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Abstract. We give a syntactical proof to the statement that a novel CPS-
translation with surjective pairing is injective for the extensional λ-calculus. The
result itself might be preliminary, since the source language (the extensional λ-
calculus) of the translation is a sublanguage of the target language (λ-calculus
with surjective pairing). However this paper shows that there exists a nontrivial
injection from the extensional λ-calculus into the λ-calculus with surjective pair-
ing. In this sense our result can be regarded as an extension of Plotkin, i.e., a
call-by-value simulation of call-by-name λ-calculus with η-rule (extensionality).
Moreover, the method presented here can be naturally extended to the case of the
extensional λµ-calculus which is defined from the extensional λ-calculus together
with control operators.

1. Introduction

Parigot [13, 14] introduced the λµ-calculus from the viewpoint of classical logic,
and established an extension of the Curry-Howard isomorphism [10, 7, 12]. From
the motivation of a universally computational point of view, we investigate type
free λµ-calculus [2, 5].

In terms of a category of continuations, it is proved that for any λµ-theory a
continuation semantics of λµ-calculus is sound and complete by Hofmann and Stre-
icher [9]. Selinger [16] proposed the control category to establish an isomorphism
between call-by-name and call-by-value λµ-calculi with conjunction and disjunc-
tion types. In Streicher and Reus [17], the category of negated domains is applied
for a model of type free λµ-calculus. They remarked that the traditional CPS-
translation1 näıvely based on Plotkin [15] cannot validate η-rule. All of the work
[9, 16, 17] introduced a novel CPS-translation which requires, at least, products as
a primitive notion, so that η-rule can be validated by the use of surjective pairing,
as observed in [4].
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Towards a model theoretical investigation of type free λµ-calculus, as a prelimi-
nary step we show that the novel CPS-translation with surjective pairing is injec-
tive. It is syntactically proved that the CPS-translation is sound and complete for
the extensional λ-calculus. Here the extensionality means that the λ-calculus has
not only β-rule but also η-rule.

As a corollary the injective CPS-translation reveals a Church-Rosser fragment
of the λ-calculus with surjective pairing, which is not Church-Rosser as proved
by Klop [1]. Along the line of Plotkin [15], this work can also be regarded as a
call-by-value simulation of call-by-name λ-calculus with η-rule (extensionality). It
is remarked that the completeness in [15] has been proved by the essential use
of the Church-Rosser property of the target calculus (call-by-value λ-calculus).
However our target calculus is not Church-Rosser as stated above. In order to
define an inverse translation and prove the completeness, we introduce a context-
free grammar which describes the image of the CPS-translation.

Although this paper handles only type free λ-calculus, our main theorem is still
valid under typed λ-calculus. Moreover, the syntactical method presented in this
paper can be naturally extended to the case of the extensional λµ-calculus [13, 14]
which is defined from the extensional λ-calculus together with control operators.

2. CPS-Translation of λ-calculus into λ-calculus with surjective
pairing

We show a preliminary result that the novel CPS-translation is sound and com-
plete for the extensional λ-calculus. The definitions of terms and reduction rules are
respectively given to the extensional λ-calculus denoted by Λ and the extensional
λ-calculus with surjective pairing denoted by Λ〈〉.

Definition 1 (λ-calculus Λ).

Λ 3 M ::= x | λx.M | MM

(β): (λx.M1)M2 → M1[x := M2]
(η): λx.Mx → M if x 6∈ FV (M)

Definition 2 (λ-calculus with surjective pairing Λ〈〉).

