
Mem. Fac. Sci. Eng. Shimane Univ.
Series B: Mathematical Science
36 (2003), pp. 49–55

ON COMPLEX SPHERES

KYOKO HONDA, TOSHIHIKO IKAWA AND SEIICHI UDAGAWA

Communicated by S. Maeda

(Received: January 31, 2003)

Abstract. A complex sphere is a typical example of spaces of which the index is
just the half of the dimension. In this paper, we study characters of the complex
sphere and characterize it by the hypersurface theory.

1. Introduction

If we consider amounts of study of differential geometry by the index k of the
metric, the case of k = 0 (i.e., the Riemannian metric) will have a considerable
amount in it. On the case k 6= 0 (i.e., pseudo-Riemannian metric), the case of
k = 1 (i.e., the Lorentzian metric) will have a great amount, for the Lorentzian
metric have an important role in the relativity theory.

Nevertheless, from a pure mathematical stand point of view, a minor field (i.e.,
the case of k 6= 0 and k 6= 1) may have fruitful results, we think. A very natural
question is that: what can we say by generalizing results of Lorentzian case into
general pseudo-Riemannian cases? Conversely, we can ask following question : (1)
Is there some special number on the index ? (2) Is there a typical space of some
special number of the index ?

The purpose of this paper is to give an answer to the last question. In this paper,
we consider the complex sphere. For, its index is just the half of the number of the
dimension.

2. Comple Riemannian metric

This section is devoted to recalling the complex Riemannian metric. For detail
of this section, see [1].

Let V be a real 2n-dimensional vector space with a complex structure J and
V C the complexification of (V, J). The complex linear extension of J onto V C is
denoted by the same letter J . If we put

V 1,0 = {Z ∈ V C : JZ =
√−1Z}, V 0,1 = {Z ∈ V C : JZ = −√−1Z},
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then V C = V 1,0 ⊕ V 0,1 and the complex conjugation

Z = X +
√−1Y −→ Z = X −√−1Y, (X,Y ∈ V )

in V C defines a linear isomorphism between V 1,0 and V 0,1.
Let g be a real inner product in (V, J) satisfing

(2.1) g(JX, JY ) = −g(X,Y ), X, Y ∈ V,

(hence the index of V is n). Then g can be extended uniquely to a symmetric
complex nondegenerate bilinear form G of V C with

(2.2) G(Z, W ) = G(Z, W ), G(Z,W ) = −G(JZ, JW ), Z, W ∈ V C .

Conversely, every symmetric complex bilinear form G on V C satisfying (2.2) is the
natural extension of a real inner product g in (V, J) satisfying (2.1).

The condition G(Z, W ) = −G(JZ, JW ) ( Z, W ∈ V C) is equivalent to
G(Z, W ) = 0(Z,W ∈ V 1,0). That is, symmetric complex bilinear form satisfying
(2.2) is completely determined by its values on V 1,0.

Let Z = (z1, . . . , zn) ∈ Cn. By setting, zk = xk +
√−1yk, xk, yk ∈ Rn (k =

1, . . . , n), the standard identification of Cn with R2n is given by

(z1, . . . , zn) −→ (x1, . . . , xn, y1, . . . , yn).

The canonical complex structure J of R2n is

(x1, . . . , xn, y1, . . . , yn) −→ (−y1, . . . ,−yn, x1, . . . , xn)

and the canonical inner product g of R2n is defined by

g(Z, Z) = 2Re
(
(z1)2 + · · ·+ (zn)2

)

= 2
(
(x1)2 + · · ·+ (xn)2 − (y1)2 − · · · − (yn)2

)
.

There is a natural one-to-one correspondence between the set of inner product of
R2n, satisfying the property (2.1) with respect to the canonical complex structure
J , and the homogeneous space GL(n,C)/O(n,C).

