

Japanese Journal of Clinical Oncology

A phase II study of palonosetron, aprepitant, dexamethasone, and olanzapine for the prevention of cisplatin-based chemotherapy-induced nausea and vomiting in patients with thoracic malignancy

Journal:	Japanese Journal of Clinical Oncology
Manuscript ID	JJCO-17-0189.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Nakashima, Kazuhisa Murakami, Haruyasu Yokoyama, Kouichi Omori, Shouta Wakuda, Kazushige Ono, Akira Kenmotsu, Hirotsugu Naito, Tateaki Nishiyama, Fumie Kikugawa, Mami Kaneko, Masayo Iwamoto, Yumiko Koizumi, Satomi Mori, Keita Isobe, Takeshi Takahashi, Toshiaki
Sub-category:	Palliative and supportive care
Keywords:	Supportive care, Lung Medicine, Clinical Trials

1	A phase II study of palonosetron, aprepitant, dexamethasone, and
2	olanzapine for the prevention of cisplatin-based chemotherapy-induced
3	nausea and vomiting in patients with thoracic malignancy
4	
5	Authors:
6	Kazuhisa Nakashima ¹ , Haruyasu Murakami ¹ , Kouichi Yokoyama ² , Shota Omori ¹ ,
7	Kazushige Wakuda ¹ , Akira Ono ¹ , Hirotsugu Kenmotsu ¹ , Tateaki Naito ¹ , Fumie
8	Nishiyama ² , Mami Kikugawa ² , Masayo Kaneko ² , Yumiko Iwamoto ² , et al.
9	
10	Affiliations:
11	¹ Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
12	² Nursing Department, Shizuoka Cancer Center, Shizuoka, Japan
13	
14	Corresponding Author: Kazuhisa Nakashima, MD
15	Division of Thoracic Oncology, Shizuoka Cancer Center, 1007, Shimonagakubo,
16	Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan
17	Telephone: +81-55-989-5222
18	Fax: +81-55-989-5783

- E-mail: ka.nakashima@scchr.jp 19
- 20
- Running head: Olanzapine for the prevention of CINV 21
- 22

μ.

23 Abstract

24	Background: The three-drug combination of a 5-hydroxytryptamine type 3
25	receptor antagonist, a neurokinin 1 receptor antagonist, and dexamethasone is
26	recommended for patients receiving highly emetogenic chemotherapy. However,
27	standard antiemetic therapy is not completely effective in all patients.
28	Methods: We conducted an open-label, single-center, single-arm phase II study
29	to evaluate the efficacy of olanzapine in combination with standard antiemetic
30	therapy in preventing chemotherapy-induced nausea and vomiting in patients
31	with thoracic malignancy receiving their first cycle of cisplatin-based
32	chemotherapy. Patients received 5 mg oral olanzapine on days 1-5 in
33	combination with standard antiemetic therapy. The primary endpoint was
34	complete response (no vomiting and no use of rescue therapy) during the overall
35	phase (0–120 h post-chemotherapy).
36	Results: Twenty-three men and seven women were enrolled between May and

October 2015. The median age was 64 years (range: 36–75 years). The most common chemotherapy regimen was 75 mg/m² cisplatin and 500 mg/m² pemetrexed, which was administered to 14 patients. Complete response rates in acute (0–24 h post-chemotherapy), delayed (24–120 h post-chemotherapy), and

41	overall phases were 100%, 83%, and 83% (90% confidence interval: 70-92%;
42	95% confidence interval: 66–93%), respectively. There were no grade 3 or grade
43	4 adverse events. Although four patients (13%) experienced grade 1
44	somnolence, no patients discontinued olanzapine.
45	Conclusions: The addition of 5 mg oral olanzapine to standard antiemetic
46	therapy demonstrates promising efficacy in preventing cisplatin-based
47	chemotherapy-induced nausea and vomiting and an acceptable safety profile in
48	patients with thoracic malignancy.
49	
50	A mini-abstract: The addition of 5 mg oral olanzapine to standard antiemetic
51	therapy demonstrates promising efficacy in preventing cisplatin-based
52	chemotherapy-induced nausea and vomiting in patients with thoracic
53	malignancy.
54	

