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Abstract 

For the quantum mechanical three body problem with central potentials, separation of 

the rotational coordinates is performed systematically. We treat two particles in a symmeric 

way to apply Pauli princrple for the case of eidentical fermions. We construct a complete set 

of commuting observables, L2, the total angular momentum, M, its z-component and N, the 

component around the normal through the third particle to the plane including three particles 

K1, K~" and N form three components of L in the body fixed moving frame. Single particle 

operators are expressed in compact forms by those operators. Thus, the separation procedure 

is srmplified than hitherto known one. For the case of equal masses and L = O, a simple and 

symmetrical equation is derived 

S 1. Introduction aEld Summary 

Nature has many three body systems in each different microscopic worlds. Ex-

amples are quite rich; H~(p, p, e), H*-atom (4H*, e, e). and Li-ion (7Li, e, e) etc. in the 

molecular and atomic worlds, 3H(p, n, n) and 3H*(p, p, n) in the nuclear world and 

finally p(u, u, d), n(u, d, d)_ , Ao(u, d, s). A++(u, u, u) and At(u, d, c) etc. in the had-

ronic world. (We denote electron, proton, neutron, up-quark, down-quark, strange 

quark and charm quark as e, p, n, u, d, s, and c, respectively.) It should be noted 

that except for the hadronic world there exists only system with three particles in which 

two of them are identical fermions and the third one is different. The hadronic world 

has most varieties; three identical fermions, two identical fermions and three different 

f ermions 

The first step to the dynamical study of the three body problem is the separation 

of the three translational coordinates and the three rotational ones from the total nine 

coordinates. The former is trivial because we can always choose the center of mass 

coordinate system. As was emphasized in Ref. [4], the latter is not so trivial because 

we must treat two identical fermions in a symmetrical way in order to apply the fermi 

statistics. To describe the rotational states of the system we must choose the eigen-

functions of the total angular momentum L. These functions are functions of the 

three Euler angles. These angles are not unique but the most natural one are those 

used in the classical papers by Hylleraas [1] about the helium atom ; spherical angles 
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6 and ip of one electron in the space-fixed coordinate system with the fixed nllcleus at 

the origm and the azimuthal angle ~ of the second electron around the moving radial 

axis of the first one. Clearly these angles are quite unsymmetrical between two elec-

trons. If one constructs the eigenfunctions of the total angular momentum with a 

specufied eigenvalue around the body fixed symmetry axis, the symmetry between two 

electrons will be lost completely and the satisfaction of the Pauli principle becomes 

quite a complicated task. This would be the main reason that Hylleraas limited his 

study to total S-states which are independent of Euler angles. Also Breit's original 

work [2] was limited to P-states and work [3] thereafter had always been limited to 

specific angular momentum states. 

For the case of two-electron with fixed ,nucleus general solution to this problem 

was achreved by Bha. tia, and Temkin [4] ･ They invented symmetric Euler angles and 

constructed explicitly eigenfunctions of ,the total. angular momentum (vector spherical 

harmonics) in terms of those angles. The operations of parity and_exchange become 

quite simple : the essential feature they achieved. In return for this merit they were 

obliged to work very hard to express the kinetic energy of each electron in terms of 

those variables. Th~ proc~dure is quite complicated and not transparent 

In this paper we shall make two major improvements over their work. The first 

point is that we define a complete set of commuting observables .L2, M and N which 

have definite symlnetry propertjes with regard two (identical) particles. M is the z 

component of the total angular momentum L in the space fixed coordinate system with 

origin at the third particle (the coordinate system A). N, which is antisymmetric with 

regard two particles, is the component of L around the normal through the origin to 

the instantaneous plane including three particles. N together with K I and K2, which 

will be defined in section 4, form the three orthogonal components of L in the body 

fixed movmg coordinate system and satisfy the usual commutation relations for the 

angular mol~lentum. AQcordingly the simultaneous eigen ket of L, M and N with 

eigenvalues l, m and n can be- constructed by the elementary knowledge of the angular 

momentlun'and need no explici,t form in order to separate the angular variables. We 

can also express the kinetic energy of each particle in a rather compact and transparent 

way m terms of K, K' and N. K and K' have more direct physical meanings than 

K1 and K2, and the latter are expressed as linear combinations of the former. As the 

results of these analyses the radial equations are derived quite simply. In order to 

define K, K' and N we have used three different coordinate systems or sets of variables 

A, B and C freely. B is the above mentioned system used by Hylleraas. C is the 

system in which the role of particle I and 2 is exchanged. In short we define the sym-

metrical observableS K I , K2 and N by using unsymmetrical variables. 