Let (M, J) be a real 2n-dimensional manifold with the complex structure J . If
z1, . . . , zn are holomorphic coordinate in a coordinate neighbourhood U of p ∈ M
and zk = xk +

√−1yk (k = 1, . . . , n), then

Zα =
∂

∂zα
=

1

2

(
∂

∂xα
−√−1

∂

∂yα

)
, Zα =

∂

∂zα
=

1

2

(
∂

∂xα
+
√−1

∂

∂yα

)

form a basis of (TC
p M)1,0 and (TC

p M)0,1, respectively.
Let G be a complex Riemannian metric of (M,J), i.e., G satisfies (cf. [1])

G(Z, W ) = G(Z, W ), G(JZ, JW ) = −G(Z, W ), Z, W ∈ TCM.

If we put GAB = G(ZA, ZB), then the above conditions are written as

GAB = GAB, Gαβ = Gαβ = 0,

where

A,B = 1, . . . , n, 1, . . . , n, α, β = 1, . . . , n.
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The complex Riemannian metric G induces a real pseudo-Riemannian metric g of
index n on (M, J).

On (M, J,G), there exists a unique linear connection D with components DA
BC

such that

DA
BC = DA

CB, Dα
βγ = Dα

βγ, DαGβγ = 0.

If the Levi-Civita connection ∇ of G satisfies ∇J = 0 then ∇ coincides with D
and the converse is also true.

3. Complex sphere

This section is devoted to defining and finding some characters of the complex
sphere.

The complex sphere CSn(c) is defined by

CSn(c) = {(z1, . . . , zn+1) ∈ Cn+1 : (z1)2 + · · ·+ (zn+1)2 = c, c ∈ C, c 6= 0}.
Since CSn(c) is diffeomorphic to the tangent bundle TSn of the sphere Sn of

Rn+1, CSn(c) is connected and simply connected. Moreover, CSn(c) is complete
with respect to the induced connection ∇ from Cn+1.

By the definition of CSn(c), we have
∑n+1

i=1 zidzi = 0 on CSn(c). Let ζ =∑n+1
i=1 zi∂/∂zi be a holomorphic vector field on Cn+1. Then it follows that

(
n+1∑
i=1

zidzi

)
(ζ) =

n+1∑
i=1

(zi)2 = c (6= 0),

g(W, ζ) =
n+1∑
i=1

dzi(W )dzi(ζ) =

(
n+1∑
i=1

zidzi

)
(W ) = 0, W ∈ T 1,0

p .

Hence ζ is transversal and a normal vector field on M . As g(ζ, ζ) =
∑n+1

i=1 (zi)2 =
c (6= 0), the induced metric g on M is non-degenerate and satisfies g(JX, JY ) =
−g(X,Y ).

Next we consider some characters of CSn(c) as a complex hypersurface. Let D be
the Levi-Civita connection on Cn+1. Since DW ζ = W,DW ζ = 0 for W ∈ X(TM1,0),
the shape operator S of CSn(c) is given by

(3.1) S = −I on TM1,0, S = 0 on TM0,1.

Let ∇ be the induced Levi-Civita connection on CSn(c). The Gauss formula is
defined by

DXY = ∇XY + B(X, Y )ζ, X, Y ∈ X(TM1,0).

Then we have

(3.2) B(X, Y ) = −1

c
g(X, Y ), X, Y ∈ X(TM1,0),

by virtue of

cB(X, Y ) = g(DXY, ζ) = −g(Y, DXζ) = −g(X, Y ).
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By the equation of Gauss, the curvature tensor R of CSn(c) satisfies

R(Z,W )U = B(W,U)SZ −B(Z, U)SW,

R(Z,W )U = 0,

R(Z, W )U = −B(Z, U)SW, Z,W,U ∈ X(TM1,0).

Using (3.1) and (3.2), we have

R(Z, W )U =
1

c
(g(W,U)Z − g(Z, U)W ),

R(Z, W )U = 0,

R(Z, W )U = R(Z, W )U = 0,

R(Z, W )U = R(Z, W )U =
1

c
(g(W, U)Z − g(Z, U)W ).

