Mem. Fac. Sci., Shimane Univ., 16, pp. 17–22 Dec. 20, 1982

Note on *-Regular Semigroups

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan (Received September 4, 1982)

This paper is a continuation and a supplement to the previous paper [3]. For any element x of a *-regular semigroup (with *-operation*) in the sense of K. S. S. Nambooripad and F. J. C. M. Pastijn [1], there exists a unique inverse x^+ of x such that $x^* \mathscr{X} x^+$. The main purpose of this paper is to investigate several conditions for a *-regular semigroup S to be a special *-regular semigroup with respect to the unary operation $+: S \rightarrow S$.

§0. Introduction

A regular semigroup S equipped with a unary operation $*: S \rightarrow S$ (hereafter, we denote it by (S, *)) is called a *-regular semigroup if

- (0.1) (1) $(x^*)^* = x$ for all $x \in S$,
 - (2) $(xy)^* = y^*x^*$ for all $x, y \in S$,
 - (3) for any $x \in S$, there exists a unique inverse x^+ such that $x^* \mathscr{H} x^+$.

In a *-regular semigroup (S, *) it is easy to see from [1] that $(xx^+)^* = xx^+$, $(x^+x)^* = x^+x$, $(x^+)^+ = x$ and $(x^*)^+ = (x^+)^*$ for any element $x \in S$. It is also obvious that each *L*-class [*R*-class] contains a unique projection (that is, an idempotent *e* such that $e^* = e$). Let P(S) and E(S) be the set of all projections of (S, *) and the set of all idempotents of (S, *) respectively. It should be noted that $p = p^* = p^+$ for all $p \in P(S)$. We can consider the unary operation $+: S \rightarrow S$ defined by $+: x \rightarrow x^+$. This operation + is called *the inverse operation* induced by *. The semigroup S with + (we denote it by (S, +)) is not necessarily a *-regular semigroup with respect to +. If a *-regular semigroup (S, *) satisfies the following condition:

$$(0.2) x^* = x^+ for all x \in S,$$

then (S, *) is called a special *-regular semigroup.¹⁾ It is obvious that a *-band (that is, a *-regular semigroup in which every element is an idempotent) (B, *) is necessarily special. In case where a (special) *-regular semigroup is orthodox, it is called a (special) *-orthodox semigroup.

¹⁾ In [3], we used the term "a regular *-semigroup" for this (S, *).

Miyuki Yamada

§1. Basic properties

Let (S, *) be a *-regular semigroup. It follows from [3] that (S, +) is a special *-regular semigroup if

- (1.1) (1) $x^+P(S)x \subset P(S)$,
 - (2) $P(S)^2 \subset E(S)$.

In this case, we have the following; Let $\overline{P(S)} = \{p \in E(S) : p^+ = p\}$. Of course, $P(S) \subset \overline{P(S)}$. Conversely, $p \in \overline{P(S)}$ implies $p^+ = p$. Since $p^* \mathscr{H} p^+$ and both p^* and p^+ are idempotents, $p^* = p^+ = p$. Thus, $p \in P(S)$. Consequently, we have $P(S) = \overline{P(S)}$.

In a *-orthodox semigroup (A, *), $e^+ = e^*$ for each $e \in E(A)$. For, let $e \in E(A)$. Then, e^* is also an idempotent. On the other hand, e^+ is an idempotent since every inverse of an idempotent in an orthodox semigroup is also an idempotent. Since $e^* \mathscr{H} e^+$ and an *H*-class contains at most one idempotent, $e^* = e^+$. However, a *regular semigroup (S, *) satisfying $e^+ = e^*$ for $e \in E(S)$ is not necessarily orthodox (see N. R. Reilly [2]).

LEMMA 1. Let (S, *) be a *-regular semigroup. The following three conditions (1)-(3) are equivalent:

- (1.2) (1) For any $p, q \in P(S), (pq)^* = (pq)^+$.
 - (2) For any $p, q \in P(S), (pq)^+ = qp$.
 - (3) $P(S)^2 \subset E(S)$, that is, (pq, qp) is a regular pair for any $p, q \in P(S)$.

