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Abstract

For the quantum mechanical three body problem with central potentials, separation of
the rotational coordinates is performed systematically. We treat two particles in a symmeric
way to apply Pauli principle for the case of eidentical fermions. We construct a complete set
of commuting observables, L?, the total angular momentum, M, its z-component and N, the
component around the normal through the third particle to the plane including three particles.
K, K, and N form three components of L in the body fixed moving frame. Single particle
operators are expressed in compact forms by those operators. Thus, the separation procedure
is simplified than hitherto known one. For the case of equal masses and L=0, a simple and
symmetrical equation is derived.

§1, Introduction and Summary

Nature has many three body systems in each different microscopic worlds. Ex-
amples are quite rich; Hi(p, p, ), H.-atom (*H,, e, e) and L;-ion ("L, e, e) etc. in the
molecular and atomic worlds, 3H(p, n, n) and 3H(p, p, n) in the nuclear world and
finally p(u, u, d), n(u, d, d), A%u, d, s), 4**(u, u, u) and A}(u, d, ¢) etc. in the had-
ronic world. (We denote electron, proton, neutron, up-quark, down-quark, strange
quark and charm quark as e, p, n, u, d, s, and ¢, respectively.) It should be noted
that except for the hadronic world there exists only system with three particles in which
two of them are identical fermions and the third one is different. The hadronic world
has most varieties; three identical fermions, two identical fermions and three different
fermions.

The first step to the dynamical study of the three body problem is the separation
of the three translational coordinates and the three rotational ones from the total nine
coordinates. The former is trivial because we can always choose the center of mass
coordinate system. As was emphasized in Ref. [4], the latter is not so trivial because
we must treat two identical fermions in a symmetrical way in order to apply the fermi
statistics. To describe the rotational states of the system we must choose the eigen-
functions of the total angular momentum L. These functions are functions of the
three Euler angles. These angles are not unique but the most natural one are those
used in the classical papers by Hylleraas [1] about the helium atom; spherical angles
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0 and ¢ of one electron in the space-fixed coordinate system with the fixed nucleus at
the origin and the azimuthal angle y of the second electron around the moving radial
axis of the first one. Clearly these angles are quite unsymmetrical between two elec-
trons. If one constructs the eigenfunctions of the total angular momentum with a
specified eigenvalue around the body fixed symmetry axis, the symmetry between two
electrons will be lost completely and the satisfaction of the Pauli principle becomes
quite a complicated task. This would be the main reason that Hylleraas limited his
study to total S-states which are independent of Euler angles. Also Breit’s original
work [2] was limited to P-states and work [3] thereafter had always been limited to
specific angular momentum states.

For the case of two-electron with fixed nucleus general solution to this problem
was achieved by Bhatia and Temkin [4]. They invented symmetric Euler angles and
constructed explicitly eigenfunctions of the total angular momentum (vector spherical
harmonics) in terms of those angles. The operations of parity and exchange become
quite simple: the essential feature they achieved. In return for this merit they were
obliged to work very hard to express the kinetic energy of each electron in terms of
those variables. The procedure is quite complicated and not transparent.

In thls paper we shall make two major improvements over their work. The first
point is that we define a complete set of commuting observables L2, M and N which
have definite symmetry properties with regard two (identical) particles. M is the z
component of the total angular momentum L in the space fixed coordinate system with
origin at the third particle (the coordinate system 4). N, which is antisymmetric with
regard two particles, is the component of L around the normal through the origin to
the instantaneous plane including three particles. N together with K, and K,, which
will be defined in section 4, form the three orthogonal components of L in the body
fixed moving coordinate system and satisfy the usual commutation relations for the
angular momentum. Accordingly the simultaneous eigen ket -of L, M and N with
eigenvalues [, m and n can be constructed by the elementary knowledge of the angular
momentum and need no explicit form in order to separate the angular variables. We
can also express the kinetic energy of each particle in a rather compact and transparent
way in terms of K, K’ and N. K and K’ have more direct physical meanings than
K, and K,, and the latter are expressed as linear combinations of the former. As the
results of these analyses the radial equations are derived quite simply. In order to
define K, K’ and N we have used three different coordinate systems or sets of variables
A, B and C freely. B is the above mentioned system used by Hylleraas. C is the
system in which the role of particle 1 and 2 is exchanged. In short we define the sym-
metrical observables K;, K, and N by using unsymmetrical variables.

