
[x, y]=xy—yx
H(xa ¥, Z)=(x’ Vs Z)+(ya 2, x)+(z, X, y)
L(y)=xy R(y)=yx

All alternative algebras and standard algebras are generalized standard algebras.

For an ideal B of 4, we put B‘=B, B>=BB+ A(BB) and B = Bk~ pk~1> 4
A(B*~PB%=1) (k=2). An ideal B is called L-solvable (it is called Penico solvable
in [10]) if there is a positive integer k such that B%*>=0. o

As in the Malcev-algebras of §2, we say that an ideal Q of 4 is semi-prime if the
following condition is satisfied: If H"’<Q for an ideal H of A4, then H< Q.

ReMARK 4. (1) A generalized standard algebra 4 is a semi-prime ideal of A.
(2) Let Q be a semi-prime ideal. If there is a positive integer k such that C*><Q
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for an ideal C of 4; then C< Q.
(3) The intersection of all the semi-prime ideals of 4 is a semi-prime ideal.

We also denote by R,(4) the intersection of all the semi-prime ideals of a gene-
ralized standard algebra A and call it the semi-prime radical of A.

TueoREM 9. The semi-prime radical R,(A) is equal to the L-solvable radical
R,(A4).

Proor. The proof is similar to the one for Malcev algebras, and we omit it.

In [10], Schafer proved that the solvable radical is equal to the Penico solvable
radical. Therefore, the following three radicals are equal: (1) Solvable radical
R,(A), (2) L-solvable radical (Penico solvable radical) R,(4) and (3) Semi-prime
radical R,(4).
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