Keywords: Chemotherapy-induced nausea and vomiting, Highly emetogenic
chemotherapy, Cisplatin, Olanzapine

57

59 Introduction

61 that reduces patient quality of life [1]. Cisplatin combination therapy, v	vhich is
62 classified as a highly emetogenic chemotherapy (HEC), is a standard tre	eatment
63 for advanced lung cancer. Prophylactic antiemetic therapy is important for	r HEC.
64 The three-drug combination of a 5-hydroxytryptamine type 3 receptor ant	agonist,
65 a neurokinin 1 receptor antagonist, and dexamethasone is recommer	ded for
66 patients receiving HEC [2, 3]. Previous phase III studies have reported	that the
67 complete response (CR; no vomiting and no rescue therapy) rate v	<i>i</i> th this
68 three-drug therapy in patients receiving HEC is approximately 60-70%	6 in the
69 overall phase (0–120 h post-chemotherapy) [4–7], suggesting that there	is room
70 for improvement with standard antiemetic therapy.	

Olanzapine is an atypical antipsychotic drug. It inhibits neurotransmitter pathways known to be involved in nausea and vomiting, including serotonergic, dopaminergic, alpha-1 adrenergic, histaminic, and muscarinic receptors. Several studies have reported the efficacy of olanzapine for CINV. Phase III trials demonstrated that the antiemetic efficacy of olanzapine in patients treated with

 $\mathbf{5}$

76	HEC was higher than that of dexamethasone and equal to that of aprepitant [8,
77	9]. Navari et al. [10] reported that the efficacy of olanzapine was higher than that
78	of metoclopramide as a rescue therapy for standard antiemetic
79	therapy-refractory CINV. Abe et al. [11] administered 5 mg olanzapine in
80	combination with standard antiemetic therapy as a preventive therapy to patients
81	treated with cisplatin who experienced grade 3 nausea (Common Terminology
82	Criteria for Adverse Events ver. 4.0) despite receiving standard antiemetic
83	therapy. The researchers retrospectively evaluated control of nausea and found
84	that olanzapine improved the nausea control rate from 0% to 90% in the overall
85	phase. Previous studies reported no grade 3 or grade 4 adverse events related
86	to olanzapine.
87	To evaluate the efficacy of olanzapine in combination with standard antiemetic
88	therapy for the prevention of CINV, we conducted an open-label, single-center,
89	single-arm phase II study in patients with thoracic malignancy receiving
90	cisplatin-based chemotherapy.
91	
92	Patients and methods

93 Patient selection

94	Eligible patients were 20 years of age or older with histologically or cytologically
95	confirmed thoracic malignant disease who were scheduled to receive
96	first-course cisplatin (\geq 60 mg/m ²) combination therapy. For inclusion in the study,
97	patients were required to have an Eastern Cooperative Oncology Group (ECOG)
98	performance status \leq 1 and adequate organ function (alanine aminotransferase
99	< 100 IU/L, aspartate aminotransferase < 100 IU/L, total bilirubin concentration <
100	2.0 mg/dL, and creatinine clearance \geq 60 mL/min).
101	Patients were excluded if they had a history of severe hypersensitivity to
102	aprepitant, palonosetron, corticosteroids, or olanzapine; had severe
103	complications; were pregnant or breastfeeding; were receiving abdominal or
104	pelvic radiation therapy during the period between 6 days before and 6 days
105	after the date of first chemotherapy; had diabetes mellitus or a history of
106	diabetes mellitus; had abnormal glucose tolerance (hemoglobin A1c \ge 6.5 and
107	fasting blood glucose \geq 126 mg/dL or non-fasting blood glucose \geq 200 mg/dL);
108	had emetic episodes requiring administration of antiemetics prior to
109	chemotherapy; had a personal or familial history of malignant syndrome; had
110	creatine phosphokinase levels greater than 2.5 times the institutional upper
111	normal limit; had active infection; could not stop smoking during this study; had a

 $\overline{7}$

body mass index \geq 35; or took an antiemetic medicine regularly.