Λ〈〉 3 M ::= x | λx.M | MM | 〈M, M〉 | π1(M) | π2(M)

(β): (λx.M1)M2 → M1[x := M2]
(η): λx.Mx → M if x 6∈ FV (M)
(π): πi〈M1,M2〉 → Mi (i = 1, 2)
(sp): 〈π1(M), π2(M)〉 → M

The term M1[x := M2] denotes the result of substituting M2 for the free oc-
currences of x in M1. FV (M) stands for the set of free variables in M . The one
step reduction relation is denoted by →R where R consists of (β), (η), (β) + (η),
λ〈〉(= (β) + (η) + (π) + (sp)), etc. We write →+

R and →∗
R to denote the transitive

closure and the reflexive and transitive closure of →R, respectively. We employ the
notation =R to indicate the symmetric, reflexive and transitive closure of →R. The
binary relation ≡ denotes the syntactic identity under renaming of bound variables.
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It is noted that the rule of (η) implies the extensional equality of functions, i.e.,
f =βη g if fM =βη gM for any M ∈ Λ. Suppse fM =βη gM for any M ∈ Λ.
Then we have fx =βη gx for a fresh variable x, and we also have λx.fx =βη λx.gx.
Hence, an application of (η) gives f =βη g.

For a CPS-translation, we assume that Λ〈〉 has two kinds of variables denoted
by x and a.

Definition 3 (CPS-translation : Λ → Λ〈〉).

(i): [[x]] = x
(ii): [[λx.M ]] = λa.(λx.[[M ]])(π1a)(π2a)
(iii): [[M1M2]] = λa.[[M1]]〈[[M2]], a〉

Example 1. It is instructive to calculate the following where m, n ≥ 0:

[[λx1 . . . xm.xM1 · · ·Mn]] →+
β λa.x〈[[M1]], . . . , 〈[[Mn]], πm

2 a〉 . . .〉
[x1 := π1a, x2 := π1(π2a), . . . , xm := π1(π

m−1
2 a)]

Proposition 1 (Soundness). Let M1,M2 ∈ Λ. If we have M1 →βη M2 then
[[M1]] →+

λ〈〉 [[M2]].

Proof. By induction on the derivation of M1 →βη M2. We show some of the base
cases.

Case of: (β)

[[(λx.M1)M2]] = λa.[[λx.M1]]〈[[M2]], a〉
= λa.(λa′.(λx.[[M1]])(π1a

′)(π2a
′))〈[[M2]], a〉

→β λa.(λx.[[M1]])(π1〈[[M2]], a〉)(π2〈[[M2]], a〉)
→+

π λa.(λx.[[M1]])[[M2]]a

→β λa.[[M1]][x := [[M2]]]a = λa.[[M1[x := M2]]]a

→η [[M1[x := M2]]]

Case of: (η) where x 6∈ FV (M)

[[λx.Mx]] = λa.(λx.[[Mx]])(π1a)(π2a)

= λa.(λx.λa′.[[M ]]〈x, a′〉)(π1a)(π2a)

→+
β λa.[[M ]]〈π1a, π2a〉

→sp λa.[[M ]]a

→η [[M ]]

¤
It is remarked that Proposition 1 holds true even under the restricted form V ,

i.e., the call-by-value computation as follows:

V ::= x | λx.M | 〈V, V 〉 | π1(V ) | π2(V )

(βv): (λx.M)V → M [x := V ]
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(ηv): λx.V x → V
(πv): πi〈V1, V2〉 → Vi (i = 1, 2)
(spv): 〈π1V, π2V 〉 → V

Hence this work can be regarded as a call-by-value simulation of call-by-name λ-
calculus with η-rule.

2.1. Universe of the translation. We will give a definition of the inverse trans-
lation to each element of the universe of the CPS-translation:

Univλ
def
= {P ∈ Λ〈〉 | [[M ]] →∗

λ〈〉 P for some M ∈ Λ}
Every element in the universe will be generated by the following context-free gram-
mar:

R ::= x | π1K | (λx.R)R | λa.RK
K ::= a | π2K | 〈R,K〉

Lemma 1 (Subject reduction property). The categories R and K are closed under
the following reductions:

(βx): (λx.R1)R2 → R1[x := R2]
(βa): (λa.RK1)K2 → RK1[a := K2]
(ηa): λa.Ra → R if a 6∈ FV (R)
(πR,K): π1〈R, K〉 → R and π2〈R, K〉 → K
(spK): 〈π1(K), π2(K)〉 → K

Proof. Because we have that R1[x := R2] ∈ R, K[x := R] ∈ K by simultaneous
induction on the structures of R1 and K; and that R[a := K] ∈ R, K1[a := K2] ∈ K
similarly. ¤
Proposition 2. Univλ ⊆ R, i.e., Univλ is generated by R.

