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Im this paper, ~ve shaH show how a general regualr *-semlgroup cam be constructed from a 

fundamental regular *-semigroup and a certain partial groupoid. 

S I . Introductiom 

A regular *-semrgroup is a regular semigroup S equrpped with a unary operation* 

S~'S satisfying the following three axioms 

(1) xx*x=x forxeS, __ 
(2) (x*)*=x for xeS, 

(.3) (xy)*=y*x* for x, y e S, 

(see [1]). 

An element x of S is called a projection if x2 = x and x* = x. Hereafter, we shall 

call a unary operation* : SH,S satisfying (1)-(3) above a *-opel'ation in S. Let S be a 

regular semigroup, and Es the set of idempotents of S. A subset F of Es is called 

a p-system if 

(1) for any a e S, there exists a unique inverse a* of a such that both aa* and 

a*a are contained in F, 

(.2) a*Fa c F for any a e S, where * is a unary operation determined by (1), 

(3) F2cEs' 
In the previous paper [2], it has been shown that a regular semigroup becomes 

a regular *-semigroup if and only if it has at least one p-system. In this paper, all the 

notations and terminology should be referred to [2] and [3], unless otherwise stated 

S 2. *-regular product 

Let F be a fundamental regular *-semigroup, and Er the set of idempotents of F 

Let * be a *-operation in F. Let Fr be the set of projections of F with respect to the 
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*-operation *. Of course, FrCErl). Let M=~{Sh:AeEr} be a disjoint sum of 
groups {SjL : A e Er} such that 

(C.O) (1) M is a partial groupoid, and each SA is a subgroup of M, 

(2) if oc, p e Er' ocP e Er' x e S. and y e Sp, then xy is well defined in M and 

xy e S.p ; that is, S*Sp c S.p, 

(3) if Qcl' oc2""' cc~ e Er, c(10c2"'ce* e Er and x.eS.* for all i = 1 2 n then all 

the possible products of xl, x2" "' x* (associated with the binary operation 

in M) taken in this order take the same value (element) contained in 

2) We denote it by xlx2"'x~. S
 "*".. . ."" 

(4) if ~, T e Fr (accordingly, of course ~T e Er)' then ejLe. = eA., where e* is the 

identity of S.. 

Put U {S. : T e Fr} = N. Of course, N is a partial subgroupid of M. A mapping 

a: N~'N is called a local endomorphism (/-endomorphism) on N if it satisfies the 

following : 

(C.1) For any I e Fr' S,a c S~ for some ~ e Fr ; and alS. (the restriction of a to S.) is 

a homomorphism 

The set of /-endomorphisms on N forms a semigroup with respect to the resultant 

composition. We denote it by ~~(N). 

Now, Iet ~ : F->~~(N) and ip : F x F->N be mappings suc~ that 

(C.2) (1) for any y e r and T e Fr' y~ = ~ maps S. into Sv'(v')" and in particular ~ 

maps Sv'v onto Svv" where * denotes the *-operation in F, 

(2) (y, 6)ip = C(y, 6) e Sy6(v~)' for any y, 6 e F. 

Assume that the family A = {~ ; C(V, 6)}v,6=r Satisfies the following : 

,(C.3) (1) C(A, T)=eA.(A,). for all ~, T e Fr' and C(yy*, y)=C(V, y*y) =evv for all 

v e F, 

(2) C(~, ~)~C(y, 6~) = C(y, 8)C(y8, ~), where x~=x~; further 

C(A, y)~' C(y*, ~y) = C(y*, ~)C(y*A, V) = C(y*, y)ev';Lv for h e Fr and y e F, 

(3) ~~ = ~V C(6, V), where C(6, y) is the mapping of N into N defined by 

uC(6, V) = C(6, V)uC(5, y)~1 (where x~1 means the group inverse of x), 

(4) ejLbeh = b~ for b e S6, ~, 6 e Fr (especially, eAb=b~ if A8 e Fr)' 

(5) C(~T, h?) = eA.(A.). for ~, I e Fr' 

1) F. is the set {eeEr: e*=e}. 

