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ABSTRACT. We give a syntactical proof to the statement that a novel CPS-
translation with surjective pairing is injective for the extensional A-calculus. The
result itself might be preliminary, since the source language (the extensional A-
calculus) of the translation is a sublanguage of the target language (A-calculus
with surjective pairing). However this paper shows that there exists a nontrivial
injection from the extensional A-calculus into the A-calculus with surjective pair-
ing. In this sense our result can be regarded as an extension of Plotkin, i.e., a
call-by-value simulation of call-by-name A-calculus with n-rule (extensionality).
Moreover, the method presented here can be naturally extended to the case of the
extensional Ap-calculus which is defined from the extensional A-calculus together
with control operators.

1. INTRODUCTION

Parigot [13, 14] introduced the Ap-calculus from the viewpoint of classical logic,
and established an extension of the Curry-Howard isomorphism [10, 7, 12]. From
the motivation of a universally computational point of view, we investigate type
free Au-calculus [2, 5].

In terms of a category of continuations, it is proved that for any Au-theory a
continuation semantics of Au-calculus is sound and complete by Hofmann and Stre-
icher [9]. Selinger [16] proposed the control category to establish an isomorphism
between call-by-name and call-by-value Ap-calculi with conjunction and disjunc-
tion types. In Streicher and Reus [17], the category of negated domains is applied
for a model of type free Ap-calculus. They remarked that the traditional CPS-
translation' naively based on Plotkin [15] cannot validate n-rule. All of the work
9, 16, 17] introduced a novel CPS-translation which requires, at least, products as
a primitive notion, so that n-rule can be validated by the use of surjective pairing,
as observed in [4].

2000 Mathematics Subject Classification. 68N18, 68Q05, 68Q55.
Key words and phrases. extensional A-calculus, surjective pairing, Church-Rosser property,
continuation-passing-style translation, call-by-name, call-by-value.
LCPS stands for continuation-passing style.
39



40 K. FUJITA

Towards a model theoretical investigation of type free A\u-calculus, as a prelimi-
nary step we show that the novel CPS-translation with surjective pairing is injec-
tive. It is syntactically proved that the CPS-translation is sound and complete for
the extensional A-calculus. Here the extensionality means that the A-calculus has
not only -rule but also n-rule.

As a corollary the injective CPS-translation reveals a Church-Rosser fragment
of the A-calculus with surjective pairing, which is not Church-Rosser as proved
by Klop [1]. Along the line of Plotkin [15], this work can also be regarded as a
call-by-value simulation of call-by-name A-calculus with n-rule (extensionality). It
is remarked that the completeness in [15] has been proved by the essential use
of the Church-Rosser property of the target calculus (call-by-value A-calculus).
However our target calculus is not Church-Rosser as stated above. In order to
define an inverse translation and prove the completeness, we introduce a context-
free grammar which describes the image of the CPS-translation.

Although this paper handles only type free A-calculus, our main theorem is still
valid under typed A-calculus. Moreover, the syntactical method presented in this
paper can be naturally extended to the case of the extensional Ap-calculus [13, 14]
which is defined from the extensional A-calculus together with control operators.

2. CPS-TRANSLATION OF A-CALCULUS INTO A-CALCULUS WITH SURJECTIVE
PAIRING

We show a preliminary result that the novel CPS-translation is sound and com-
plete for the extensional A-calculus. The definitions of terms and reduction rules are
respectively given to the extensional A-calculus denoted by A and the extensional
A-calculus with surjective pairing denoted by A%,

Definition 1 (A-calculus A).
A>M == x| aM|MM

(8): (Az.My)My — M|z := My
(n): \e.Mx — M ifx ¢ FV(M)
Definition 2 (\-calculus with surjective pairing A?).
AV M = z|dx.M|MM| (M M)|x(M)| (M)
(6): ()\.Z'Ml)MQ — Ml[x = Mg]
(n): Ae.Mx — M if x ¢ FV(M)
(7T): 7TZ'<M1, M2> — MZ (7, = 1,2)
(sp): (m (M), ma(M)) — M

The term M;[x := Ms] denotes the result of substituting M, for the free oc-
currences of z in M;. FV (M) stands for the set of free variables in M. The one
step reduction relation is denoted by — g where R consists of (5), (1), (8) + (n),
A(= (B) + (n) + (7) + (sp)), etc. We write —} and —7% to denote the transitive
closure and the reflexive and transitive closure of — g, respectively. We employ the
notation =g to indicate the symmetric, reflexive and transitive closure of —g. The
binary relation = denotes the syntactic identity under renaming of bound variables.
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It is noted that the rule of (n) implies the extensional equality of functions, i.e.,
f =py gif fM =g, gM for any M € A. Suppse fM =g, gM for any M € A.
Then we have fx =g, gz for a fresh variable x, and we also have \z. fz =g, A\z.gx.
Hence, an application of (n) gives f =g, g.