Proof. From definition 3, we have [[M ]] ∈ R for any M ∈ Λ. Moreover, from Lemma
1, R and K are closed under the reductions, and hence Univλ ⊆ R is obtained. ¤

There uniquely exists a projection normal form by the sole use of (πR,K), and
the projection normal form of K is in the following form Knf :

Knf ::= πn
2 a | 〈Rnf , Knf〉

where n ≥ 0. For a technical reason, an occurrence of a single variable a ∈ K, i.e.,
πn

2 a where n = 0 is handled as an (spK)-expansion form; 〈π1a, π2a〉. Under this
consideration, K can be supposed to be in the form of 〈R1, . . . , 〈Rm, πn

2 a〉 . . .〉 with
m ≥ 0, n ≥ 1.

Lemma 2 (π-normal form). Let m ≥ 0 and n ≥ 1. Then every element in the
universe Univλ is one of the following forms up to (πR,K)-reductions and (spK)-
expansions:

(1): x
(2): π1(π

i
2a) for some i ≥ 0

(3): (λx.R)R1
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(4): λa.R〈R1, . . . , 〈Rm, πn
2 a〉 . . .〉 for some m ≥ 0 and n ≥ 1

where R and Ri (1 ≤ i ≤ m) are in the form of (1), (2), (3), or (4) above.
We call the occurrence of (πn

2 a) in the case of (4) above a tail with the variable a.
Moreover, the following property is satisfied under renaming of bound variables:

(i): For each λa, there exists a unique occurrence of the corresponding tail
πn

2 a for some n ≥ 1;
(ii): If we have π1(π

i
2a) as a proper subterm where i ≥ 0, then there exists the

least n ≥ 1 such that the condition i + 1 ≤ n holds for the tail πn
2 a with the

variable a.

Proof. First obtain a projection normal form only by the use of (πR,K)-reductions,
and then check whether the form has the condition (ii). The application of (spK)-
expansion guarantees that (ii) holds true. ¤
2.2. Inverse translation. π-normal forms above play a role of representatives of
the image Univλ under the translation [[−]]. We give the definition of the inverse
translation \ to every element in

π-nf(Univλ)
def
= {π-normal(P ) ∈ Λ〈〉 | [[M ]] →∗

λ〈〉 P for some M ∈ Λ}.
That is, P \ = (π-normal(P ))\ for any P ∈ Univλ.

Definition 4 (Inverse translation \ : π-nf(Univλ) → Λ).

(1): x\ = x
(2): (π1(π

i
2a))\ = ai+1 (i ≥ 0)

(3): ((λx.R)R1)
\ = (λx.R\)R\

1

(4): (λa.R〈R1, . . . 〈Rm, πn
2 a〉 . . .〉)\ = λa1 . . . an.R

\R\
1 · · ·R\

m (m ≥ 0, n ≥ 1)

Lemma 3. For any M ∈ Λ, we have [[M ]]\ →∗
η M .

Proof. By induction on the structure of M ∈ Λ. We show some of the base cases.

(i):

[[λx.M ]]\ = (λa.(λx.[[M ]])(π1a)(π2a))\

= λa1.(λx.[[M ]]\)a1

→η λx.[[M ]]\

→∗
η λx.M by the induction hypothesis.

(ii):

[[M1M2]]
\ = (λa.[[M1]]〈[[M2]], a〉)\

= (λa.[[M1]]〈[[M2]], 〈π1a, π2a〉〉)\

= λa1.[[M ]]\[[M2]]
\a1

→η [[M1]]
\[[M2]]

\

→∗
η M1M2 by the induction hypotheses.