113

114 Study treatment

115	Enrolled patients received standard antiemetic therapy and olanzapine.
116	Palonosetron was intravenously administered at a dose of 0.75 mg 30-60 min
117	prior to chemotherapy administration on day 1. Aprepitant was orally
118	administered at a dose of 125 mg 60-90 min prior to chemotherapy
119	administration on day 1 and at a dose of 80 mg on days 2 and 3.
120	Dexamethasone was intravenously administered at a dose of 9.9 mg 30-60 min
121	prior to chemotherapy administration on day 1 and was then orally administered
122	at a dose of 8 mg on days 2–4. Olanzapine was orally administered at a dose of
123	5 mg once per day at night on days 1-5. Patients were permitted to receive a
124	rescue therapy of the treating investigator's choice for nausea or emesis based
125	on clinical circumstances. Patients were not allowed to take prophylactic
126	antiemetic therapy other than the study treatment before breakthrough emesis.
127	

128 **Outcome measures**

129 The enrolled patients were hospitalised for treatment from the day prior to and up

130	to day 6 of chemotherapy. Episodes of nausea and vomiting were recorded in a
131	patient diary for the acute phase (0-24 h post-chemotherapy) and the delayed
132	phase (24–120 h post-chemotherapy). The degree of nausea was evaluated by
133	each patient using an 11-point (0–10) numeric rating scale (NRS).
134	The primary endpoint was the CR (no vomiting and no use of rescue therapy)
135	rate during the overall phase. Secondary endpoints were CR rates in the acute
136	and delayed phases and rates of complete control (CC; no vomiting, no rescue,
137	no significant nausea [NRS score of 0-2]), total control (TC: no vomiting, no
138	rescue, no nausea [NRS score of 0]), and adverse events in the acute, delayed,
139	and overall phases.
140	and overall phases.
141	Statistical methods
142	In a phase III trial, the overall phase CR rate for the three-drug combination of
143	palonosetron, aprepitant, and dexamethasone was 65.7% [7]. Therefore, we set
144	the threshold overall CR rate at 65% and the expected CR rate at 85% for the

- 145 present study. To reach 5% (one-sided) significance and 80% statistical power,
- we calculated that a minimum sample size of 28 patients was required [12].
- 147 Assuming a 10% exclusion rate, the planned sample size was 30 patients.

149 **Ethics**

- 150 Our institutional review board approved the design of this study. All enrolled
- 151 patients provided written informed consent.
- 152
- 153 Results
- 154 **Patient characteristics**

Thirty patients with thoracic malignancy were enrolled from May 2015 through 155October 2015. Patient characteristics are listed in Table 1. The most common 156type of thoracic malignancy in this study was non-small cell lung cancer. 157Nineteen patients received systemic chemotherapy, with the rest receiving 158chemoradiation therapy or postoperative adjuvant therapy. Cisplatin was 159administered at a dose of 60-80 mg/m², and pemetrexed (14 patients), 160etoposide (seven patients), vinorelbine (four patients), irinotecan (two patients), 161S-1 (two patients), or gemcitabine (one patient) were administered as the 162combination anticancer drug. 163