The second point is that. we take into account fully the recoil effects' of the third 

particle. The analysis is done by using two relative coordinates, instead of by using 

usual center of mass and relative coordinates [8]. We confine ourselves to the central 

force potentials which are the functions of the relative coordinates. So our choice is 
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more convement than the usual one. In the last section we demonstrate that, in the 

case of equal masses and L = O, our analysis leads to a symmetric equation between these 

three particles, m spite of our asymmetric treatment of third particle 

In Sec. 2 we express the components of the total angtilar momentum in various 

coordinate systems. Especially, K, K' and N are expressed by using the set of variables 

B. In Sec. 3 single particle operators are expressed in terms of B and then in terms of 

K, K' and N by using the results of Sec. 2. Sec. 4 is devoted to the construction of 

K1' K and N and the ergen ket of L M and N. Single particle operators in Sec 

3 are also rewritten in terms of K1, K2 and N in this section. In Sec. 5 we derive 

the radial equations and -examine their symmetry properties. In Sec. 6 we derive a 

symmetrical equation between three particles as a consistency check of our treatment 

Appendix a and b are devoted to mathematical preliminaries 

S 2. Total Amgular Momentwm fim variows Coordinate Systems 

We consider three non-relativistic particles with mass mi, Cartesian coordinates 

xi and canonical momenta pi = - iVi (i= 1, 2, 3). If two of them are identical, we 

denote them i = 1, 2. Define as usual the center of mass coordinates*) and the relative 

coordinates together with therr respective canonical momenta by 

~ =x -1 x3 ? ln3pl~mlp3 P m3+ml ' ' 
q =x2 - m3x3 + mlxl and k - (m3 + ml)p2 - m2(p3 +pl) (1) 

m3 + ml ' 
ml + m2 + m3 ' 

X = mlxl + m2x2 + m3x3 

mi+m2+m3 P=Pl+p +p 
Because of the commutability of P with the total Hamiltonian, we can always choose 

the system P=0 (the center of mass coordinates). In this system the kinetic energy T 

and the total angular momentum L are given by 

T 3 P~ = k2 P2 

~ i~1 2m･ + 2p2 ' (2) * 2l/31 

L~i3~1x xp 
i i =~ xp +~ x k (3) 

where pij = mimjl(Ini + mj) is the usual reduced mass and /12 =(m3 + ml)m21(Inl + m2 

+ In3)' 

We confine ourselves to the central force problem. Then the potentials are given 

in terms of the coordinates differences between three particles. Therefore, it is more 

* ) For a general definition of the center of mass coordinates and the method of K- harmonics, see an 

interesting revlew article Ref. [5] 
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advantageous and intuitive to use 

.a 
rl = ~ ~larl =p ml k , 3 ~, 

k
l
 

xl ~ x= and m3 + ml (4) 
r2~ =~~+m3+1m ~, L . e _k ln k

2
 

x2 - x3 = ~1 ar2 

than to use (1), [8]. In terms of (4), T and L are reexpressed as 

T- k~ + k~ +klk23T1+T +T3, (5) ~ 2l/31 2ll23 m3 

and 

L r xkl+r2Xk2=11+12' (6) 
We make two remarks; 
( i ) L is invariant under the transformation (4) 

(il) In the fixed nucleus case of the atomic problem, m./m3~'O, (ml = m2=m~ so the 

third term of (5) can be neglected. 