¤
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For the variables ai (i ≥ 1), the CPS-translation is naturally extended as follows:

Definition 5.

[[ai]] = ai (i ≥ 1)

[[λai.M ]] = λa.(λai.[[M ]])(π1a)(π2a)

Lemma 4. For any P ∈ Univλ, we have that [[P \]]θ →∗
λ〈〉 P where θ = [a1 :=

π1a, a2 := π1(π2a), . . . , ai+1 := π1(π
i
2a), . . .].

Proof. By induction on the structure of P ∈ Univλ. We show some of the cases.

Case: P of (λx.R)R1

[[((λx.R)R1)
\]] = λa.(λa′.(λx.[[R\]])(π1a

′)(π2a
′))〈[[R\

1]], a〉
→+

λ〈〉 (λx.[[R\]])[[R\
1]]

Then from the induction hypotheses we have the desired property:

[[((λx.R)R1)
\]]θ →+

λ〈〉 (λx.([[R\]]θ))([[R\
1]]θ)

→∗
λ〈〉 (λx.R)R1

Case: P of λa.R〈R1, . . . , 〈Rm, πn
2 a〉 . . .〉

[[λa.R〈R1, . . . , 〈Rm, πn
2 a〉 . . .〉]] = [[λa1 . . . an.R

\R\
1 . . . R\

m]]

→+
β λa.[[R\]]〈[[R\

1]], . . . , 〈[[R\
m]], πn

2 a〉 . . .〉
[a1 := π1a, a2 := π1(π2a), . . . , an := π1(π

n−1
2 a)]

Now the use of the induction hypotheses gives what we need:

[[λa.R〈R1, . . . , 〈Rm, πn
2 a〉 . . .〉]]θ →+

β λa.([[R\]]θ)〈([[R\
1]]θ), . . . , 〈([[R\

m]]θ), πn
2 a〉 . . .〉

→∗
λ〈〉 λa.R〈R1, . . . , 〈Rm, πn

2 a〉 . . .〉
¤

Lemma 5. Let R,R1, . . . , Rn ∈ R.

(1): R\[x := R\
1] = (R[x := R1])

\

(2): (R[b := 〈R1, . . . , 〈Rm, πn
2 a〉 . . .〉])\

= R\[b1 := R\
1, . . . , bm := R\

m, bm+1 := an+1, bm+2 := an+2, · · · ]
under the simultaneous substitution where m ≥ 0 and n ≥ 1.

Proof. By straightforward induction on the structure of R. We show the base case
for (2).

Case of: i + 1 ≤ m

(π1(π
i
2b)[b := 〈R1, . . . , 〈Rm, πn

2 a〉 . . .〉])\ = (π1(π
i
2〈R1, . . . , 〈Rm, πn

2 a〉 . . .〉))\

= R\
i+1 = (π1(π

i
2b))

\[bi+1 := R\
i+1]
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Case of: i + 1 > m

(π1(π
i
2b)[b := 〈R1, . . . , 〈Rm, πn

2 a〉 . . .〉])\ = (π1(π
i
2〈R1, . . . , 〈Rm, πn

2 a〉 . . .〉))\

= (π1(π
n+i−m
2 a))\ = an+i−m+1

= (π1(π
i
2b))

\[bm+1 := an+1, . . .]

= bi+1[bm+1 := an+1, . . .] = ai+1−m+n

¤
Proposition 3 (Completeness). Let P, Q ∈ Univλ.

(1): If P →βx Q then P \ →β Q\.
(2): If P →βa Q then P \ →+

β Q\.

(3): If P →ηa Q then P \ →η Q\.
(4): If P →πR,K

Q then P \ ≡ Q\.

(5): If P →spK
Q then P \ →∗

η Q\.

Proof. By induction on the derivations. We show one case for (2), and other cases
are straightforward.