164

165 Efficacy

166	Antiemetic effects are shown in Table 2. Although outcome measures were
167	evaluated based on the diary submitted by each patient, there were no missing
168	data. The overall phase CR rate (primary endpoint) was 83% (90% confidence
169	interval: 70–92%; 95% confidence interval: 66–93%). CR rates for the acute and
170	delayed phases were 100% and 83%, respectively. In the acute, delayed, and
171	overall phases, CC rates were 93%, 73%, and 70%, respectively, and TC rates
172	were 77%, 70%, and 63%, respectively. No vomiting was reported in 100% of
173	patients in the acute phase and in 90% of patients in both the delayed and
174	overall phases. Likewise, rates of no rescue therapy were 100%, 90%, and 90%
175	for the acute, delayed, and overall phases, respectively. In the acute, delayed,
176	and overall phases, no significant nausea was reported in 93%, 77%, and 73%
177	of patients, respectively, while no nausea was reported in 77%, 70%, and 63% of
178	patients, respectively.
179	

180 Safety

There were no grade 3 or grade 4 adverse events during treatment. Grade 1 constipation was observed in 20 patients (67%). Grade 1 hiccupping was observed in 16 patients (53%), and grade 2 hiccupping was observed in one

184	patient (3%). Although four patients (13%) experienced grade 1 somnolence,
185	which is an adverse event thought to be caused by olanzapine, no patients
186	discontinued olanzapine. We conducted blood tests on days 6-8. Grade 1
187	elevated levels of alanine aminotransferase were observed in 11 patients (37%).
188	There was no incidence of hyperglycemia or increase in creatine
189	phosphokinase.
190	
190	
190	Discussion
	Discussion The 83% CR rate observed during the overall phase met the primary endpoint,
191	
191 192	The 83% CR rate observed during the overall phase met the primary endpoint,

cisplatin-based chemotherapy. The secondary endpoints and safety profiles
were also favorable in this study. The results of the present study are consistent

198 with a recently published phase II study that investigated the efficacy and safety

199 of the addition of 5 mg oral olanzapine to standard antiemetics for the prevention

of CINV in patients with gynecological cancer (n = 40) receiving HEC [13]. CR

rates during the overall phase were reported in 37 (92.5%) of the 40 patients with

202	gynecological cancer. Although all patients were female and the cisplatin dose
203	was 50 mg/m ² in most of the patients included in the previous study, our study
204	demonstrated the efficacy of this treatment in a patient group that was mostly
205	male and receiving a higher cisplatin dose (60–80 mg/m ²).
206	Navari et al. [14] reported the results of a phase III trial that evaluated the
207	additional efficacy of 10 mg oral olanzapine for the prevention of CINV in patients
208	receiving their first course of HEC. In that study, 380 patients were randomised
209	at a 1:1 ratio for treatment with either olanzapine and standard triplet antiemetic
210	therapy (n = 192) or placebo and standard triplet antiemetic therapy (n = 188).
211	The proportion of patients who reported no nausea and the CR rates were
212	significantly higher in the olanzapine arm compared with the placebo arm.
213	However, sedation was observed more frequently in patients receiving
214	olanzapine compared with those receiving placebo. Hashimoto et al. conducted
215	a randomised phase II study to compare the efficacy and safety of administering
216	10 mg versus 5 mg oral olanzapine for the prevention of CINV in patients
217	receiving HEC [15]. Somnolence was higher in the 10 mg arm than in the 5 mg
218	arm. In our study, only four patients (13%) experienced grade 1 somnolence.
219	Five milligrams of olanzapine may result in less somnolence than 10 mg.

234

220	Thus, three phase II studies, including the present study, have shown the
221	efficacy of adding 5 mg olanzapine to standard antiemetic therapy for HEC [13,
222	15]. Although Navari et al. demonstrated the efficacy of 10 mg oral olanzapine
223	plus standard antiemetics in a phase III study [14], the optimal dose of
224	olanzapine for CINV may be 5 mg, considering efficacy and safety. In addition,
225	Navari et al.'s phase III study had some limitations. First, the majority of subjects
226	were female (72%), had breast cancer (63%), and received anthracycline and
227	cyclophosphamide therapy as chemotherapy (63%). The findings cannot be
228	generalised to all patients who receive HEC. Second, the CR rate in the placebo
229	arm (41%) was lower than that in standard three-drug therapy in other previous
230	phase III studies [4-7]. This is also open to interpretation. The efficacy of
231	additional olanzapine in standard antiemetic therapy for CINV should be
232	investigated further.
233	The present study has several limitations. First, it was a small single-arm study

