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AN ENUMERATIVE PROBLEM CONCERNING LOOPS ON A
GRAPH
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Abstract. Correspondence between a set of loops on a graph and a set con-
sisting of perfect matchings in complete multipartite graphs assigned to vertices
is considered. The latter is introduced to investigate some enumerative problem
concerning to loops on a graph.

1. Acknowledgement

In this article, a part of results obtained in Ref.[1] is announced. A motivation
is described in [2]; thus it is not repeated here. More detailed account is planned
to be published in the future.

2. Admissible closed walks and loops on a graph

Let G be a triple (V,E, φ) where V and E are nonempty finite sets and φ :
E → V × V . We write φ(e) = (i(e), t(e)). We shall refer to this triple simply as a
graph G. Formally let −E = {−e | e ∈ E} and let I = E t (−E) (disjoint union).
Define − : I → I, i : I → V , t : I → V , ε : I → E and o : I → {+1,−1}
as follows: Let m ∈ I; if m = e for some e ∈ E then −m = −e, i(m) =
i(e), t(m) = t(e), ε(m) = e, o(m) = +1; otherwise, if m = −e for some e ∈ E
then −m = e, i(m) = t(e), t(m) = i(e), ε(m) = e, o(m) = −1.

Let p be a positive integer, and let Wp be the set consisting of all p-tuples
(m0,m1, . . . , mp−1) of members of I satisfying t(mi) = i(mi+1) for 0 ≤ i ≤ p − 2,
t(mp−1) = i(m0), mi+1 6= −mi for 0 ≤ i ≤ p − 2 and m0 6= −mp−1. We shall
call an element of Wp an admissible closed walk (on the graph G) of length p.
Let Dp = 〈S, R |Sp = R2 = 1, RSR−1 = S−1〉 be the dihedral group of order
2p. Define an action of Dp on Wp by S((m0,m1, . . . ,mp−1)) = (m1, . . . , mp−1,m0)
and R((m0, . . . , mp−1)) = (−mp−1, . . . ,−m0). Let w ∈ Wp, and let Dp,w = {X ∈
Dp |X fixes w}. (Dp,w is the stabilizer of w.) We call the number d(w) = |Dp,w|
the degeneracy of w. An orbit of Dp on Wp (a Dp-equivalence class of Wp) is said
to be a loop of length p (on the graph G). Let Lp be the set of all loops of length
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p. The degeneracy of L ∈ Lp is defined to be that of w ∈ Wp which belongs to the
class L.

Let L = t∞p=1Lp; the element of L will be called a loop (on G). Consider
formally an associative and commutative product of loops; let Z be the set of all
such products: Z = {L1 · · ·Ln |n ≥ 1, Li ∈ L}. Note that each element of Z
is factorized as Z = Lj1

1 · · ·Ljk

k where the factors L1, . . . , Lk are distint loops and
j1, . . . , jk are positive integers; this factorization is unique except for the order of
the factors.

Let x = {xe | e ∈ E} be a set of commutative indeterminates. Define xw =∏p−1
i=0 xε(mi) for w = (m0, . . . , mp−1) ∈ Wp. For L ∈ Lp define xL = xw where

w ∈ Wp is a representative of L. For Z = L1 · · ·Ln ∈ Z define xZ = xL1 · · ·xLn .
For r = (re | e ∈ E) ∈ Z≥0 × · · · × Z≥0 write xr =

∏
e∈E xre

e . Define A = {r ∈
Z≥0 × · · · × Z≥0 |xr = xZ for some Z ∈ Z}, and Z(r) = {Z ∈ Z |xZ = xr} for
r ∈ A.

3. Complete multipartite graphs assigned to vertices and perfect
matchings in them

Let r = (re | e ∈ E) ∈ A.
Define Part(α, r) = {(e, +) | e ∈ E, i(e) = α, re ≥ 1} t {(e,−) | e ∈ E, t(e) =

α, re ≥ 1} for α ∈ V , and define V (r) = {α ∈ V |Part(α, r) is not empty}.
Let α ∈ V (r). For each (e, s) ∈ Part(α, r) write Xe,s = {(e, s, ρ) | ρ = 1, . . . , re};

consider a complete |Part(α, r)|-partite graph,1 denoted K(α, r), with vertex classes
Xe,s, (e, s) ∈ Part(α, r). Let M(α, r) be the set consisting of all perfect matchings1

in the graph K(α, r), and let M(r) =
∏

α∈V (r)M(α, r).

