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0. Introduction

Let M be a complex projective manifold. We say that M has a foliation
by curves if there exists a line bundle L on M and a non-zero homomorphism
i : L → TM , where TM is a tangent bundle of M . If the above homomorphism
L → TM is injective, then we say that a foliation is nonsingular. Let Lα be a
1-dimensional connected manifold. Then we say that Lα is a leaf of foliation
i : L → TM if M = ∪αLα, Lα ∩ Lβ = ∅ for α 6= β, and for x ∈ Lα i(L)x is a
tangent bundle of Lα at x. In this paper we consider the case in which M is a
projective surface. We use a notation S instead of M .

If S is a ruled surface, that is, there exists a surjective morphism with con-
nected fibers π : S → C such that any general fiber of π is P1, where C is a
smooth projective curve, then the foliations by curves on S have been studied by
Gómez-Mont ([G-M II]). Here we consider the case in which there exists a sur-
jective morphism π : S → C with connected fibers such that any general fiber is
an elliptic curve. We call this surface an elliptic surface over a smooth projective
curve. Here we note that elliptic surfaces may have singular fibers and all types
of singular fibers have been classified by Kodaira.

This paper consists of the following three parts;
(1) examples of special type of foliations on ellitpic surfaces,
(2) a family of foliations on elliptic surfaces,
(3) the existence of elliptic surfaces which have foliations.
In [B], Brunella obtained some interesting results for foliations without sin-

gularities on non-singular algebraic surfaces, and pointed out that a turbulent
foliation can appear (un feuilletage tourbillonné). Here we mean by a foliation a
holomorphic one, and discuss foliations on elliptic surfaces.
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Definition. A foliation F possibly with singularities is said to be turbulent if it
has the following properties;

(1) it has a finite number of fibers which are F-invariant (see [B]),
(2) other fibers are F-transversal, that is, transversal to each leaves except

for the fibers which appear in (1).

Let π : S → C be a basic elliptic surface on a non-singular curve (see [KoII]
or Definition 3.15 of Chapter I in [FM]) and so it admits a section, and has no
multiple fibers. We denote by TS/C the relative tangent bundle, TS and TC are
tangent bundles of S and C respectively. Then there exists an exact sequence of
sheaves,

0 → TS/C → TS → π∗TC ⊗ IX → 0,

where IX is the ideal sheaf of singular points of the singular fibers (c.f. Lemma
3.2 of Chapter 4 in [FM] and (6.2) in [FMW]). Now we consider the family of
elliptic K3 surfaces over the projective line in the section 5 of [KoI], and denote
by π : S → P1 the projection for each member. Let L be the sheaf (R1π∗(OS))−1,
which is a line bundle over P1. Then the induced bundle π∗(L) is just the bundle
(TS/C)−1 (c.f. Chapter I in [FM] and 6.2 in [FMW]).

Then we have a monomorphism

OS → π∗L⊗ TS ,

and a nontrivial section S → π∗L⊗ TS .
By making use of this fact, in Section 1 we prove

Theorem 1. Let π : S → P1 be a basic elliptic K3 surface over the projective
line P1 ([Ko1]). Then there exists a turbulent foliation on the surface S.

Furthermore by making use of the facts in V.5 in [BPV] and [A], we prove

Theorem 2. Let E be an elliptic curve and π : S → C be a principal E-bundle
with trivial Chern class over a smooth curve C. Then there exists a turbulent
foliation on the elliptic surface S.

Next as in [G-MI] and [G-MII] we consider a family of foliations on an elliptic
surface. Let α denote Chern class c1(L), and Dα the space of foliations whose
Chern class of the tangent bundle is α. Then we have

Theorem 3. Let S → C be an elliptic K3 surface in [KoI]. Then the space Dα

is the complex projective t− 1 space where t ≥ 14.

In Section 8 of [KoII], each basic member belongs to a meromorphic function
J : C → C and the homological invariant G which is the sheaf belonging to the
meromorphic function J . Then we have
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Theorem 4. Let C be a non-singular algebraic curve. Let j be a natural number
with j ≥ 2g(C) + 1. Then there exists a meromorphic function J on C such
that for any points P1, . . . , Pr on C and natural numbers m1, . . . , mr with j =∑r

i=1 mi, J has an mi-th pole on Pi for each i.