(n = 30) conducted at a single institution. Second, this study was conducted only in subjects with thoracic malignancy. Third, the majority of subjects were male; 235olanzapine clearance is known to be higher in men than in women [16]. 236Therefore, a phase III study to verify the efficacy and safety of 5 mg oral 237

238	olanzapine with standard triplet antiemetic therapy is under contemplation			
239	(UMIN000024676).			
240	In conclusion, the addition of 5 mg oral olanzapine to standard antiemetic			
241	therapy demonstrates promising efficacy for the prevention of CINV and			
242	provides an acceptable safety profile in patients with thoracic malignancy.			
243				
244	Conflict of interest			
245	This research did not receive any specific grant from funding agencies in the			
246	public, commercial, or not-for-profit sectors.			
247	Haruyasu Murakami and Hirotsugu Kenmotsu received remuneration from Eli			
248	Lilly Japan. Toshiaki Takahashi received remuneration from Eli Lilly Japan and			
249	ONO PHARMACEUTICAL CO., LTD. Other authors declare no conflicts of			
250	interest.			
251				
252	References			

[1] Bloechl-Daum B, Deuson RR, Mavros P, Hansen M, Herrstedt J. Delayed
nausea and vomiting continue to reduce patients' quality of life after highly and
moderately emetogenic chemotherapy despite antiemetic treatment. Clin Oncol

256	2006;24:4472–8.
256	2006;24:4472–8.

257	[2] Roila F, Herrstedt J, Aapro M, et al. Guideline update for MASCC and ESMO			
258	in the prevention of chemotherapy- and radiotherapy-induced nausea and			
259	vomiting: results of the Perugia consensus conference. Annal Oncol			
260	2010;21:v232–43.			
261	[3] Hesketh PJ, Bohlke K, Lyman GH, et al. Antiemetics: American Society of			
262	Clinical Oncology focused guideline update. J Clin Oncol 2016;34:381–6.			
263	[4] Poli-Bigelli S, Rodrigues-Pereira J, Carides AD, et al. Addition of the			
264	neurokinin 1 receptor antagonist aprepitant to standard antiemetic therapy			
265	improves control of chemotherapy-induced nausea and vomiting. Results from a			
266	randomized, double-blind, placebo-controlled trial in Latin America. Cancer			
267	2003;97:3090–8.			
268	[5] Schmoll HJ, Aapro MS, Poli-Bigelli S, et al. Comparison of an aprepitant			
269	regimen with a multiple-day ondansetron regimen, both with dexamethasone, for			
270	antiemetic efficacy in high-dose cisplatin treatment. Ann Oncol 2006;17:1000–6.			
271	[6] Hesketh PJ, Grunberg SM, Gralla RJ, et al. The oral neurokinin-1 antagonist			
272	aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a			
273	multinational, randomized, double-blind, placebo-controlled trial in patients			