(3.3)

Let Ric be the Ricci tensor of CSn(c).
For a basis {e1, . . . , en} of TM1,0 satisfying g(ei, ej) = δij, it follows that

Ric(W,U) =
n∑

i=1

g(R(ei, W )U, ei) +
n∑

i=1

g(R(ei,W )U, ei) =
n− 1

c
g(W,U),

Ric(W,U) = 0,

Ric(W, U) = Ric(W,U) =
n− 1

c
g(W, U).

(3.4)

Hence the Ricci operator Q of CSn(c) satisfies

(3.5) QW =
n− 1

c
W, QW =

n− 1

c
W.

The scalar curvature r of CSn(c) is given as

(3.6) r = n(n− 1)

(
1

c
+

1

c

)

by virture of (3.5).

Proposition 3.1. ([2]) Let CSn(
√−1a) (a ∈ R) be a complex sphere with the

radius whose square is pure imaginary. Then CSn(
√−1a) is comformally flat and

its scalar curvature is identically zero.

Proof. By setting c =
√−1b in (3.6), it follows that r = 0.

From (3.3), (3.4), and (3.5), we have

R(X,Y )Z =
1

2n− 2
(QX ∧ Y + X ∧QY )Z, X, Y, Z ∈ TMC ,

by virtue of r = 0. Hence CSn(
√−1a) is conformally flat. ¤
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Remark. If we set zi = xi +
√−1yi (i = 1, . . . , n) then the equation

∑n
i=1(z

i)2 =√−1a is rewritten as 



∑n
i=1 ((xi)2 − (yi)2) = 0,

∑n
i=1 xiyi = a

2
.

Therefore CSn(
√−1a) is the intersection of the lightcone

∑n
i=1 ((xi)2 − (yi)2) = 0

and a “hyperboloidal”hypersurface on R2n+2. From this fact, we can see that
CSn(

√−1a) is conformally flat, as well.
Incidentally, the complex sphere CSn(a), a ∈ R is rewritten as





∑n
i=1 ((xi)2 − (yi)2) = a,

∑n
i=1 xiyi = 0.

4. Characterization of the complex sphere

In this section, we characterize CSn(
√−1a), a ∈ R, in the class of invariant

hypersurfaces of Cn+1.
Let Cn+1 be the real (2n+2)-dimensional flat space with anti-Kähler structure

J . By M2n, we denote the invariant hypersurfadce of Cn+1. Then the induced
structure J and the metric g on M2n satisfy

J2 = −1, g(JX, JY ) = −g(X,Y ), g(JX, Y ) = g(X, JY ),

for any tangent vector fields X and Y of M2n. This means that g is pseudo-
Riemannian with index n.

Let D (resp. ∇) be the covariant derivative of Cn+1 (resp. M2n). Then the
Gauss and Weingarten formulas are given as

DXY = ∇XY + B(X,Y ), DXN = −AN(X) +∇⊥
XN,

for any tangent vector fields X and Y , and normal vector field N , where ∇⊥ is the
normal connection and B(X,Y ) (resp. AN) is the second fundamental form (resp.
shape operator) of this hypersurface.

If (M2n, g, J) is anti-Kähler, i.e., it satisfies ∇J = 0, then we have

B(JX, Y ) = JB(X,Y ), JAN = AJN = ANJ.

Lemma 1. Let V 2n be a 2n-dimensional metric vector space with complex Rie-
mannian structure J . Then we can give an orthonormal basis {e1, Je1, . . . , en, Jen}
on V 2n.

Proof. Let x be a spacelike vector. Then Jx is timelike. As

J(Span{x, Jx}) = Span{x, Jx},
Span{x, Jx} is a 2-dimensional subspace with Lorentzian metric.
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A self-adjoint linear operator on a 2-dimensional Lorentzian space hase a matric
of on of the following three types:

(i)

[
a 0
0 b

]
, (ii)

[
a b
−b a

]
, (iii)

[
a 0
±1 a

]

where (i) and (ii) are given by an orthonormal basis and (iii) by a null basis.
Comparing the complex Riemannian structure J and (i), (ii) and (iii), we may

write

J =

[
0 −1
1 0

]
.