Eq's. (5) and (6) are our starting point of analysis 

As is stated in the introduction, we use three different coordinate systems A, B 

and C. A is the space fixed polar coordinate system with the origin at the third par-

ticle. In this system ri : (ri. Oi; ipi) i = 1, 2, so the set A of independent variables of 

the rotation are 

(el' ipl, 02, ip2): A 

In B, rl rs described in the same way as in A but r2 is described referring to the moving 

polar axis r I with the polar angle ~ and the azimuthal angle ~ so the set B of inde-

pendent variables are 

(e el' c ipl,O, ~):B 

In C, the role of I and 2 is exchanged, so the set C of independent variables are 

(o e2, ip ip2, (9, X): C 

The relations between A, B and C are visualized in Fig. 1 

The relations between A and B and that between respective canonical variables are 

given by 

0=el' ip=ipl 

cos ~ = cos O1 cos e2 + sin O1 sin e2 cos (ip2 - ipl) ' (7) 

cot ~ = cos O1 cot (ip2 - ipl) ~cot 02 sin Ol cosec (ip2 - c1) ' 
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Fig. I . Perspective drawing of Euler angles on a unit Sphere 

and 

aO1 = ~cos ~ + cot 6, sin ~ a + e 
a~ ae ' a(9 

sin O1 aipl ~ ~sin ~ a6, -(cot e+cot 6) cos ~)a~ +sin e aip ' (8) 

a a sinX e a62 =cos X aO ~ sin O a~ ' 

1 a _sinX a +cosX a 
sin 02 aip2 ~ aQ sin e' e~ 

Eq's (7) and (8) are derived [1] by usmg the formulas in spherical tngonometry and 

the chain rule of the partial differentiation. For the sake of convenience we list those 

formulas in Appendix a. As a first application of Eq. (8) we shall express L, which 

is defined by (6) in terms of A, by the set B. The results [2] are well known 

r a i r a cose a - )) L~ = L1 :!~ iL2 = e~ic~ ~ 
eO ~ sin O ~a~ aip ' 

aip 

L2 - I a I ( e2 + a2 2cosO a2 )J a
 I

 
sin e + ~ sin e eO sin2 e ~ eip2 e~2 ~ aipa~ aO 

The eigenfunctions and the eigenvalues are also well known [7]. Note that L does 

not include Q so O rs invanant under the rotation 

Definitions of K. K' and N 

We define an operator K by 
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- .a 
K-

in terms of B. From its definition, K is the component of L around rl in the body 

fixed moving coordinate system. Note that K is commutable with L_+ and L3 which 

are the components of L in A. (In Fig. 1, the rotations around Ol and around Oz 

are commutable.) As is stressed in the introduction we must treat two particles I and 

2 in a symmetrical way. So we define the second operator K' by 

- .a K' = -1 aX (1 1) 
in terms of C. By usmg formulas m Appendix a we can express K m terms of B 

K aO a +ec a +a~ a ' = -i( I ･ I ･ ･ ) aX aO eX ac aX I a~ 
Q,o',c' Q,o',c' Q,o',c' 

r a cos~ a a J = -i sin ~'Lsin ~ - . . + (cot (9 +cos ~ cot e) (12) 

ae sme aip a~ ' 
From its definition K' is the component of L around r2 in the body fixed moving frame. 

Finally, we define third operator N by 

sin Q . N= - i [K, K'] . (13) 
As is shown in Fig. 1, two unit vectors ~l and ~2 make angle O so ~l x ~2 = sin Q . Ia, 

where lb is a unit normal vector through the origin to the instantaneous plane 012 

Therefore N rs the component of L around 18 in the body fixed moving coordinate. 

Substituting (10) and (12) into (13), we get 

N=ilcos ~ a sin ~ a . e J
 

ao + sine eip ~sm ~ cot e e~ ' (14) 

From Eq's. (10), (12) and (14) we get the commutation relations 

sin O[N, K] = iK' - i cos ~ K , 
(15) 

sin 6)[N, K'] = - iK + i cos ~ K' . 

Eq. (15) are those relations which are expected from the definitions of K. K' and N 

Finally, we can prove that 

L2 = N2 + [K2 + K'2 - cos ~ (KK' + K'K)]/sin2~) , (16) 

because if we substitute (10), (12) and (14) into the r.h.s. of (16), we get (9). 
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S 3. Single Particle Operators 

In this section we shall express single particle operators, given by (5) and (6), first 

by the set B and then by K, K' and N given in the last section. 