By this theorem we obtain

Corollary to Theorem 4. Let g(C) ≥ 1. Then there exists a basic member
π : S → C which admits a foliation.

In Section 1 we prove Theorem 1, and Theorem 2 is proved in Section 2. In
Section 3 we discuss some deformation of foliations, and Theorem 3, Theorem 4,
and Corollary are proved.

1. Proof of Theorem 1

By (12.5) in [KoIII] and the section 5 in [KoI], we have

12χ(O) = c2(S) = 24,

and by Lemma 3.18 in [FM]

χ(OS) = deg L.

Then we have
deg L = 2 = deg TC .

Since L and TC are line bundles over the projective line P1, the line bundle L is
isomorphic to the tangent bundle TC . Then by the consideration in Introduction,
we obtain a non trivial section S → π∗TC ⊗ TS . As in 4.3 of Chapter IV in
[FM] and 6 in [FM], the section is given locally by relatively prime holomorphic
functions (f, g). Let {m} and {M0} be transition functions of the bundles π∗TC

and TS respectively. Let {w, z} be a local coordinates system of the surface S.
By Euclidean-Weierstrass algorithm on a local coordinate U (c.f. Theorem 1.13
in [KoT]), we have uniquely a pair of holomorphic functions

(
a(w, z)
b(w, z)

)

and a holomorphic function h(z) such that

(∗) ( f(w, z), g(w, z) )
(

0 1
−1 0

)(
a(w, z)
b(w, z)

)
= h(z)

where h(z) is a convergent power series of z and the least common multiple of
denominators, by the multiplication of this, appearing coefficients may be brought
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into (C{z})[w], this is denoted by r(z) in the [KoT] above. We put mM0 = M .
Since KS = OS , det M = m. Then on a non empty intersection U ∩ U ′ of
coordinate neighborhoods, we have

( f, g )M

(
0 1
−1 0

)
tM

(
a
b

)
= (det M)h(z) = mh(z).

Similarly to the relation (∗), on U ′ we have a unique pair

(
a′(w′, z′)
b′(w′, z′)

)

and a unique holomorphic function h′(z′) such that

( f ′, g′ )
(

0 1
−1 0

)(
a′

b′

)
= h′

On the set U ∩ U ′ we have

( f, g )M

(
0 1
−1 0

)(
a′

b′

)
= h′,

(∗∗) ( f ′, g′ ) M−1

(
0 1
−1 0

)
tM−1

(
a′

b′

)
= m−1h′.

By definition of h and h′, there exist holomorphic functions u′ and v′ such that

mh(z(w′, z′)) = u′h′,

m−1h′ = v′h.

Then h′ = mv′h = u′v′h′, and so u′v′ = 1, therefore u′ and v′ are units. Since
h′ = mv′h, we get that (

a′

b′

)
= v′tM

(
a
b

)
.

For a non empty intersection U ∩U ′ ∩U ′′, we have mh = u′h′, m′h′ = u′′h′′ and
so mm′h = û′′h′′. Then mm′h = u′m′h′ = u′u′′h′′ and so û′′ = u′u′′. Thus the
family {u} is a 1-cocycle, and it determine a line bundle ξ−1. By the relation
(∗∗) we have

{
(

a
b

)
} ∈ H0(π∗TC ⊗ TS ⊗ ξ).
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Since mh = u′h′, mv′h = h′, we have {h} ∈ H0((π∗TC ⊗ ξ)⊗2) with the corre-
spondence

H0(π∗TC ⊗ TS ⊗ ξ) 3 {
(

a
b

)
} det7−→ {h} ∈ H0((π∗TC ⊗ ξ)⊗2).