PROOF. (1) \Leftrightarrow (2): $(pq)^+ = (pq)^* \Leftrightarrow (pq)^+ = qp$. (2) \Leftrightarrow (3): $(pq)^+ = qp$ implies pq(qp)pq = pq. Hence, $(pq)^2 = pq$, whence $pq \in E(S)$. Conversely, let $P(S)^2 \subset E(S)$. For $p, q \in P(S), H_{(pq)^*} = H_{(pq)^+}$ (where H_x denotes the H-class containing x). Now, since $pq \in E(S)$, it follows that pq is an inverse of pq. Since $H_{(pq)^*} = H_{pq} = H_{(pq)^+}$ and since there exists at most one inverse of pq in each

LEMMA 2. For a *-regular semigroup (S, *) in which $e^* = e^+$ for $e \in E(S)$, the following conditions are equivalent:

(1.3) (1) Any one of (1.2).

H-class, we have $(pq)^+ = qp$.

- (2) $P(S)^2 = E(S)$.
- (3) For any $u \in E(S)^2$, $u^* = u^+$.

 $E(S) \subset P(S)^2$. Since $P(S)^2 \subset E(S)$ is satisfied by the assumption, we have $P(S)^2 = E(S)$. (3) \Rightarrow (1): Since $P(S)^2 \subset E(S)^2$, $(pq)^* = (pq)^+$ for any $p, q \in P(S)$. (1) \Rightarrow (3): This follows from the following theorem.

THEOREM 3. Let (S, *) be a *-regular semigroup. Then, the subsemigroup $(\langle E(S) \rangle, *)^{2}$ is a special *-regular semigroup if and only if $P(S)^2 \subset E(S)$ and $e^* = e^+$ for $e \in E(S)$.

PROOF. It is well-known that $\langle E(S) \rangle$ is a regular semigroup and $\langle E(S) \rangle \ni x$ implies $x^* \in \langle E(S) \rangle$. Hence, $(\langle E(S) \rangle, *)$ is also a *-regular semigroup. The "if" part: It is obvious that $P(\langle E(S) \rangle) = P(S)$. For $e \in E(S)$, $e^+P(S)e = e^*P(S)e \subset P(S)$. For, let $e^*fe \in e^*P(S)e$ where $f \in P(S)$. Then, $e^*fee^*fe = e^+((ee^+)f)((ee^+)f)e = e^+ee^+fe$ (since $P(S)^2 \subset E(S)) = e^*fe$. Further, $(e^+fe)^* = (e^*fe)^* = e^*fe = e^*fe$. Hence, $e^+P(S)e \subset P(S)$. It is obvious that for any $e \in E(S)$ there exists a unique $e' \in V(e)$ (the set of inverses of e) such that ee', $e'e \in P(S)$ (in fact, this e' is e^+). Therefore, P(S) is a p-system in $\langle E(S) \rangle$ (see [3]). Hence, $(\langle E(S) \rangle, +)$ is special *-regular semigroup. If $x \in (\langle E(S) \rangle, +)$, then $x = e_1e_2...e_n$ for some $e_1, e_2,..., e_n \in E(S)$. Now, $x^* = e_n^*...e_2^*e_1^* = e_1^*...e_2^+e_1^* = x^+$. Hence, $(\langle E(S) \rangle, *)$ is a special *-regular semigroup.

LEMMA 4. For a *-regular semigroup (S, *) satisfying $P(S)^2 \subset E(S)$, the following conditions are equivalent:

- (1.4) (1) For any $x \in S$, $x^+P(S)x \subset P(S)$.
 - (2) For any $e \in P(S)$ and any $x \in S$, $(ex)^+ = x^+e$.
 - (3) For any $e \in P(S)$ and any $x \in S$, $x^* e \Re x^+ e$.
 - (4) For any $e \in P(S)$ and any $x \in S$, $ex^* \mathscr{L} ex^+$.
 - (5) For any $e \in P(S)$ and any $x \in S$, $ex^* \mathcal{H} ex^+$.
 - (6) For any $e \in P(S)$ and any $x \in S$, $x^* e \mathscr{H} x^+ e$.