2ll3iTi= r'+ l~ (17) 1 a2 
ri er2i ' r2i ' 

(i= 1, 2) 

- a2 -cot e a I a2 
~ aO~ i eOi ~sin2 ei aip~ ' 

We substitute (8) into (18) and get [1] 

a e2 +cot O + ~a +cotO + l ~ a6)2 ae sin2 e aip2 a~ uu2 
a2 

+ (cot2 ~ + cot2 e + 2 cot O cos ~ cot e) a~2 (19) 

( a sin~ a ~ a 
e
 +2~~cos ~ +sin ~ cot ea~ ~ sin e eip f~~ 
eO 

+2(cot Q(sin ~ a cos~ a ~ cosO a ~ e 
e6 ~ sin O aip /~sin2 e ac )e~ ' 

and 

-12- e2 + cot Q + I a2 (20) *a . 2~a(92 e6) sm2 ~) ~~7~e~ ' 

If we substitute (10), (12) and (14) into (19) and (20) we can simplify (19) as 

1
 l p (1 z )p +L2 2sm ~Np.+1-z2(2zK K K ) (21) 

and 

1~=p.(1 z )p +(1 z ) IK2 (22) 
where we have set 

z =cos Q, 

.e i a . (23) 

p ~-1 = ' az ep,o,~ sin 6) a~) q,･o,c . . 
Marked asymmetry between (21) and (22) is ' ,du~ to the defimtion of p., Eq. (23). 

Though z is symmetric between I and 2, but the canonical conjugate of it, p., rs defined 

in' the system B, and hence asymmetriQ. 'We "denQte the corresponding operator in 
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the system C as p~ 

_ .a = i e p~=-1 az ~p',o x (24) ', sin~ aQ ep･,o x 

The r.h.s. of (24) is expressed by the set A ; 

a _ aO1 e + eipl e ,, ~ eO , qp, 02'x' aipl ep, 02,x' aO1 aO , a6) ep,,6 x 

cos ~ e sin ~ a 
ael ~ sin O1' eipl ' 

where we used formulas in Appendix a. Substituting (8) into the above, and using 

(14), we get the relation between p~ and p=, 

p~ = p. N/sm O (.25) 
We define a symmetric variable p, which is canonical conjugate to z, by 

p = (p. + p~)/2 = p. - N/2 sin ~). (26) 

Substituting (26) into (21) and (22) and using (16) we obtain symmetric forms as fol-

10ws ; 

l~=p(1 -z2)p-N sin O p- iN cot ~+ ~ + IK'22 ' (_27) 
1
)
~
 

N2 K2 12 p(1 z )p+Nsm 6,p+iNcotQ+ (28) 2 * 4 +1-z2' 
Finally we must express - m3T3 = V I . V2' defined in terms of A, first by the set B and 

then by K, K' and N and p. The procedure is straightforward but rather tedious 

We write the result only, 

V1.V2=z e2 + I sm Q N~ a ' }1 ~ ( ' ~ ar2arl sm 6, p 2 )ar2 

N~ a +1zp(1-z2)p (
 
sm Q p+ 2 Iar 

r2 

+1(1 z )p zN2+K'K+KK'J_ 
~ 4 '_(1-z2) 

We remark that all of l~, 1~ and V I . V 2 are hermitian and under the exchange operation 

el2. Eqs. (27), (28) and (29) are covariant provided 

el2N= - N, 

812K=K', ' (30) 
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S 4. Operators K19 K2 and N 

In the body fixed moving frame, the defimng 

K and K' make angle O 
Hence, we define two operators K1 and K2 by 

K = OCKI + pK2 ' 

K' = pK1 + ocK2 ' 

with =cos~4 2 ~~~ cos , + sin 2 ) (7cIF~ _ ~' Q ( -p
 

axises of 

(31) 

Owing to Eqs. (13), (15) and (31), K1' K2 and N satisfy the 

usual commutation relations of angular momentum, Fig. 2 

[K1' K2] = iN , 

[K2, N] = iK1 , (32) 
[N, Kl] = iK2 ' 

Eq. (16) reduces to 

L2 = K~ + K~ + N2 (33) 
As is remarked in Sec. 2, L3 =M= - Iaec rs commutable with all of K1' K2' N 

and L2. L2, M and N form a complete set of commuting observables. We denote 
the normalized eigen ket I l, m, n> having respective eigenvalues l(1+ 1), m, n 

L211, m, n> = l(1+ 1) Il, m, n> , 

Mll, In, n> =mll, m, n> , (34) 
Nll, m, n>=nll, m5 n> . 