Let L′ be the line bundle O(−∑
Ci)⊗ξ⊗(π∗TC)2, where

∑
i Ci denotes the sum

of all singular fibers of S → C. Now (L′)−1⊗ (π∗TC ⊗ ξ) = O(
∑

Ci)⊗ (π∗TC)−1

and its degree is j + r − 2 ≥ 16 − 2 = 14, where j and r denote the numbers of
singular fibers of types I and II respectively ([KoI]). Then we get a non singular
homomorphism Ŷ ′ : L′ → π∗TC ⊗ ξ. In the process of the algorithm above we
can see that the zeros of the section

(
a
b

)

and h are at most discrete sets. We denote by p the projection L′ → S. Then
for any v ∈ L′ with p(v) ∈ S − {h−1(zeros)}, we may find a complex number λv

such that Ŷ ′(v) = λvh(p(v)). We put

S′ = S − {h−1(zeros) ∪
(

a
b

)−1

(zeros)},

and

Ŷ ′(v) = λv

(
a
b

)
(p(v))

on S′. By the extension we get a non singular homomorphism Y ′ : L′ → π∗TC ⊗
TS ⊗ ξ. We have identities

H0((L′)−1 ⊗ π∗TC ⊗ TS ⊗ ξ)

= H0(O(
∑

Ci)⊗ (π∗TC)−1 ⊗ TS)

= Hom(O(−
∑

Ci)⊗ π∗TC , TS).

Then denoting O(−∑
Ci) ⊗ π∗TC by L, we obtain a nonsingular homomor-

phism Y : L → TS . We consider the composite homomorphism

L Y−−−−→ TS
Dπ−−−−→ π∗TC

and so L−1 ⊗ π∗TC = O(
∑

Ci). Then by a similar argument to the proof of
Proposition 2.6 in [GMII] we have Theorem 1.
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2. Proof of Theorem 2

Let η → C be the complex line bundle associated to the principal E-bundle
π : S → C. Then by Theorem 5, Proposition 1, and Theorem 2 in [A], we obtain
the assertion that the exact sequence

0 → S×EL(E) → TS/E → TC → 0

admits a splitting if and only if the chern class c(η) is zero, where L(E) denotes
the Lie algebra of the elliptic curve, and E acts on L(E) by the adjoint action.
Since the group E is abelian, and E acts freely on S, S×EL(E) = C × C, the
trivial line bundle. Now we have

Proposition. There exists a canonical isomorphism π∗(TS/E) ∼= TS.

By making use of this proposition we have a splitting of the exact sequence

0 → S × C→ TS → π∗TC → 0.

Then for any complex line bundle L → S, we have

dim H0(L−1 ⊗ TS) = dim H0(L−1 ⊗OS) + dim H0(L−1 ⊗ π∗TC).

Now we set L = O(−∑b
i=1 Ci) ⊗ π∗TC , where b is a positive integer and Ci =

π−1(pi), pi ∈ C, i = 1, . . . , b. Then L−1⊗π∗TC = O(
∑

Ci) is the induced bundle
of the product bundle ⊗ξpi of point bundles ξpi , i = 1, . . . , b. Since c1(⊗ξpi) = b,
if b > 2g − 2,

dim H0(C,⊗ξpi) = b− (g − 1),

which is equal to dim H0(O(
∑

Ci)). Thus we obtain a turbulent foliation on S.
Therefore it is sufficient to prove Proposition. For topological vector bundles,

G. Segal has stated the existence of such an isomorphism (c.f. Proposition (2.1)
in [Se]). To prove Proposition in case of holomorphic vector bundles it sufficies to
see them locally. For an open set U in the curve C, we denote by p1 : U ×E → E
and p2 : U × E → E the projections to each factor, and by TU⊕̂(E × L) the
Whitney sum p1

∗TU⊕p2
∗(E×L), where L is the Lie algebra of E. Let {gij} and

{hij} be the transition functions of the principal bundle S → C and the tangent
bundle TC → C respectively. Then we have a local isomorphism

T (S|U) ∼= (U × C× E)⊕̂(U × E × L),

and on a non empty intersection U ∩ U ′, we have transformations

U × C× E 3 (x, v, g) 7→ (x, hij(x)v, gijg) ∈ U ′ × C× E,

U × E × L 3 (x, g, w) 7→ (x, gij(x)g, w) ∈ U ′ × E × L.