For a CPS-translation, we assume that AV has two kinds of variables denoted
by z and a.

Definition 3 (CPS-translation : A — A0).

(i): [z] ==
(ii): [Ax.M] = Aa.(Az.[M])(m1a)(maa)
(lli) [[MlMg]] = )\@[[Ml]]([[MQ]]’ CL)

Example 1. [t is instructive to calculate the following where m,n > 0:
oy ap My - M) —5 Xax([Mi], ..., ([M,], 75'a)...)
(21 1= Tia, Ty := T (Ma), . .., Ty = T (75 ta)]

Proposition 1 (Soundness). Let My, My € A. If we have My —g, My then
[Mi] _’;r<> [Ms].

Proof. By induction on the derivation of M; —g, M,. We show some of the base
cases.

Case of: ()
[Ax.My)Ms] = AafAz.M]([Ms],a)
= da.(Ad.(Ax.[M])(ma") (mea")){([Ms], a)
=g Aa.(Az [M]) (i ([Ma], a)) (ma([Mz], a))
=1 Aa.(Az.[Mi])[Mz]a
—g Aa.[M][zx = [M]]a = Aa.[Mi[z = Ms]]a

Case of: (n) where z & FV (M)

[Ae.Mz] = da.(Az.[Mz])(ma)(ma)
= Aa.( Az d [M]{z,d"))(ma)(ma)
=5 Aa.[M](ma, ma)

s Aa.[M]a

[M]

!

|

O

It is remarked that Proposition 1 holds true even under the restricted form V/,
i.e., the call-by-value computation as follows:

V o= x| e M| (V,V) ]| m (V)| m(V)
(By): Az M)V — Mz := V]
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(ny): eV —V

(my): mi(Vi, Vo) = V; (i =1,2)

(sp,): (MV,mV) =V
Hence this work can be regarded as a call-by-value simulation of call-by-name A-
calculus with n-rule.

2.1. Universe of the translation. We will give a definition of the inverse trans-
lation to each element of the universe of the CPS-translation:

Univy © {P € AV | [M] -3, P for some M € A}

Every element in the universe will be generated by the following context-free gram-
mar:

R == z|mK|(AR)R | Aa.RK
K = a|mK|(R,K)

Lemma 1 (Subject reduction property). The categories R and KC are closed under
the following reductions:

(Bz): (A\x.R1)Ry — Ri[z := Ry

(Ba): (Ma.RK)Ky — RKi[a = Ky

(Ma): Aa.Ra — R ifa & FV(R)

(mri): m(R,K) — R and m(R,K) — K

(8P ): (m(K), ma(K)) — K

Proof. Because we have that Ry[x := Ry] € R, K[z := R] € K by simultaneous
induction on the structures of Ry and K; and that R[a := K| € R, Ki[a := Ky € K
similarly. 0

Proposition 2. Univy C R, i.e., Univy is generated by R.

Proof. From definition 3, we have [M] € R for any M € A. Moreover, from Lemma
1, R and K are closed under the reductions, and hence Univy C R is obtained. [

There uniquely exists a projection normal form by the sole use of (7x k), and
the projection normal form of K is in the following form K, ¢:

Koy i=mya | (Rog, Kny)
where n > 0. For a technical reason, an occurrence of a single variable a € K, i.e.,
mya where n = 0 is handled as an (spy)-expansion form; (ma,ma). Under this

consideration, K can be supposed to be in the form of (Ry, ..., (R, 75a)...) with
m>0,n>1.

Lemma 2 (7-normal form). Let m > 0 and n > 1. Then every element in the
universe Univy is one of the following forms up to (7g k)-reductions and (spg)-
eTPansions:

(1):

(2): mi(msa) for somei >0

(3): (A\z.R)R;
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(4): Aa.R(Ry,...,(Rmn,mha)...) for some m >0 andn > 1

where R and R; (1 <i <m) are in the form of (1), (2), (3), or (4) above.
We call the occurrence of (mha) in the case of (4) above a tail with the variable a.
Moreover, the following property is satisfied under renaming of bound variables:

(i): For each Aa, there exists a unique occurrence of the corresponding tail
ya for somen > 1;

(ii): If we have m(wha) as a proper subterm where i > 0, then there exists the
least n > 1 such that the condition i+ 1 < n holds for the tail ha with the
variable a.

Proof. First obtain a projection normal form only by the use of (7g x)-reductions,
and then check whether the form has the condition (ii). The application of (spy)-
expansion guarantees that (ii) holds true. O

2.2. Inverse translation. 7-normal forms above play a role of representatives of
the image Univ, under the translation [—]. We give the definition of the inverse
translation f to every element in

m-nf(Univy) o {r-normal(P) € AV | [M] —5, P for some M € A}.
That is, P* = (m-normal(P))" for any P € Univy.