PROOF. (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (3): Let $x^*e\Re x^+e$ for $e \in P(S)$ and $x \in S$. Then, $ex \mathscr{L}e(x^*)^+$. Putting $y = x^*$, we have $ey^*\mathscr{L}ey^+$. Next, assume the condition (4). Then, $x^*\mathscr{H}x^+$ implies $x^*\mathscr{R}x^+$, whence $ex^*\mathscr{R}ex^+$. Therefore, $ex^*\mathscr{H}ex^+$. Next, $ex^*\mathscr{H}ex^+$ implies $xe\mathscr{H}(x^+)^*e$. Putting $x^* = y$, we have $y^*e\mathscr{H}y^+e$. It is obvious that (6) \Rightarrow (3). Next, we shall show (3) \Rightarrow (2): Since $x^*e\mathscr{L}x^+e$, $(ex)^+\mathscr{H}(ex)^* = x^*e\mathscr{H}x^+e$. Since $x^+e\mathscr{H}(ex)^+$ and since both $(ex)^+$ and x^+e are inverses of ex, we have $x^+e=$ $(ex)^+$. (2) \Rightarrow (1): Let $p \in P(S)$. Then, $x^+px = (x^+p)(px) = (px)^+px \in P(S)$. Thus, $x^+P(S)x \subset P(S)$. (1) \Rightarrow (6): For any $p \in P(S)$, $x^+px \in P(S)$. Hence, x^+p is an inverse of px such that $(px)(x^+p) = (px)(px)^+$ and $(x^+p)(px) = (px)^+(px)$. Thus, $x^*p =$ $(px)^*\mathscr{H}(px)^+\mathscr{H}x^+p$.

REMARK. Let (S, *) be a *-orthodox semigroup. For $e \in E(S)$, e^* is an idem-

²⁾ The notation $\langle E(S) \rangle$ means the subsemigroup of S generated by E(S).

Miyuki Yamada

potent. Since S is orthodox, $e^+ \in E(S)$. Since both e^* and e^+ are contained in the same H-class, $e^* = e^+$. Further, $e = ee^*e^*e = ee^+e^+e$. Hence, $E(S) \subset P(S)^2$. Since $P(S)^2 \subset E(S)$, we have $P(S)^2 = E(S)$. Therefore, any *-orthodox semigroup (S, *) satisfies each one of (1.3).

§2. Main results

The following is obvious:

THEOREM 5. An H-degenerate³ *-regular semigroup (S, *) is special. Now,

THFOREM 6. For a *-regular semigroup (S, *), (S, +) is a special *-regular semigroup if and only if S satisfies one of (1.2) and one of (1.4).

PROOF. The "if" part follows from (1.1). The "only if" part: Suppose that (S, +) is a special *-regular semigroup. Let $\overline{P(S)} = \{p \in E(S): p^+ = p\}$. Then, $\overline{P(S)} = P(S)$. Since (S, +) is a special *-regular semigroup, $x^+\overline{P(S)}x = x^+P(S)x \subset P(S)$ and $P(S)^2 = \overline{P(S)^2} \subset E(S)$ are satisfied (see [3]). Hence, S satisfies the conditions of (1.2) and (1.4).

REMARK. Let G be a group having an element a of order 2 which is not in the center (for example, let G be the symmetric group on the set $\{1, 2, 3\}$ and let a = (12)). Let $*: G \rightarrow G$ be the mapping defined by $x^* = a^{-1}x^{-1}a$. Then, $x^+ = x^{-1}$ for all $x \in G$. Now, (G, *) is a *-regular semigroup, but it is not a special *-regular semigroup. On the other hand, (G, +) is a special *-regular semigroup. By this example, we have the following: These exists a *-regular semigroup (S, *) such that (S, +) is a special *-regular semigroup.

COROLLARY 7. For a *-orthodox semigroup (S, *), (S, +) is a special *-regular semigroup if and only if S satisfies one of (1.4).

PROOF. Since S is orthodox, $e^* = e^+$ for all $e \in E(S)$. Further, $P(S) \subset E(S)^2$ is obvious. Therefore, this follows from Theorem 6.