Let K be 〈S1, . . . , 〈Sq, π
p
2b〉 . . .〉 with q ≥ 0, p ≥ 1, and K ′ be 〈R1, . . . , 〈Rm,

πn
2 a〉 . . .〉 with m ≥ 0, n ≥ 1. Let θ be [b := K ′]. Now we prove the case P of

λa.(λb.RK)K ′:

(λa.(λb.RK)K ′)\ = λa1 . . . an.(λb1 . . . bp.R
\S\

1 · · ·S\
q)R

\
1 · · ·R\

m

Case of: p + 1 ≤ m

(λa.(λb.RK)K ′)\ →+
β λa1 . . . an.(R

\S\
1 · · ·S\

q)[b1 := R\
1, . . . , bp := R\

p]R
\
p+1 · · ·R\

m

= λa1 . . . an.(R
\S\

1 · · ·S\
q)

[b1 := R\
1, . . . , bm := R\

m, bm+1 := am+1, bm+2 := am+2, . . .]R
\
p+1 · · ·R\

m

since none of bp+1, bp+2, . . . appears in R\, S\
1, . . . , S

\
q

= λa1 . . . an.((Rθ)\(S1θ)
\ · · · (Sqθ)

\)R\
p+1 · · ·R\

m by Lemma 5

= (λa.Rθ〈S1θ, . . . , 〈Sqθ, 〈Rp+1, . . . , 〈Rm, πn
2 a〉 . . .〉〉 . . .〉)\

= (λa.Rθ〈S1θ, . . . , 〈Sqθ, π
p
2〈R1, . . . , 〈Rm, πn

2 a〉 . . .〉〉 . . .〉)\

= (λa.RK[b := K ′])\

Case of: p + 1 > m

(λa.(λb.RK)K ′)\ →+
β λa1 . . . an.λbm+1 . . . bp.(R

\S\
1 · · ·S\

q)[b1 := R\
1, . . . , bm := R\

m]

= λa1 . . . anan+1 . . . ap−m+n.R\S\
1 · · ·S\

q

[b1 := R\
1, . . . , bm := R\

m, bm+1 := an+1, bm+2 := an+2, . . .]

= λa1 . . . an+p−m.(Rθ)\(S1θ)
\ · · · (Sqθ)

\ by Lemma 5

= (λa.Rθ〈S1θ, . . . , 〈Sqθ, π
n+p−m
2 (a)〉 . . .〉)\

= (λa.Rθ〈S1θ, . . . , 〈Sqθ, π
p
2〈R1, . . . , 〈Rm, πn

2 a〉 . . .〉〉 . . .〉)\

= (λa.RK[b := K ′])\
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¤
Now we can establish our main theorem (equational correspondence between Λ

and Univλ ⊆ Λ〈〉).

Theorem 1. (i): Let M1,M2 ∈ Λ. M1 =βη M2 if and only if [[M1]] =λ〈〉 [[M2]].

(ii): Let P1, P2 ∈ Univλ. P1 =λ〈〉 P2 if and only if P \
1 =βη P \

2 .

Proof. (i): From Propositions 1 and 3 and Lemma 3.
(ii): From Propositions 1 and 3 and Lemma 4.

¤
Let [M ]

def
= {N ∈ Λ | [[M ]] =λ〈〉 [[N ]]} for M ∈ Λ. The theorem above means that

we have N1 =βη N2 for any N1, N2 ∈ [M ].

Corollary 1. Let [[Λ]]
def
= {[[M ]] ∈ Λ〈〉 | M ∈ Λ}. [[Λ]] is a Church-Rosser subset, in

the sense that if P →∗
λ〈〉 P1 and P →∗

λ〈〉 P2 where P, P1, P2 ∈ [[Λ]] then there exists
some Q ∈ [[Λ]] such that P1 →∗

λ〈〉 Q and P2 →∗
λ〈〉 Q.

3. Concluding Remarks

(1): Λ〈〉 is not Church-Rosser by Klop [1].
As stated in Corollary 1, Theorem 1 reveals that

[[Λ]]
def
= {[[M ]] ∈ Λ〈〉 | M ∈ Λ}

is a confluent fragment, in the sense that if P1 =λ〈〉 P2 for P1, P2 ∈ [[Λ]] then
there exists some P ∈ [[Λ]] such that P1 →∗

λ〈〉 P and P2 →∗
λ〈〉 P .