Definition 4 (Inverse translation f§ : m-nf(Univy) — A).

(1): 2f =2

(2): (m(73a))* = a1 (i >0)

(3): (Az.R)Ry)" = (A\z.R*) R’

(4): (Aa.R(Ry,...(Rp,m}a).. )Y = Aay...a, . RR:---RY (m >0,n>1)

Lemma 3. For any M € A, we have [M]* —} M.

Proof. By induction on the structure of M € A. We show some of the base cases.

(i):

M) = (Aa.(Az.[M])(ma)(ma))’
= dar.(Az.[M]%ay
—ny Az [M &
—,  Az.M by the induction hypothesis.
(ii):
[MiM,]F = (Na.[Mi]{[M,], a))?

{[Me],
(Aa.[M{[Ms], (mia, moa)))*
Aay [M]*[ M) ay

n [MOF[M]F

MMy by the induction hypotheses.

LJ
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For the variables a; (i > 1), the CPS-translation is naturally extended as follows:
Definition 5.

[a;]] = a; (i>1)
[Aa;. M) = Aa.(Aa;.[M])(ma)(ma)

Lemma 4. For any P € Univy, we have that [P*]0 —%, P where 6 = [a; :=
ma,as ;= m(mea), ..., a;p1 = m(mha), .. .].

Proof. By induction on the structure of P € Univy. We show some of the cases.
Case: P of (Az.R)R;

[(ODx.R)R)Y] = Aa.(A\d.(Ax.[RY])(md) (m2a)){[RS], @)
—1o Qe [RDIR]
Then from the induction hypotheses we have the desired property:

[(Ae.R)R)6 =T, (Ax([R]9))([Ri]6)
—1, (\.R)R

Case: P of A\a.R(Ry,...,(Ry,,mha)...)

[Ma.R(Ry, ..., (Rp,75a)..)] = [Aai...an.RER...RY]
—4 A [RY([R]. ..., ([RL], ha)...)
[a1 := ma,ay := 71 (M), . .., a, := 71 (7y

Now the use of the induction hypotheses gives what we need:

[\a.R(Ry, ... (Ry,mha).. )]0 —5  Ma.([RIO([RI]O), ... ([R:]10), ha)...)

—3y AaR(Ry, ..., (Ry,m5a)...)

O

Lemma 5. Let R, Ry,..., R, € R.

(1): Ri[z := R = (R[z := Ry))"
(2): (R[b:=(Ry,...,{Ry,mha)...)])"
= Riby = RY, .. by =R i1 = Gty s 7= Gnga, - -
under the simultaneous substitution where m >0 and n > 1.

Proof. By straightforward induction on the structure of R. We show the base case
for (2).

Caseof: i+1<m
(m(mib)[b == (Ry, ..., (Rpm,mha) .. ) = (m(7o(Ry,..., (Rm,mha)...)))"
= R5+1 = (m (Wéb))h[biﬂ = RE'H]

n—1
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Case of: i+1>m
(m(mab)[b = (Ry, ..., (R, i) . )])* = (m(7h(Ra, ..., (R, mha) .. )P
= (m(m3""a))t = ngicmi

(71 (3 )) i1 = @ny1, - -]

bi+1[bm+1 = Qpiy - - ] = Qjt1-m+n

O

Proposition 3 (Completeness). Let P, Q) € Univy.

(1): If P —5, Q then P* —5 Q"

(2): If P —5, Q then P* —>Z§ Q.

(3): If P —,, Q then P* —, Q"

(4): If P —r,, ,c Q then P*= Q"

(5): If P —y,, Q then P" - Q"
Proof. By induction on the derivations. We show one case for (2), and other cases
are straightforward.

Let K be (Si,...,(Sgmhb)...) with ¢ > 0,p > 1, and K’ be (Ry,...,(Rn,
mha)...) with m > 0,n > 1. Let 6 be [b := K’]. Now we prove the case P of
Aa.(Ab.RK)K':