The second point is that we take into account fully the recoil effects of the third
particle. The analysis is done by using two relative coordinates, instead of by using
usual center of mass and relative coordinates [8]. We confine ourselves to the central
force potentials which are the functions of the relative coordinates. So our choice is
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more convenient than the usual one. In the last section we demonstrate that, in the
case of equal masses and L =0, our analysis leads to a symmetric equation between these
three particles, in spite of our asymmetric treatment of third particle.

In Sec. 2 we express the components of the total angular momentum in various
coordinate systems. Especially, K, K’ and N are expressed by using the set of variables
B. 1In Sec. 3 single particle operators are expressed in terms of B and then in terms of
K, K’ and N by using the results of Sec. 2. Sec. 4 is devoted to the construction of
K,, K, and N and the eigen ket of L, M and N. Single particle operators in Sec.
3 are also rewritten in terms of K;, K, and N in this section. In Sec. 5 we derive
the radial equations and examine their symmetry properties. In Sec. 6 we derive a
symmetrical equation between three particles as a consistency check of our treatment.
Appendix a and b are devoted to mathematical preliminaries.

§2. Total Angular Momentum in various Coordinate Systems

We consider three non-relativistic particles with mass m;, Cartesian coordinates
x; and canonical momenta p;=—iV;(i=1, 2, 3). If two of them are identical, we
denote them i=1, 2. Define as usual the center of mass coordinates® and the relative
coordinates together with their respective canonical momenta by '

& =x,—x;, | (5= M3P1=mMips
ma+m;
=2 _7713x3+mlx1
T i my, and (. _ (ma+m)pr—my(ps+p1) (1)
my + my+ms ’

X =%y + 1%, + max;
my+my+nmy

s

P=p,+p;+Ps.

Because of the commutability of P with the total Hamiltonian, we can always choose
the system P=0 (the center of mass coordinates). In this system the kinetic energy T
and the total angular momentum L are given by

3 p2 2 k2
= Pi —_ P
T= i;l 2m;  2p3 * 2u, ° @

3
LE__leixPi=EXP+7]Xk _ 3)

where p;;=m;m;/(m;+m;) is the usual reduced mass and p,=(m3+m)m,/(m; +m,
+ms3). :
We confine ourselves to the central force problem. Then the potentials are given
in terms of the coordinates differences between three particles. Therefore, it is more

*) For a general definition of the center of mass coordinates and the method of K- harmonics, see an
interesting review article Ref. [5].
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advantageous and intuitive to use

r=x—x;=§, kIE—i%=p—msnj_lml
and 4)
rzsxz—x3=77+nT'z—‘m—IE, kzé-ia—i=k,
than to use (1), [8]. In terms of (4), T and L are reexpressed as
= 2’:531 + 21“33 + k';::z =T+ T,+T;, _ Q)
and
L=}1xk1+r2xkzsll+lz. | (6)

We make two remarks;

(i) L is invariant under the transformation (4).

(ii) In the fixed nucleus case of the atomic problem, m, /m;—0, (m; =m,=m,) so the
third term of (5) can be neglected.

Eq’s. (5) and (6) are our starting point of analysis.

As is stated in the introduction, we use three different coordinate systems A4, B
and C. A is the space fixed polar coordinate system with the origin at the third par-
ticle. In this system r;: (r;, 6, ¢;) i=1, 2, so the set 4 of independent variables of
the rotation are

(01’ ¢15 027 ¢)2): A

In B, r, is described in the same way as in 4 but r, is described referring to the moving
polar axis r, with the polar angle @ and the azimuthal angle ¥ so the set B of inde-
pendent variables are

(0=61: ¢=¢19 @, lp)' B
In C, the role of 1 and 2 is exchanged, so the set C of independent variables are
(0’=925 ¢’=¢2, @9 X) C

The relations between 4, B and C are visualized in Fig. 1.
The relations between 4 and B and that between respective canonical variables are
given by

9=013 ¢=¢1
cos @ =cos 0, cos 0, +sin 6, sin 0, cos (¢, — ¢,), , @)

coty =cos 0, cot (¢, —¢,)—cot 8, sin 6, cosec (P, —P,),
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Fig. 1. Perspective drawing of Euler angles on a unit Sphere
and
J _ 0 . 0 0
0, = cos npa—@+ cot O sin t//W+W,
1 0 _ 0 J’?_ 1 i
Sn0, 96, sin ‘P% (cot 8+ cot O cos t//)alp +s_in 93¢ (8)
0 oy 0 _siny o
30, °%%30 "sino 3y
1 0 0 ,cosy 0