(2): There exists a one-to-one correspondence between Λ〈〉 and C-monoids2

by Lambek and Scott [11] and by Curien [3]:
(CAss): (x ◦ y) ◦ z = x ◦ (y ◦ z)
(CIdl): 1 ◦ x = x
(CIdr): x ◦ 1 = x
(CFst): π1 ◦ 〈x, y〉 = x
(CSnd): π2 ◦ 〈x, y〉 = y
(CSP): 〈π1 ◦ x, π2 ◦ x〉 = x
(CApp): App ◦ 〈Cur(x) ◦ π1, π2〉 = x
(CSΛ): Cur(App ◦ 〈x ◦ π1, π2〉) = x

Theorem 1 implies that there also exists a nontrivial injection from Λ into
C-monoids.

(3): Even in the case of typed λ-calculus, the novel CPS-translation works
well as a negative translation from proofs of intuitionistic logic consisting
of ⇒ (implication) into those of that consisting of ⇒ and ∧ (conjunction).
¬A (negation of A) is defined by A ⇒ ⊥ where ⊥ is treated as an arbitrary
proposition letter. From the Curry-Howard isomorphism [10], formulae are
regarded as types and proofs are as terms or programs. Here the judgement
Γ ` M : A says that M is a proof of the formula A under the set of

2According to [11], C stands for Curry, Church, combinatory or cartesian.



AN INJECTIVE CPS-TRANSLATION FOR THE EXTENSIONAL λ-CALCULUS 47

assumptions Γ. The inference rules of typed Λ〈〉 is given as follows, and
those of typed Λ is defined by typed Λ〈〉 without (∧I) nor (∧E):

x :A ∈ Γ
Γ ` x : A

Γ, x :A1 ` M : A2

Γ ` λx.M : A1 ⇒ A2
(⇒ I)

Γ ` M1 : A1 ⇒ A2 Γ ` M2 : A1

Γ ` M1M2 : A2
(⇒ E)

Γ ` M1 : A1 Γ ` M2 : A2

Γ ` 〈M1, M2〉 : A1 ∧ A2
(∧I)

Γ ` M : A1 ∧ A2

Γ ` πi(M) : Ai
(∧E)

Proposition 4. Γ ` M : A in typed Λ if and only if Γk ` [[M ]] : Ak in typed
Λ〈〉, where formulae (types) are embedded as follows:




(A1 ⇒ A2)
k = ¬(Ak

1 ∧ A∗
2);

Ak = ¬¬A if A is atomic; and
A∗ = B where ¬B ≡ Ak.

We remark that the embedding Ak is essentially equivalent to the Gödel-
Gentzen negative translation, since we have ¬(Ak

1 ∧ A∗
2) ⇔ (Ak

1 ⇒ Ak
2) in

the so-called minimal logic. This observation can be applied to prove the
only-if part of the proposition above.

(4): A recursive domain safisfying

U ∼= U × U ∼= [U → U ]

gives a model of the λ-calculus with surjective pairing [8]. The domain
U ∼= U × U ∼= [U → U ] can provide continuation denotational semantics of
the extensional λµ-calculus as well. From a natural extension of Theorem
1 the completeness of the continuation denotational semantics of the λµ-
calculus depends on that of the direct denotational semantics of Λ〈〉. See
also [6] for a formal relation, via continuous functions f and g, between
the continuation denotational semantics C(−) of the λµ-calculus and the
CPS-translation followed by the direct denotational semantics D(−) of Λ〈〉:

M ∈ Λµ
injective CPS−−−−−−−→ Λ〈〉 3 [[M ]]ycontinuation

ydirect

C(M) ∈ U ′ f←−−−−−−− g−−−−−−−→ U 3 D[[M ]]

where U ′ = [U × U → U ].
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