2) For example, assume that crl' a2' a3' a4eEr' ala2a3cr4eEr and xi eSi (i=1, 2, 3, 4). Assume 

also that (o~1a,)a8' ((ala2)a3)a4' ala2' a3cY4eEr (hence (ala2) (a3cr4)eEr)' then the corresponding 

(xlx2)x3' ((xlx2)x3)x4' xlx2' x3x4 and (xlx2) (x3x4) are all well defined in M by (2) of (C. O) and 

((xix3)x4)xl =(x2x2) (x8x4) follows from (3) of (C. O). 
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In this case, NRr={(a, y) : a e Svy" y e F} becomes a regular *-semigroup under 
A
 the multiplication and the *-operation defined as follows 

(a, y) (b, T) = (ab~C(V, T), VT), 

(a, y)* =(t, v*), where t is the element of Sv'v Such that t~ = a~1C(y, y*)~1 

(such t exists since ~ is a mapping of Sv'v onto S ' and vv* ' 

it is easy to see that t is unique). 

In fact 

THEOREM 2.1. (1) NRF is a regular semigroup having F={(eA, ~): ~ eFr} as 
A
 

its p-system.. Accordingly, NRF is a regular *-semigroup (see [2]). 
A
 

(2) Let # be th,e *-operation determined by F (see [2]). Then # = *. Hence, 

F is the set of projections of (NRF, *). 

(3) The set of idelnotents of NRr is E={(eAh., ~) : A e Er}' 
A
 

PROoF. (1) Let (a, y), (b, T), (c, ~) e NRr. Then, ((a, y) (b, T)) (c, 6) =(ab~C(y, 

T), yl;) (c, 6) = (ab7C(y, T)cv'C(y7, 6), VT~). . . . . .(A) 

On the other hand, (a, V) ((b, ?) (c, ~)) = (a, y) (bc~C(1:, 6), T5) = (a(bc~C(T, 6))~. 

C(y, 16), yl:6)=(ab~ci~C(T, 6)~C(V, T6), VT6)......(B). Now, c~~=cv' c(v,') = C(V, T)cy" 

C(V, T)~1. Hence, c~~C(1, ~)~C(y, T8) = C(y, T)cy'C(y, 7)~1C(y, T)C(yT, 8) = C(y, T)cv' . 

C(y?, 6). Thus, (A) = (B). That is, NRr is a semigroup 
A
 

Next (a v) (a y)*(a y) (aty C(y v*), yy*) (a, y) (where ty = a~1C(y, y*)~1 = 

(at~C(y, y*)avv'C(yv*, y), y) = (at~C(y, y~)avv', y) ~ (aa~1 C(y, y*)~1 C(y, 7*)a, y) = (a, y). 

Hence, (a, V) has an mverse m NRF That rs NRF rs regular Consider 

F={(eA, ~) ~ e Fr}' For any (a, y) e NRr, (a, y)(a, y)*=(at~C(y, v*), yy*) (where 
A
 

tl = a~1C(y, y*)~1) =(aa~1C(y, y*)~1C(y, v*), yy*) = (evv" yy*) e F. On the other hand, 

(a, y)*(a, V)=(ta~'C(y*, V), y*v), where ty=a~1C(y, y*)~1. Now, t~~' = ty'v c(v',v)= 

C(y*, V)ty'vC(y*, y)~1 = C(y*, y)tC(y*, y)~1. Hence, t= C(y*, y)~1(a~1)y'(C(y, v*)~1)~' . 

C(y*, y) = C(y*, y)~1a~'~*C(y*, y)~1C(y*, V) (since C(y, y*)y' = C(v*, y) ; in fact, C(y,y*)~' . 

C(y* yy*) C(y* y) C(y*y y) (by (2) of (C.3)) implies C(y, y*)~' = C(v* y) 

C(y*, y)a~ . Accordingly tay C(y* v) C(y* y) Iav"ay C(y* y) C(y*, y)~1ev'v *-* 

C(y*, y) = C(v*, y)~1C(v*, y) = ev'v' Thus, (a, y)*(a, y) = (ey.v' y*y) e F. Next, ((a, y)*)* 

=(t, y*)* (where t~ = a~1C(y, y*)~1) = (d, y) (where dy' = t-1C(y*, y)~1). We obtain 

t=C(y~, y)~1a~'~i as was shown above. Therefore, dy' = a~'C(y*, y)C(v*, V)~1=a~'. 