If the parity operator is denoted as ~~, Bhatia and Temkin [4] showed that 

~~ll, m, n> =(- 1)"Il, m, n> , (35) 

and 

81211, m, n> =(- Iyll, m, -n> ･ (36) 
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By virtue of (32) we can form the raising alrd lowering operators in n 

K+_ = K1 + IK2 ' (37) 
Kd~ ll, In, n> =~(1:F n)(Idi n+ 1) Il, In, n:!: l> . (38) 

Repeating (38), we have 

K~ I l, m, n> =),1(:Fn) I l, In, n:!:2> (39) 

with 

~l(n) = ~(1 - n + I ) (1 - n + 2) (1 + n) (1 + n - 1) . (40) 

Note that 

~l( ~ n + 2) = Al(n) . (4 1 ) 
We also have 

K_K+ Il, m, n> =(1- n)(1+ n + 1) Il, m, n> (42) 

and 

K+K_ll, m, n>=(1-n)(1+n 1)II m n> 

Our final task in this section is to express K2, K'2 and KK' + K'K, which appear 

in single particle operators, in terms of K+ and K _ . The calculations are easy, 

K2 = - L2 - N2 4 (e'QK~ e'QK2)+ 

- 2 ' (43) 

K'2 = - L2 * N2 4 (e'QK~ e'QK2)+ 

- 2 ' 
and 

KK' + K'K = (K~ - K~)12i. (44) 

S 5. Radial Equations 

In this section we derive the radial equations. As an illustration of our pro-

cedure, we take a simple case of two-electron with fixed nucleus, because the general 

case is trivially performed by making use of (5), (29) and (44) in an exactly similar 

manner. The Schr6dinger equation is 

(E H)yEl~ = O, (45) 
with 
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121 + 1~ J
 

1 e22'r2+ l a2 /2m+ V(rl' r2' z) . 
H= r er2'rl-r er r2 2 1 1 2 2 1 r2 

We expand yEl~ by using the complete set I l, m,, n> ; 

~/Eim=~91(1' 1' z)ll m n>. (47) n 1' 2' ' ' 
Because of the parity property of (35), the sum about n goes over every second value 

of n, [4] . Substituting (43) into (27) and (28), using (39), (45) and (46), equating every 

factor of I l, In, n> to zero, we get at once the following radial equation 

(a nb) 9n(rl' 1'2' z)+(c-d) ~(n+2) 9~+2(rl' r2' z) 

-(c + d) A(- n +2) 9n-2(rl' 1'2' z) =0 , (48) 

where we make the abbreviations 

)
{
 

a I a2 1 a2 rl + I p(1-z2)p rl ar~'rl r2 er~'r2+~r~ r~ 

n2 1 l+ 1~ -n + + ( ) +2m(V-E) , 
4 2(1 -z ) ' 

= )(~~l~l-z p+2 ~l- 2)' (
 r21 r22 z 

)
 

c~ iz .(1 + I ' ,.(51) ~ 4(1 -z2) ~r~ r~ 

_ _ 12 122 1
 

4J1~ rl r 
In Eq. (48) we suppressed common suffix I in g~(rl' r2' z) and ~l(n). Note that a and 

c are even and b and d are odd under 812' The equation for 9n(r2' rl' z) is obtained 

frbm (48) with reversed sign for b and d. We define 9~, which are even or odd under 

el2' by 

g+ (gn(1 l, 1 2' z)+gn(r2' rl' z))/2. (53) 