00, 96, 136 Tsne oy
Eq’s /(7) and (8) are derived [1] by using the formulas in spherical trigbnometry and
the chain rule of the partial differentiation. For the sake of convenience we list those

formulas in Appendix a. As a first application of Eq. (8) we shall express L, which
is defined by (6) in terms of A, by the set B. The results [2] are well known

. Wl 0 i [ d
= — ptid _ [ —_—
Le=Llitil,=e <iae sin0<3l// °°S"a¢>>)’
.
L3 =M— ZW (9)
s [ 1 0 a0 1 (&, & o2 }
L2 = [sin@ a0 50 0 g5+ smza\agr Y apr ~2% 0 Ggay )

The eigenfunctions and the eigenvalues are also well known [7]. Note that L does
not include @ so O is invariant under the rotation.
Definitions of K, K’ and N.

We define an operator K by



34 Yasuo MUNAKATA

__ .0
K= la_W (10)
in terms of B. From its definition, K is the 6omponent of L around r, in the body
fixed moving coordinate system. Note that K is commutable with L, and L; which
are the components of L in A. (In Fig. 1, the rotations around Ol and around Oz
are commutable.) As is stressed in the introduction we must treat two particles 1 and
2 in a symmetrical way. So we define the second operator K’ by :
0

K’E—ZW (11)

in terms of C. By using formulas in Appendix a we can express K’ in terms of B,

' 00 oy | 0
K== <ax ae I 523 ax|'a¢:)
0,0',¢ 0,0’,¢’
_ ___M.i _0_]
isin @[smt,h sin0 39 + (cot © +cos Y cot 0) a (12)

From its definition K’ is the component of L around r, in the body ﬁxed moving frame.
Finally, we deﬁne third operator N by

sin@-N=—-i[K, K']. (13)

As is shown in Fig. 1, two unit vectors #, and #, make angle ® so #; x#,=sin © -m,
where m is a unit normal vector through the origin to the instantaneous plane O12.
Therefore N is the component of L around = in the body fixed moving coordinate.
Substituting (10) and (12) into (13), we get

. 0 ,sinfy 0 _
N—zl:cosd/%—+—sﬁ—0—a¢ smtﬁcot@awil 14

From Eqg’s. (10), (12) and (14) we get the commutation relations
sin O[N, K]=iK'—icos ©® K,
(15)
sin ®[N, K']=—iK+icos @ K’.

Eq. (15) are those relations which are expected from the definitions of K, K’ and N.
Finally, we can prove that

I?=N?4+[K?2+4+ K'?—cos ®(KK'+ K'K)]/sin?6O , (16)
because if we substitute (10), (12) and (14) into the r.h.s. of (16), we get (9).
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§3. Single Particle Operators

35

In this section we shall express single particle operators, given by (5) and (6), first

by the set B and then by K, K’ and N given in the last section.

1 02 12
22T
"’:u31T1 ’,i ar2’t+ 1
(i=1,2)
0? 0 1 02
2= — — J. A S
li=—gg ot Oigg-— o7 37 -
We substitute (8) into (18) and get [1]
02 6 0? 0 1 0?
— ]2 = .
B= 267 + cot @ 302 +cot960 20 947
+ (cot? @ +cot? 8+2cot O cos Y cot 0) 51,02

sinyy 0\ 0
+2< cosnpw+sm¢cot0(w smg—a—(—p—%—@

(ot 0(sin y 5 ~SY 8 _cos0 &0

sin d¢ /) sin28 0¢ /oy’
and
02 0 1 02
~B=ggrtceot 055t re ayr

If we substitute (10), (12) and (14) into (19) and (20) we can simplify (19) as
12 —p,(l —z¥)p,+L?>—2sin @sz+1 2(2zK K—K?)

and
l3=p.(1-2z)p,+(1-23"1K?

where we have set

z=cos O,
_ ., 0 i 0
D:=—1—5— = A
0z lg,0,y SINO 0040,y

(17

(18)

(19)

(20)

1

(22)

(23)

Marked asymmetry between (21) and (22) is- due to the definition of p,, Eq. (23).
Though z is symmetric between 1 and 2, but the canonical conjugate of it, p,, is defined
in the system B, and hence asymmetric. 'We ‘denote the corresponding operator in
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the system C as p.:

[ a = i _a_ 2
p:= ﬁ lp’,B',X_ sin® 00 ®,0",x (‘-4)
The r.h.s. of (24) is expressed by the set A4;
o _ae, Y 0
00 @',0",x 00 ®2,02,% 601 00 ®2,02,% a¢1