Hence, d~'7=al'~ implies C(y, y*)dyv'C(y, y*)~1=C(y, y*)ayv'C(y, v*)~1), whence 

a = d. Consequently, ((a, V)*)*=(a, y). 

Suppose -that (a, ~) is an idempotent. Since (a, ~)2 = (a, A), h is an idempotent. 

Hence, there exist n, 6 e Fr Such that n6 =h. (a, A)2 =(aaJ~C(h, h), h) = (aan6eAA., 

h)...(C). Qn the Other hand, a~~=an6c(n,6)=C(n, ~_)an6C(n, 5)=ehA.a~e~h'=a~. 
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Therefore, a~ = ene6ae6en = e,,e6en6naen8ne6en = e,16naen6n = a . Thus, (C) = (a2elA" ~). 

Since (a, A)2 = (a, ~), a2eAA. = a, whence a = eAA.. Therefore, the set of idempotents of 

NRF is E = {(eA~., ~) : ~ e Er}' (.it is easy to see that each (e;LA" )') is an idempotent) 
Le~ (eA, h), (e., T) e F. Then, (eh, ~) (e., 1~) = (eAe~C(~. T), ~T) =(eAeA.A, ~T) = (eA.(A.).,),T) 

e E. Hence, F2 cE. To prove that F is a p-system of NRF, we shall next show that 
A
 

(a, y)*(eA, ~) (.a, y) e F for (eA, A) e F and (a, y) e NRF. Now, (a, y)*(eA, ~) (a, y)= 
A
 

(t, y*)(eAaC(~, y), ~y) (where t~=a~1C(y, y*)~1)= (te~'a~'C(~, y)~'C(v*, ~y). , v*~y).... 

(D) . 

Since (t, y*)* = (a, y) (as was shown above), we have a~' = t~1C(y*, y)~1. Hence, 

(D) = (tey.,Lvt~i C(y*, y)~1 C(~, V)~' C(y*, ~y), y*Ay) = (tev'~vt~1 ev'Av' y*~y) (by (2) of 

(C.3))=(tt-1ev'Ay' y*~y) =(ev'vey.),y, y*~y) = (ev'Av' y*~y) e F. Thus, F is a p-system of 

NRF. It is easy to see that # = *. 

LEMMA 2.2. The pa.1'tial subgrou,poid N={(a ~) ~ eFr' a e SA} of NRF rs 

isomol'phic to the partial groupoid N. 

PROOF. Define ~ : N~'N by a.~ = (a, ~) if a e S~. It is obvious that ~ is bijective 

Suppose that a. e SA, b e S6' ab e SA5 and ~, 6, ~5 e Fr' Then, (ab)~ =(.ab, ~6). On the 

other hand, (a~) (b~) = (a, ~) (b, ~) = (ab~C(~, ~), ~6) = (ae;LbeA6' A~) =(ab, ~~) e ~. 

Hence, (a~) (b~) is well defined in N, and (ab)~ = (a~) (b~). Conversely, suppose 

that (a, ~) (b, 6) is well defined in N. Then, (a, ~) (b, 5) = (ab. A~) implies that ab is 

well defined in N and ((a, ~) (b, ~))~-1 = ab=(.a, ~)~-1(b, ~)~-1. Hence, N is iso-

morphic to N 

LEMMA 2.3. Let // be the Inaximum idempotent separating congruence on NRF. 

Th,en,. NOA r/// is isom.orphic to F. A 
PROOF. Smce r rs a fundamental regular *-semigroup, it is obvious that l/ = 

{((a, y), (b, y)) : a, b e Svy" y e F}. Hence, of course N~F/// ~;F 

Hereafter, we shall denote N above by NM(Fr)' and call NM(Fr)RF the *-regular 
product of NM(Fr) and r determined by the factor set A = {~. C(y, 8A)}y,6~r belonging 

to {NM(Fr)' r}. 