Define E(r) = {e ∈ E | re ≥ 1}. Let S(r) =
∏

e∈E(r) Sre , where Sr is the symmet-

ric group of order r. Define an action of the group S(r) onM(r) as follows: For σ =
(σe | e ∈ E(r)) and M = (Mα |α ∈ V (r)), M ·σ = (Mα ·σ |α ∈ V (r)), and Mα ·σ is
defined to be {{(e, s, ρ ·σe), (e

′, s′, ρ′ ·σe′)}, . . .} for Mα = {{(e, s, ρ), (e′, s′, ρ′)}, . . .}.

4. Correspondence between S(r)-orbits and products of loops

Proposition. Let r ∈ A. There exists a one-to-one correspondence between Z(r)
and the set of all S(r)-orbits on M(r).

The proof is in a similar way to that of the next theorem; it is omitted here.

1A simple graph H is a pair (V, E) where V (the vertex set) is a nonempty finite set and E
(the edge set) is a set whose element is a set consisting of two members in V . A simple graph
H is a complete k-partite graph with vertex classes V1, . . . , Vk if the vertex set is V1 ∪ · · · ∪ Vk,
where Vi∩Vj = ∅ whenever i < j, and the edge set consists of all edges joining vertices in distinct
classes. A subset M of the edge set of a simple graph H is called a matching in H if e ∩ e′ = ∅
whenever e 6= e′, e, e′ ∈ M ; a matching M in H is perfect if ∪e∈Me is the vertex set of H. (For
graph theory terminology, see, e.g., [3]. )
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Theorem. Let Z ∈ Z, Z = Lj1
1 · · ·Ljn

n , where L1, . . . , Ln are distinct loops and
j1 ≥ 1, . . . , jn ≥ 1. Let r be an element of A such that xr = xZ. Let M be an
element of M(r) which corresponds to Z. Then,

|M · S(r)| =
∏

e∈E(r) re!

j1!d(L1)j1 · · · jn!d(Ln)jn

where M · S(r) is an orbit on M(r).

Outline of proof. Write Z = Lj1
1 · · ·Ljn

n = L′1 · · ·L′k (k = j1 + · · ·+ jn). We explain
how to make M ∈M(r) (perfect matchings at vertices) from this Z. Explanation
is algorithmic; a phrase ‘A ← B’ means ‘A is (re)defined to be B’.

Set Mα = ∅ for α ∈ V (r), and set c = 1 (used as a counter). Let Be be, initially,
a set {1, 2, . . . , re}.

(STEP i) If p is the length of L′c, choose arbitrary a representative w = (m0, . . . , mp−1)
(∈ Wp) of the class L′c.

(STEP ii) Choose an element ρ from Bε(m0). Let Bε(m0) ← Bε(m0) − {ρ}, and let
i = 0.

(STEP iii) If i = p − 1 then go to STEP iv. Otherwese, choose an element ρ′

from Bε(mi+1), and let Bε(mi+1) ← Bε(mi+1) − {ρ′}. Write α = t(mi). Let Mα ←
Mα ∪ {{(ε(mi),−o(mi), ρ), (ε(mi+1), o(mi+1), ρ

′)}}. Set i ← i + 1 and ρ ← ρ′, and
go back to the beginning of this STEP.

(STEP iv) [Now i = p − 1. ] Choose ρ′ ∈ Bε(m0), and let Bε(m0) ← Bε(m0) −
{ρ′}. Write α = t(mp−1) (= i(m0)) and let Mα ← Mα ∪ {{(ε(mp−1),−o(mp−1), ρ),
(ε(m0), o(m0), ρ

′)}}. If c = k the construction is terminated here; otherwise, set
c ← c + 1, and go to STEP i.

Let M = (Mα |α ∈ V (r)); this is an element of M(r) corresponding to Z.
What is the number of ways to get such M from Z? At first grance, it seems

to be
∏

e∈E(r) re!; but it is not true. Since L′c has an ‘internal’ symmetry Dp,w it

must be divided by d(L′c) per L′c. (Recall d(L′c) = |Dp,w|. ) Moreover, since, in Z,
a factor L1 appears j1 times, a factor L2 appears j2 times, and so on, the number
of ways must be divided by j1!j2! · · · jn!. Thus, we obtain the theorem. ¤

Corollary. Let S(r)M = {σ ∈ S(r) |M · σ = M} be the stabilizer of M . Then,

|S(r)M | = j1!d(L1)
j1 · · · jn!d(Ln)jn .

Proof. Recall |M · S(r)| = |S(r)|/|S(r)M | and |S(r)| = ∏
e∈E(r) re!. ¤
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