Hence, on Span{x, Jx} we have an orthogonal basis {e1, Je1} such that g(e1, Je1) =
0.

Let e2 be a unit vector in V 2n of g(e1, e2) = g(Je1, e2) = 0. Then, from
g(Je1, Je2) = −g(e1, e2) = 0, we have

Span{e1, Je1} ⊥ Span{e2, Je2}.
Continuing this process, we can obtain an orthonormal basis {e1, Je1, . . . , en, Jen}.

¤

Let {Ns, Nt} be an orthonormal basis of the normal space of M2n, where Ns (resp.
Nt) is spacelike (resp. timelike). We may take Nt = JNs. Then the equation of
Gauss can be written as

0 = g(R(X, Y )Z, W )− g(ANs(Y ), Z)g(ANs(X), W )

+ g(ANt(Y ), Z)g(ANt(X), W )

+ g(ANs(X), Z)g(ANs(Y ),W )− g(ANt(X), Z)g(ANt(Y ),W ),
(4.1)

where R(X, Y )Z is the curvature tensor of M2n.
Then, for an orthonormal basis {e1, Je1, . . . , en, Jen}, the Ricci tensor Ric(X, Y )

of M2n is given as

Ric(X, Y ) =2(TrANs)g(ANs(X), Y )

− 2(TrAJNs)g(AJNs(X), Y )− 2g(ANs(X), ANs(Y )),

T rANs :=
n∑

i=1

g(ANs(ei), ei), T rANt :=
n∑

i=1

g(ANt(ei), ei).
(4.2)

Now, assume that the shape operator ANs satisfies the following condition (∗)±

ANs = λ (I ± J) . . . . . . (∗)±
where we use the identification

∑n
i=1 aiei +

∑n
i=1 biJei ←→ t (a1, · · · , an, b1, · · · , bn)

and I is the identity matrix of order 2n.
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Remark. This condition is inspired by (3.1). In fact, (3.1) is rewritten as

Aζ = −1

2

(
I −√−1J

)
, Aζ + Aζ = −I = S.

Theorem . Let M2n be a simply connected, complete invariant anti-Kähler hyper-
surface in Cn+1. If the shape operator of M2n satisfies (∗)±, then M2n is isometric
to a complex sphere CSn

(±√−1/(4λ2)
)
.

Proof. By substituting (∗)± into (4.2), it follows that

(4.3) QX = ±4(n− 1)λ2JX,

where Q is the Ricci operator of M2n. From this equation, we can see that λ is a
constant, and the scalar curvature of M2n is zero.

From (4.1) and (∗)±, we have

g(R(X, Y )Z, W )− 1

2n− 2
(g(Y, Z)g(QX, W )− g(QX, Z)g(Y,W )

+ g(QY,Z)g(X,W )− g(X,Z)g(QY,W ))

= −g(ANs(X), Z)g(ANs(Y ),W ) + g(AJNs(X), Z)g(AJNs(Y ),W )

+ g(ANs(Y ), Z)g(ANs(X),W )− g(AJNs(Y ), Z)g(AJNs(X),W )

± 1

2n− 2
4(n− 1)λ2(g(Y, Z)g(JX, W )

− g(JX, Z)g(Y, W ) + g(JY, Z)g(X,W )− g(X,Z)g(JY, W ))

=
(∓2λ2 ± 2λ2

)
(g(X,Z)g(JY, W ) + g(JX, Z)g(Y, W )

− g(Y, Z)g(JX, W )− g(JY, Z)g(X, W )) = 0

by virtue of (4.3). Therefore M2n is conformally flat. Again from (4.3), we see that
M2n is locally symmetric. Applying Theorem 7.8 of Chapter VI of [3], we conclude
that M2n is isometric to a complex sphere CSn

(±√−1/(4λ2)
)
. This completes

the proof. ¤
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