A semigroup T is said to be *H*-compatible if Green's *H*-relation on T is a congruence.

THEOREM 8. For an H-compatible *-regular semigroup (S, *), (S, +) is a special *-regular semigroup if and only if S satisfies one of (1.2).

PROOF. The "only if" part follows from Theorem 6. The "if" part: Since S is H-compatible, $x^*e\mathscr{H}x^+e$ is satisfied for $x \in S$ and for $e \in P(S)$ since $x^*\mathscr{H}x^+$ is always

³⁾ A semigroup S is called H-degenerate if each H-class of S consists of a single element.

satisfied. Therefore, S satisfies the condition of Theorem 5. Hence, (S, +) is a speical *-regular semigroup.

COROLLARY 9. An H-compatible *-orthodox semigroup (S, *) is a special *-orthodox semigroup with respect to +. That is, $(xy)^+ = y^+x^+$ is satisfied for any $x, y \in S$.

REMARK. Let $S = M(G; I \times I; P)$ be a Ress $I \times I$ matrix semigroup over a group G with sandwich matrix P. Assume that $P = (p_{ij})$ satisfies $p_{ji} = p_{jj}p_{ij}^{-1}p_{ii}$ for all $i, j \in I$. Now, suppose that $S = M(G; I \times I; P)$ is a *-regular semigroup with respect to a unary operation $*: S \to S$. We can assume that for $(x)_{ij} \in S, (x)_{ij}^* = (y)_{ji}$ for some $y \in G$. Now, it is easy to see by simple calculation that $(x)_{ij}^+ = (p_{jj}^{-1}x^{-1}p_{ii}^{-1})_{ji}$. Therefore, the set P(S) of projections of (S, *) is $\{(x)_{ij}(x)_{ij}^+: (x)_{ij} \in S\} = \{(p_{i1}^{-1})_{ii}: i \in I\}$. Now, for $(p_{i1}^{-1})_{ii}, (p_{jj}^{-1})_{ji} \in P(S), (p_{i1}^{-1})_{ii}(p_{jj}^{-1})_{jj} = (p_{i1}^{-1}p_{ij}p_{jj}^{-1})_{ij} = (p_{j1}^{-1})_{ij} \in E(S)$. Since S is clearly H-compatible, it follows from the theorem above that (S, +) is a special *-regular semigroup.

We also obtain the following:

THEOREM 10. If a *-regular semigroup (S, *) satisfies

(2.1) (1) $P(S)^2 \subset E(S)$,

(2) $hE(S)h \cap E(S) \subset P(S)$ for all $h \in P(S)$,

then (S, +) is a special *-regular semigroup.

PROOF. For any $x \in S$, $x^+x \in P(S)$. Put $x^+x = h$. Now, $x^+P(S)x = h(x^+P(S)x)h$ $\subset hE(S)h \cap E(S) \subset P(S)$ since $x^+P(S)x \subset E(S)$. Hence, it follows from Theorem 6 that (S, +) is a special *-regular semigroup.

COROLLARY 11. If a *-orthodox semigroup (S, *) satisfies

(2.2) $hE(S)h \subset P(S)$ for all $h \in P(S)$,

then (S, +) is a special *-regular semigroup.

PROOF. Obvious.

REMARK. If (S, *) is a *-orthodox semigroup in which E(S) is a normal band (that is, (S, *) is a generalized inverse *-regular semigroup). Let $e \in E(S)$ and $h \in P(S)$. There exist $p, q \in P(S)$ such that pq = e (in fact, take $p = ee^+$ and $q = e^+e$). Now, $(heh)^* = (hpqh)^* = hqph = hpqh = heh$. Hence, $heh \in P(S)$. Therefore, (S, +) is a special *-orthodox semigroup. This gives another proof for Theorem 3.2 (and its corollary) of [3].

References

- [1] K. S. S. Nambooripad and F. J. C. M. Pastijn, Regular involution semigroups, to appear.
- [2] N. R. Reilly, A class of regular *-semigroups, Semigroup Forum 18 (1979), 385-386.
- [3] M. Yamada, P-systems in regular semigroups, Semigroup Forum 24 (1982), 173-187.