_ d siny 0
= —CSY " Sin 6, 06, ’

where we used formulas in Appendix a. Substituting (8) into the above, and using
(14), we get the relation between p. and p,,

p.=p,—N/sin ©. (25)
We define a symmetric variable p, which is canonical conjugate to z, by
p=(p.+p.)/2=p.—N[2sin 6. (26)

Substituting (26) into (21) and (22) and using (16) we obtain symmetric forms as fol-
lows;

. 2 2
13=p(1—-z?)p—N sin @p—~12—Ncot@+NT+%, 27
' : 2 2
13=p(1 —z?)p+ N sin @p+%cot@+ﬁ4—+llf—22; (28)

Finally we must express —m3T3=F -V ,, defined in terms of A, first by the set B and
then by K, K’ and N and p. The procedure is straightforward but rather tedious.
We write the result only,

_. 0 isin@/ . _ N\
Vl'Vz—Zarzarl + ) (Sln@p -‘2—>a—r2

isin O . N\ 0 2 o
+—;—2—~—-<sm@p+—2—>3—rj+[zp(l z3)p (29)

+i(l=z2)p— 7 + =22

zN?  K'K+ KK ’]
We remark that all of 2, 13 and F/, - V , are hermitian and under the exchange operation
£12, Egs. (27), (28) and (29) are covariant provided
e 1 zN = N s

£, k=K', . R " (30)
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& ZK '=K s

z, p are invariant.

§4. Operators K, K, and N

In the body fixed moving frame, the defining axises of
K and K’ make angle ©.
Hence, we define two operators K; and K, by

K=0K,+BK,,

K’=ﬁK1+aK2, (31)

o
. 0 %] e
with =cos( L~ > (cos +sin >
B ] ( \/ 2 2

Owing to Egs. (13), (15) and (31), K,, K, and N satisfy the
usual commutation relations of angular momentum, Fig. 2.

[Kl: K2]=1N’

[K,, N]=iK,, (32)
[N, K,]=iK,. '

Eq. (16) reduces to
L?=K}+K3+N? (33)

As is remarked in Sec. 2, Ly=M= 0 $ is commutable with all of K,, K,, N

and L2. L2, M and N form a complete set of commuting observables. We denote
the normalized eigen ket |I, m, n) having respective eigenvalues I(I+1), m, n

L2|l, m, ny=1(1+1)|l, m, n),
M|l, mm, ny=ml|l, m, n), (34)
N\, m, ny=nl|l, m, n).
If the parity operator is denoted as &, Bhatia and Temkin [4] showed that
| 2|, m, ny=(=1)"|l, m, ny, (35)
and

812”9 m, n>=(_1)l|ls m, _n> . (36)
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By virtue of (32) we can form the raising and lowering operators in n

K.=K;+iK,, 37
Kell, m, ny=JTFENTEn+ DI, m, n+1>. (38)
Repeating (38), we have |
Ki|l,m,ny=4(Fn)|l, mn+t2) (39)
with
Mn)y=/(I—n+D)(I—n+2)(I+n)(I+n-1). (40)
Note that
A—n+2)=A(n). (41)
We also have
K_K |, myny=>I-n)(+n+1)|l, m, nd (42)

and
K.,K_|l, m,np=(I—-n)(I+n-1)|l, m, n).

Our final task in this section is to express K2, K'2 and KK'+ K'K, which appear
in single particle operators, in terms of K, and K_. The calculations are easy,

; 2 __ 2
K2=—L(eokz—gor2) + LN
, (43)
. -
k2= -t @oki—eoxz) + 2N
and
KK'+K'K=(K2 - K2)/2i. (44)

§5. Radial Equations

In this section we derive the radial equations. As an illustration of our pro-
cedure, we take a simple case of two-electron with fixed nucleus, because the general
case is trivially performed by making use of (5), (29) and (44) in an exactly similar
manner. The Schrodinger equation is ' '

(E-H)Yg;,=0, (45)

with
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We expand ¥ g, by using the complete set |I, m, n);

'PElm= Z gil(rlﬁ Fa, Z) “7 m, n> . ‘ (47)

Because of the parity property of (35), the sum about n goes over every second value
of n, [4]. Substituting (43) into (27) and (28), using (39), (45) and (46), equating every
factor of |I, m, n) to zero, we get at once the following radial equation