S 3. A structure theorem 

Next, Iet S be a regular *-semigroup and /1 the maximum idempotent separating 

congruence. Then, S/// = F is a fundamental regular *-semigroup, and the natural 

homomorphism ~ : S->S/// gives a *-homomorphism (see [3]) (hence, a *-operation * in 

r can be defined by (a~)* = a#~, where # is a *-operation in S). Further, it is obvious 

that A~-1=Sh is a subgroup of S for each ~ e Er' Hence, M = U {Sh : A e Erf (where 

Er is th_e set of idempotents Qf r) is a partial subgroupoid of S and satisfies .(C.O) 
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Let NM(Fr) = U {SA : ~ e Fr}, where Fr is the set of projections of r, that is. Fr = 

{TeEr: T*=T}. For any y e F, Iet y~-1=Sy. Since yy* e Fr' Svv'cNM(Fr)' For 
~ e Er' Iet eh be the identity of SA. Let xv be a representative of Sv for each y e F, 

especially XA = eA for each ~ e Er' Then, clearly Svy'xy c Sv' Conversely, for any 

y e Sy, we have yx# e S whence yx~xv e Syy.xy. Thus, Svv'xv = Sv' Now, for any 
v vv*' 

y e Sv there exists a unique u e Svv' such that uxy=y (the uniqueness of u is obvious). 

For any uxy e Sv (where u e Svy') and vx6 e S6 (where v e S~~')' uxvvx6 = wxvx6 for 

some w e Sv6(v6)" Since uxyvx5x~x~ = wxvx6(.xvx~)#, it follows that w = uxyvx~･ Hence, 

ux)vx6 uvvxvx6' where vv xyvx; Put xyx6=C(.y, ~)xy~' where C(y, ~) e Sy6(y3)" 

Then, 

(C.4) uxvvx6=u"v~C(y, ~)xv6 for u e Syv" v e S~~" 

Now, it is easy to verify that A = {~, C(.y, ~)}y,6=r satisfies the condition (C.3) 

Therefore, we can consider the *-regular product NM(Fr)RA F determined by A . That 
i
s
,
 

(C.5) NM(Fr) Rr= {(a, y) : a e S y e F} 

A yy*' (a, V) (b, 6)=(ab~C(y, 8), V6) , 

*¥- 1 (a, y)*=(t, v*), where t~=a~1C(y y 
, ). 

Then , 

LEMMA 3.1. S is *-isomorphic to NM(Fr)OA F. 

PRooF. Define ~ : S->NM(Fr)OA F by x~ =(u., n) if x = ux,1' u e Snn" It is obvious 

that ~ is bijective. For any x = uxv' y = vx6' where u e S v e S66" uxyvx6 =uv~C(y, 
yv*' 

8)xv6' Hence, (xy)~ = (uvTC(y, ~), y6) = (u, V) ('v, ~) = (_x~)(y~). This implies that ~ 

is an isomorphism. Let a =uxy, u e S7y" Then, a#=x~u#=vxv" v e Sv'y' Now, 
vxv'xy=x~u#xv implies vC(y*, V) =x~,u~1xy. By (2) of (C.3), u~1=xyvC(y*, y)x# 

v' 

that ' is, u~1=v~C(y*, y)~=v~C(y, y*). Since (v, y*)=(,u, y)*, it follows that a#~= 

(u, y)*=(a~)*. Hence, ~ is a *-isomorphism 

Summerizing the results above, the fo. Ilowing is obtained 

THEOREM 3.2. Let S be a regulal' *-semigroup. Then, there exist afundamental 

regular *-semigroup F, a partial .groupoid M=~{S~: ~ eEr} (where each SA is a 

subgl'oup of M) satisfying (C.O) and a factor set A = {~, C(y, ~)}y,~er belonging 

to {NM(Fr)' F}, where NM(Fr)= U {SA: ~ eFr}' such that S is ~-isomorphic to 

NM(Fr) R r . 
4
 Conversely, Iet F be .a fundamental regular *-semigroup, and M=~{SjL: ~ e Er} 

(whel'e each Sh is a subgroup of M) a partial grQupoid satisfying (C.O). Put NM(Fr) 
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= U {Sf': ~ e Fr}, and let A = {~, C(y, 6)}v,6=r be a factor set belonging to 

Then, tlle *-regular product NM(Fr)RA F is a regular *-semigroup. 

{NM(Fr)' F}. 
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