9~ satisfies 

"~+2 c9n:!:+2) ~( n+2)(b9~ 2+cg~ ,) O + a9~ - nb9"+~ + A(n + 2) (bg -

In order to make eigen kets of el'- fqr the .rotational variables, vy~ must follow tlpe 

similar procedure as above ; 

I ~, l, m,, n>~: Il, m, n>~(- 1)lll, m, -n> (55) 

gl~l :!:, l, m, n>= ~ I :!:, l, m, n> . (56) 
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Correspondmg to (55), we must also make the linear combinations of g~ 

but we skip this procedure, because in Ref. [4] the details are described. 

and g~n' 

S 6. Discussiom 

In this section we shall examine the third term of Eq. (5) with an explicit form 

(29), which is neglected in the last section, as a consistency check of our procedure 

For this purpose it would be enough to consider the simple case of equal masses, Inl = 

In2=m3=1n and 21131 =2/l23=m, and L=0. In this case terms including K, K', N 

and L2 can be neglected. From (5) and (29) we have 

l~a 2' ( I +r~laz -lnT=rl ar~ 'rl+r2 ar2 r2+ (1 z ) az 

+z a2 1 e + I a ~ a (
 + (1 - z2) (57) ar2erl rl ar2 r2 ' erl/az 

- ( 2 - 2 ) rlr2 z(1-z )ez2 (1+z )az ' 

To examme the symmetry between three particles, we must use 

r3 = ~r~ + r~ - 2rl r2z , (58) 
instead of z. Relevant formulas for this transformation are listed in Appendix b. In 

terms of r I , 1'2 and r3 (57) can be written in a symmetrical and simple form [9] ; 

a2 a2 e2 e2 a2 -mT= + + + cos G) + cos O ar~ ar~ er~ 3 arl ar2 1 ar2ar3 

. a 2a 1' a + cos a2 ar3arl + r~~1 ar + r2 ar + r~~~~3 er3 ' 

where 

cos Qk = r~ + r~ - r~ (60) 
2r ir j 

(i, j, k) : cyclic permutation of (1, 2, 3) , 

and rl' r2 and r3 must satisfy the triangle inequalities. With an apptopriate central 

potential the Schr6dinger equation; wit~ (59) is worth while to . study. For ~ more 

realistic application of (59) to nuclear problem, we must generalize our procedure to 

include tensor force and Ls coupling [6], [9] 
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Appendix a 

In this appendix we list the formulas in spherical tngo-

nometry which are relevant to the text 

sin X _ si_n ~ _ sin (.c2- c1) (a.1) 
sin ~ ~ sin e' ~ sin O ' 

cos el = cos e' cos 6~ + sin e' sin Q cos X , (a._') 

cos (ip2 - ipl) = cos X cos ~ + sin X sin ~ cos ~ , (a.3) 
Fig. 3. 

cot 6) sin 02 = cos 02 cos X + cot (ip2 - ipl) sin X , (a.4) 

sin O cos X= cos O1 sin 02 - sin O1 cos e2 cos (ip2 - ipl) ' ('a.5) 

sin (ip2 - ipl) cos 02 = cos ~ sin X + sin ~ cos X cos (9 . (a.6) 

Owing to the symmetries between O1, 02 and ~, and between ip2-c1' IT - ~ and X, 

there are three varieties for (a.2) and (a.3) and six varieties for (_a.4), (.a.5) and (a.6). 

Appendix b 

In this appendix we list the transformation formulas defined by (58) 

e _ rlr2 e 
ez r3 ar3 ' 

~ e a - a +cosO 
arl ~ arl 2 ar3 ' 

Fig. 4. = ~ ( 2 ) , r2lr22 a a2 

r~ + . ar23 1 3ar3 az2 

a2 - a2 +2cos e) a2 ' +cos2 ~l a2 + 4S2 e 
~ 2 er3arl 

er~ ~ ar~ 2 ar~ r~r~ ar3 ' 
a2 

+ cos Gf + cos O +cos e cos Q2 ar~ er2arl = ar2erl 2 ar2ar3 1 arler3 

4S2 a 
rlr2r~ ars 

(b. I ) 

(b . 2) 

(b.3) 

(b.4) 

(b.5) 
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