(a—nb) gn(rl'.\ Fa, Z)+(C—d) }'(n+2) gn+2(r1’ F2, Z)
—(c+d) M(—n+2) gy-o(ry, 73, 2)=0, (48)

where we make the abbreviations

a=— ‘1 o rl grzz 2+( r){P(l"Zz)P

o
+ +5%1-)—37”—}+2m(V—E)» | (49)
b= ”-”;)(‘/ ”’+—\/1-22> 0

In Eq. (48) we suppressed common suffix [ in g}(ry, 75, z) and A(n). Note that a and
¢ are even and b and d are odd under &,,. The equation for g,(r,, 1, 2z) is obtained
from (48) with reversed sign for b and d. We define g, which are even or odd under

&12, by
9E=(gu(rs, 12, 2) £ g4(r2, 71, 2))/2. (53)
gi satisfies
agi —nbgF +An+2)(bgis2—cgirs) — M—n+2)(bgi- 2+c9n—7) 0.

In order to make eigen kets of &, for the rotational Varlables we must follow the
similar procedure as above; :

|+, 1, m, ny=|l, m, n)-_l;(—l)‘ll, m, —ny, (55)

gol, Lmymp=%|%, L, mny. (56)
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Corresponding to (55), we must also make the linear combinations of g and gZ,,
but we skip this procedure, because in Ref. [4] the details are described.

§6. Discussion

In this section we shall examine the third term of Eq. (5) with an explicit form
(29), which is neglected in the last section, as a consistency check of our procedure.
For this purpose it would be enough to consider the simple case of equal masses, m, =
my=mz=m and 2u3; =2u,3;=m, and L=0. In this case terms including K, K’, N
and L? can be neglected. From (5) and (29) we have

1 02 1 0
—mT=g it Gyt (G g U=

02 — 2 ( 1
8r or, +(1-2%) rq 8)2 Fy 6r1>0z G7)
—_—2 2
r1r2<z(l z) (1+z)a )
To examine the symmetry between three particles, we must use
ra=+\/r}+r3=2rr,z, (58)

instead of z. Relevant formulas for this transformation are listed in Appendix b. In
terms of r, r, and r; (57) can be written in a symmetrical and simple form [9];

_0% 0 o 0? 02
—-mT= 62+6r2+62+008836162+COS@18_2673
0% 2 0 ,2 08 ,2 @
MR PRNTR PR AN 7
where
24,22
cos@,{:"i""'_l_ﬁ, (60)

2r,~rj
(i, j, k): cyclic permutation of (1, 2, 3),

and ry, r, and ry must satisfy the triangle inequalities. With an appropriate central
potential the Schrodinger equation with (59) is worth while to study. For a more
realistic application of (59) to nuclear problem, we must generalize our procedure to
include tensor force and Ls coupling [6], [9].
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Appendix a

In this appendix we list the formulas in spherical trigo-

b — B nometry which are relevant to the text.
oo ae  gyompgee
X cos 0, =cos 0’ cos @ +sin 0’ sin O cos ¥, (a.2)
¢ Fi(z. N cos (¢, —@,)=cos ) cos Y +sin y siny cos @, (a.3)
cot @ sin 0, =cos 0, cos y+cot (¢, — ) sin x, (a.4)
sin @ cos y=cos 0, sin 6, —sin 6, cos 0, cos (¢, — ), (a.5)
sin (¢, — ¢) cos 0, =cos Y sin x+sin i cos y cos O . (a.6)

Owing to the symmetries between 6, 0, and ©, and between ¢,— ¢y, n—y and g,
there are three varieties for (a.2) and (a.3) and six varieties for (a.4), (a.5) and (a.6).

Appendix b

In this appendix we list the transformation formulas defined by (58).

%=—’;§2 a% (b.1)

8?1 a‘zl +c0s O, aas (b.2)

Fig. 4. =T (2 0), (6.3)

%=%+2 cos O, 6"2;1 +cos? @2(%2%— 45’: 623 (b.4)
5"2;"1 6}26}’1 +cos O, 3 ‘za - +cos O, 3 ala - +cos @, cos O, grz

452 0 (b.5)

T
713 Ors
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52 __I']rz 62 _I‘%COS@I a _rerCOS@ 62
Or 0z ry Or0rs 1} Ors 13 2or:”

(b.6)

In these formulas, the independent variables in Lh.s. are r,, r, and z, and those in r.h.s.
are ry, 7, and ;. @; is given by (60) and S is the area of the triangle in Fig. 4,

1682 =(ri+ry+13)(ry+ry—r3) (ry+ 13 —r)(r3+1,—1,).
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