Mem. Fac. Sci., Shimane Univ., **15**, pp. 17–22 Dec. 20, 1981

Note on the Construction of Regular *-Semigroups

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan

To Kentaro MURATA On his 60th birthday on the 7th of November, 1981 (Received September 5, 1981)

In this paper, we shall show how a general regular *-semigroup can be constructed from a fundamental regular *-semigroup and a certain partial groupoid.

§1. Introduction

A regular *-semigroup is a regular semigroup S equipped with a unary operation*: $S \rightarrow S$ satisfying the following three axioms:

- (1) $xx^*x = x$ for $x \in S$,
- (2) $(x^*)^* = x$ for $x \in S$,
- (3) $(xy)^* = y^*x^*$ for $x, y \in S$,

(see [1]).

An element x of S is called a projection if $x^2 = x$ and $x^* = x$. Hereafter, we shall call a unary operation*: $S \rightarrow S$ satisfying (1)-(3) above a *-operation in S. Let S be a regular semigroup, and E_S the set of idempotents of S. A subset F of E_S is called a p-system if

- (1) for any $a \in S$, there exists a unique inverse a^* of a such that both aa^* and a^*a are contained in F,
- (2) $a^*Fa \subset F$ for any $a \in S$, where * is a unary operation determined by (1),
- (3) $F^2 \subset E_S$.

In the previous paper [2], it has been shown that a regular semigroup becomes a regular *-semigroup if and only if it has at least one p-system. In this paper, all the notations and terminology should be referred to [2] and [3], unless otherwise stated.

§2. *-regular product

Let Γ be a fundamental regular *-semigroup, and E_{Γ} the set of idempotents of Γ . Let * be a *-operation in Γ . Let F_{Γ} be the set of projections of Γ with respect to the

Miyuki Yamada

*-operation *. Of course, $F_{\Gamma} \subset E_{\Gamma}^{(1)}$. Let $M = \Sigma \{S_{\lambda} : \lambda \in E_{\Gamma}\}$ be a disjoint sum of groups $\{S_{\lambda} : \lambda \in E_{\Gamma}\}$ such that

- (C.0) (1) M is a partial groupoid, and each S_{λ} is a subgroup of M,
 - (2) if $\alpha, \beta \in E_{\Gamma}, \alpha\beta \in E_{\Gamma}, x \in S_{\alpha}$ and $y \in S_{\beta}$, then xy is well defined in M and $xy \in S_{\alpha\beta}$; that is, $S_{\alpha}S_{\beta} \subset S_{\alpha\beta}$,
 - (3) if α₁, α₂,..., α_n ∈ E_Γ, α₁α₂...α_n ∈ E_Γ and x_i ∈ S_{αi} for all i=1, 2,..., n, then all the possible products of x₁, x₂,..., x_n (associated with the binary operation in M) taken in this order take the same value (element) contained in S_{α1α2...αn}.² We denote it by x₁x₂...x_n.
 - (4) if $\lambda, \tau \in F_{\Gamma}$ (accordingly, of course $\lambda \tau \in E_{\Gamma}$), then $e_{\lambda}e_{\tau} = e_{\lambda\tau}$, where e_{α} is the identity of S_{α} .

Put $\cup \{S_{\tau} : \tau \in F_{\Gamma}\} = N$. Of course, N is a partial subgroupid of M. A mapping $\sigma : N \to N$ is called a *local endomorphism* (ℓ -endomorphism) on N if it satisfies the following:

(C.1) For any $\tau \in F_{\Gamma}$, $S_{\tau} \sigma \subset S_{\xi}$ for some $\xi \in F_{\Gamma}$; and $\sigma | S_{\tau}$ (the restriction of σ to S_{τ}) is a homomorphism.

The set of \checkmark -endomorphisms on N forms a semigroup with respect to the resultant composition. We denote it by $\mathscr{LE}(N)$.

Now, let $\psi: \Gamma \to \mathscr{LE}(N)$ and $\phi: \Gamma \times \Gamma \to N$ be mappings such that

(C.2) (1) for any $\gamma \in \Gamma$ and $\tau \in F_{\Gamma'}$ $\gamma \psi = \bar{\gamma}$ maps S_{τ} into $S_{\gamma\tau(\gamma\tau)^*}$, and in particular $\bar{\gamma}$ maps $S_{\gamma^*\gamma}$ onto $S_{\gamma\gamma^*}$, where * denotes the *-operation in Γ ,

(2) $(\gamma, \delta)\phi = C(\gamma, \delta) \in S_{\gamma\delta(\gamma\delta)^*}$ for any $\gamma, \delta \in \Gamma$.