- 274 receiving high-dose cisplatin—the Aprepitant Protocol 052 Study Group. J Clin
 275 Oncol 2003;21:4112–9.
- [7] Suzuki K, Yamanaka T, Hashimoto H, et al. Randomized, double-blind, phase
- 277 III trial of palonosetron versus granisetron in the triplet regimen for preventing
- 278 chemotherapy-induced nausea and vomiting after highly emetogenic
- chemotherapy: TRIPLE study. Ann Oncol 2016;27:1601-6.
- [8] Tan L, Liu J, Liu X, et al. Clinical research of olanzapine for prevention of
- chemotherapy-induced nausea and vomiting. J Exp Clin Cancer Res
 282 2009;28:131–7.
- 283 [9] Navari RM, Gray SE, Kerr AC. Olanzapine versus aprepitant for the
- prevention of chemotherapy-induced nausea and vomiting: a randomized phase
- 285 III trial. J Support Oncol 2011;9:188–195.
- [10] Navari RM, Nagy CK, Gray SE. The use of olanzapine versus metoclopramide for the treatment of breakthrough chemotherapy-induced nausea and vomiting in patients receiving highly emetogenic chemotherapy.
- 289 Support Care Cancer 2013;21:1655–1663.
- 290 [11] Abe M, Komeda S, Kuji S, et al. Clinical research of olanzapine for
- 291 prevention of chemotherapy-induced nausea and vomiting resistant to standard

292	antiemetic treatment for highly emetogenic chemotherapy. Palliative Care Res
293	2013;8:127–134.
294	[12] Fleiss JL. Statistical methods for rates and proportions. San Francisco:
295	Wiley; 1981.
296	[13] Abe M, Hirashima Y, Kasamatsu Y, et al. Efficacy and safety of olanzapine
297	combined with aprepitant, palonosetron, and dexamethasone for preventing
298	nausea and vomiting induced by cisplatin-based chemotherapy in gynecological
299	cancer: KCOG-G1301 phase II trial. Support Care Cancer 2016;24:675–682.
300	[14] Navari RM, Qin R, Ruddy KJ, et al. Olanzapine for the prevention of
301	chemotherapy-induced nausea and vomiting. N Engl J Med 2016;375:134–142.
302	[15] Hashimoto H, Yanai T, Nagashima K, et al. A double-blind randomized
303	phase II study of 10 versus 5 mg olanzapine for emesis induced by highly
304	emetogenic chemotherapy with cisplatin. J Clin Oncol 2016;34 (suppl; abstr
305	10111).
306	[16] Callaghan JT, Bergstrom RF, Ptak LR, Beasley CM. Olanzapine.
307	pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet

308 **1999;37:177–193**.

- 310 Appendix
- ³¹¹ **The other authors:** Satomi Koizumi², Keita Mori³, Takeshi Isobe⁴, Toshiaki
- 312 Takahashi¹
- 313
- ¹Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
- ³¹⁵ ²Nursing Department, Shizuoka Cancer Center, Shizuoka, Japan
- ³Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
- ⁴Division of Medical Oncology and Respiratory Medicine, Shimane University
- 318 Faculty of Medicine, Shimane, Japan

1 **Table 1.** Patient characteristics.

		n = 30
		64 years
Median age (range)		(36–75
		years)
	Male	23
Sex	Female	7
ECOC Defermence Status	0	22
ECOG Performance Status	1	8
	Non-small cell lung cancer	19
T he second second second	Small cell lung cancer	8
Thoracic malignancy	Malignant pleural mesothelioma	2
	Thymoma	1
	Systemic chemotherapy	19
Purpose of chemotherapy	Chemoradiation therapy	9
	Postoperative adjuvant therapy	2
Combination anticomercular	Pemetrexed	14
Combination anticancer drug	Etoposide	7

	Vinorelbine	4
	Irinotecan	2
	S-1	2
	Gemcitabine	1
	60 mg/m ²	4
Cisplatin dose	75 mg/m ²	14
	80 mg/m ²	12

2 ECOG, Eastern Cooperative Oncology Group.

3 **Table 2**. Antiemetic effects.

	Study phase	Rate (%)	90% C	95% CI
			(%)	(%)
Complete response	Acute	100	92–100	89–100
	Delayed	83	70–92	66–93
C	Overall	83	70–92	66–93
Complete control	Acute	93	82–98	79–98
	Delayed	73	59–84	56–86
	Overall	70	55–82	52–83
Total control	Acute	77	62–87	59–88
	Delayed	70	55–82	52–83
	Overall	63	48–76	46–78

4 Cl, confidence interval.