On the other hand the bundle π∗(TS/E) = S×C(TS/E) restricts to

(U × E)×U (TS/E) ∼= (E × U × C)⊕̂(E × U × L).

Therefore we get the same transformations by transition functions, and obtain
the required isomorphism.
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3. Proofs of Theorem 3 and 4, and Corollary

Proof of Theorem 3. We have the exact sequence

H1(S,OS) → H1(S,O∗S) → H2(S,Z),

and dim H1(S,OS) = the irregurality q, which is zero by the assumption in The-
orem 3. Now we have

Proposition. (Theorem 11 in [GMII]) Assume that for any holomorphic line
bundle L on S with Chern class α ∈ H2(S,Z) the vector space H0(S,L−1 ⊗ TS)
is of constant dimension r > 0, then Dα has a natural structure of a CP r−1-
bundle over a complex torus of dimension half the first Betti number of S.

Since the homomorphism c1 : H1(S,O∗) → H2(S,Z) is a monomorphism, if
line bundles L and L′ have the same Chern classes, L is isomorphic to L′, and so
L−1 ⊗ TS is isomorphic to (L′)−1 ⊗ TS , and the first Betti number b1 = 2q = 0.

We consider the family of elliptic K3 surfaces in Section 5 of [KoI]. For each
member in the family, any singular fiber is of type I1 or II. Let j be the number
of singular fibers of type I1, i.e. j = ν(I1), and r = ν(II). Then by (46) in [KoI]
j+2r = 24, 0 ≤ r ≤ 8, and d = deg L = 2, and so 16 ≤ j+r ≤ 24. Let D =

∑
i Ci

be the sum of all singular fibers of π and let L = O(−∑
i Ci)⊗ π∗(TC). We put

b = degO(
∑

i π(Ci)). . Then

h0(L−1 ⊗ TS) ≥ h0(L−1 ⊗ TS/C)

= h0(D ⊗ π∗(KC ⊗ L−1))
≥ b + g − 1− d

≥ 13.

Thus we obtain Theorem 3. ¤

Proof of Theorem 4. Let D =
∑r

i=1 miPi. Then by the assumption h1(D) = 0.
So by the Riemann-Roch theorem we have

h0(D) = 1− g(C) + deg D ≥ g(C) + 2 ≥ 2.

Let Dk = (mk − 1)Pk +
∑

i 6=k miPi. Then deg Dk = deg D − 1 ≥ 2g(C). So by
the Serre duality we have h1(Dk) = 0. Therefore by the Riemann-Roch theorem
we obtain

h0(Dk) = 1− g(C) + deg Dk = deg D − g(C).

For each k, we have h0(Dk) = h0(D)−1 ≥ 1. Here we note that H0(D) % H0(Dk)
for each k. Hence there exists an element J ∈ H0(D)\ ∪r

k=1 H0(Dk). ¤
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Proof of Corollary to Theorem 4. In Theorem 3, let 1 ≤ r = j and so mi = 1
for i = 1, . . . , j. Then by Kodaira’s construction (Section 8 of [KoII]), we have a
basic member which has j-singular fibers of type I1 and some singular fibers of
type II, III, IV. Now singular fibers of type II and IV come from the value zero
of the meromorphic function J , and singular fibers of type III come from the
value 1. It is known that the number j is equal to the number of zeros possibly
with some multiplicity and to the number of 1’s also ([Sp]). Now we have an
estimation

c2(S) = 12d = j + 2ν(II) + 4ν(IV ) + 3ν(III)

= j + 2(ν(II) + ν(IV )) + 2ν(IV ) + 3ν(III)
≤ j + 2j + 2j + 3j

= 8j,

and
d ≤ 2

3
j.

Let L = O(−∑
i Ci)⊗ π∗(TC). Then

h0(L−1 ⊗ TS/C) ≥ b + g − 1− d ≥ j + g − 1− d ≥ j − d > 0,

where d = deg L and b = degO(
∑

i π(Ci)). Thus we obtain the corollary. ¤

Recently, we published the article [FuMa] which is a smooth version of the
present study.
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