(Aa.(Ab.RK)K")* = Aas ... ap.(Aby ... b, RS-+ SEYRY -+ RE,
Caseof: p+1<m
(Aa.(\b.RK)K')" =} Aay...an (RS} SY)[by == R},... b, == R|R:,, - R,
= Aay...a, (RSP S9)
[by == Ri? N S R'En) b1 1= Gms1, bt == Ao, - ~]RE;+1 T REn
since none of by 1,b,12,... appears in R’ SE, cee Sg
= Aar...a,. (RO (S10)*- - (S0)) R, -~ R, by Lemma 5
(Aa.RO(S10, ..., (S0, (Rpi1, -, (R, mha) ...)) .. )"
= (Ma.RO(S10,..., (S0, 75(Ry, ..., (Ry,mha)...))...))F
(Aa.RK[b := K'])"
Caseof: p+1>m
(Aa.(Ab.RK)K')" =% Aay...apAbmyr ... by (RAS] -+ S5)[by i= R, ... by := RY]
= Aai...Qp0n41 --. ap,mﬂl.RhST ce Sg
[by = Rli, by = an, b1 = Uni1, bngo 1= Apaa, - -
= Aa1...Gnipm-(RO(S10)%---(S,0)" by Lemma 5
(Aa. R9(51 S0, TP (@) L))
(Aa.RO(S10, ..., (S0, 75(Ry, ..., (Rp,mha)...))...))"
(Ma.RK[b := ])h
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O

Now we can establish our main theorem (equational correspondence between A
and Univy, C AY).

Theorem 1. (i): Let My, My € A. My =g, My if and only if [M;] =0 [M-].
(ii): Let Py, P, € Univy. Py =5y P if and only if P} =4, PL.

Proof. (i): From Propositions 1 and 3 and Lemma 3.
(ii): From Propositions 1 and 3 and Lemma 4.
O
def

Let [M] = {N € A | [M] =50 [IN]} for M € A. The theorem above means that
we have Ny =g, N, for any Ny, N, € [M].

Corollary 1. Let [A ]] o {[M] € AV \ M € A}. [A] is a Church-Rosser subset, in
the sense that if P —7, P and P —%, Py where P, P, P, € [A] then there erists
some @) € [A] such that P =3, Q and Py =7, Q.

3. CONCLUDING REMARKS

(1): AU is not Church-Rosser by Klop [1].
As stated in Corollary 1, Theorem 1 reveals that

[A] < {[M] € AV | M € A}

is a confluent fragment, in the sense that if P, =,y P, for Py, P, € [A] then

there exists some P € [A] such that P, —}, P and P —>/\<> P.

(2): There exists a one-to-one correspondence between AV and C-monoids?

by Lambek and Scott [11] and by Curien [3]:
(Cass): (xoy)oz=mx0(yoz)
(CIdl) lox=2x

(CIdr) rzol=x

(CFst> < > =T

(Csna): 7T20< y) =y

(Csp): (mox,mox)=ux

(Capp): App o (Cur(:v) Oy, My) =X

(Cga): Cur(Appo (xom,m)) =
Theorem 1 implies that there also exists a nontrivial injection from A into
C-monoids.

(3): Even in the case of typed A-calculus, the novel CPS-translation works
well as a negative translation from proofs of intuitionistic logic consisting
of = (implication) into those of that consisting of = and A (conjunction).
—A (negation of A) is defined by A = | where L is treated as an arbitrary
proposition letter. From the Curry-Howard isomorphism [10], formulae are
regarded as types and proofs are as terms or programs. Here the judgement
I' = M : A says that M is a proof of the formula A under the set of

2According to [11], C stands for Curry, Church, combinatory or cartesian.
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assumptions I'. The inference rules of typed AY is given as follows, and
those of typed A is defined by typed AV without (AI) nor (AE):

x:Ael
F'Fxz: A
F,x:All—M:Ag F|_M1:A1:>A2 F}_MgiAl
F|_>\$MA1:>A2 <:>I> F'_MlMQAQ <:>E)
F|_M1:A1 Fl_MQZAQ Fl_MAl/\AQ
I E
F}_<M1,M2>A1/\A2 (/\) Fl_ﬂ'z(M)Az (/\ )

Proposition 4. I' = M : A in typed A if and only if T* = [M] : A* in typed
AY where formulae (types) are embedded as follows:
(A= A)" = (A7 A A);
AF = —=A if Ais atomic; and
A* = B where =B = A*.

We remark that the embedding A* is essentially equivalent to the Godel-
Gentzen negative translation, since we have —(A¥ A 43) & (A¥ = A%) in
the so-called minimal logic. This observation can be applied to prove the
only-if part of the proposition above.

(4): A recursive domain safisfying

UxUxU[U— U

gives a model of the A-calculus with surjective pairing [8]. The domain
U=U x U= [U — U] can provide continuation denotational semantics of
the extensional Ap-calculus as well. From a natural extension of Theorem
1 the completeness of the continuation denotational semantics of the Au-
calculus depends on that of the direct denotational semantics of AV, See
also [6] for a formal relation, via continuous functions f and g, between
the continuation denotational semantics C(—) of the Ap-calculus and the
CPS-translation followed by the direct denotational semantics D(—) of AV:

M c A,LL injective CPS A<> 5 [[M]]
continuation direct
c(M) € U ! g U > D[M]

where U’ = [U x U — U].
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