Assume that the family $\Delta = \{\bar{\gamma}; C(\gamma, \delta)\}_{\gamma, \delta \in \Gamma}$ satisfies the following:

(C.3) (1) $C(\lambda, \tau) = e_{\lambda\tau(\lambda\tau)^*}$ for all $\lambda, \tau \in F_{\Gamma}$, and $C(\gamma\gamma^*, \gamma) = C(\gamma, \gamma^*\gamma) = e_{\gamma\gamma^*}$ for all $\gamma \in \Gamma$,

(2) $C(\delta, \xi)^{\bar{\gamma}}C(\gamma, \delta\xi) = C(\gamma, \delta)C(\gamma\delta, \xi)$, where $x^{\bar{\gamma}} = x\bar{\gamma}$; further,

- $C(\lambda, \gamma)^{\bar{\gamma}^*} C(\gamma^*, \lambda\gamma) = C(\gamma^*, \lambda)C(\gamma^*\lambda, \gamma) = C(\gamma^*, \gamma)e_{\gamma^*\lambda\gamma} \text{ for } \lambda \in F_{\Gamma} \text{ and } \gamma \in \Gamma,$ (3) $\bar{\gamma}\bar{\delta} = \bar{\delta\gamma}\overline{C(\delta, \gamma)}$, where $\overline{C(\delta, \gamma)}$ is the mapping of N into N defined by $u\overline{C(\delta, \gamma)} = C(\delta, \gamma)uC(\delta, \gamma)^{-1}$ (where x^{-1} means the group inverse of x),
- (4) $e_{\lambda}be_{\lambda} = b^{\bar{\lambda}}$ for $b \in S_{\delta}$, λ , $\delta \in F_{\Gamma}$ (especially, $e_{\lambda}b = b^{\bar{\lambda}}$ if $\lambda \delta \in F_{\Gamma}$),
- (5) $C(\lambda\tau, \lambda\tau) = e_{\lambda\tau(\lambda\tau)^*}$ for $\lambda, \tau \in F_{\Gamma}$.

¹⁾ F_{Γ} is the set $\{e \in E_{\Gamma}: e^* = e\}$.

For example, assume that α₁, α₂, α₃, α₄∈E_r, α₁α₂α₃α₄∈E_r and x_i∈S_i (i=1, 2, 3, 4). Assume also that (α₁α₂)α₃, ((α₁α₂)α₃)α₄, α₁α₂, α₃α₄∈E_r (hence (α₁α₂) (α₃α₄)∈E_r), then the corresponding (x₁x₂)x₃, ((x₁x₂)x₃)x₄, x₁x₂, x₃x₄ and (x₁x₂) (x₃x₄) are all well defined in M by (2) of (C. 0) and ((x₁x₃)x₄)x₁=(x₂x₂) (x₃x₄) follows from (3) of (C. 0).

In this case, $N \otimes \Gamma = \{(a, \gamma) : a \in S_{\gamma\gamma^*}, \gamma \in \Gamma\}$ becomes a regular *-semigroup under the multiplication and the *-operation defined as follows:

$$(a, \gamma) (b, \tau) = (ab^{\overline{\gamma}}C(\gamma, \tau), \gamma\tau),$$

(a, γ)*=(t, γ *), where t is the element of $S_{\gamma^*\gamma}$ such that $t^{\bar{\gamma}} = a^{-1}C(\gamma, \gamma^*)^{-1}$ (such t exists since $\bar{\gamma}$ is a mapping of $S_{\gamma^*\gamma}$ onto $S_{\gamma\gamma^*}$; and it is easy to see that t is unique).

In fact

THEOREM 2.1. (1) $N \otimes \Gamma$ is a regular semigroup having $F = \{(e_{\lambda}, \lambda) : \lambda \in F_{\Gamma}\}$ as its p-system. Accordingly, $N \otimes \Gamma$ is a regular *-semigroup (see [2]).

(2) Let # be the *-operation determined by F (see [2]). Then #=*. Hence, F is the set of projections of $(N \otimes \Gamma, *)$.

(3) The set of idemotents of $N \otimes \Gamma$ is $E = \{(e_{\lambda\lambda^*}, \lambda) : \lambda \in E_{\Gamma}\}$.

PROOF. (1) Let (a, γ) , (b, τ) , $(c, \delta) \in N \otimes \Gamma$. Then, $((a, \gamma)(b, \tau))(c, \delta) = (ab^{\overline{\gamma}}C(\gamma, \tau), \gamma\tau)(c, \delta) = (ab^{\overline{\gamma}}C(\gamma, \tau), \gamma\tau\delta).....(A)$

On the other hand, $(a, \gamma) ((b, \tau)(c, \delta)) = (a, \gamma) (bc^{\overline{\tau}}C(\tau, \delta), \tau\delta) = (a(bc^{\overline{\gamma}}C(\tau, \delta))^{\overline{\gamma}} \cdot C(\gamma, \tau\delta), \gamma\tau\delta) = (ab^{\overline{\gamma}}c^{\overline{\tau}\overline{\gamma}}C(\tau, \delta)^{\overline{\gamma}}C(\gamma, \tau\delta), \gamma\tau\delta).....(B).$ Now, $c^{\overline{\tau}\overline{\gamma}} = c^{\overline{\gamma\tau}}\overline{C(\gamma, \tau)} = C(\gamma, \tau)c^{\overline{\gamma\tau}} \cdot C(\gamma, \tau)^{-1}$. Hence, $c^{\overline{\tau}\overline{\gamma}}C(\tau, \delta)^{\overline{\gamma}}C(\gamma, \tau\delta) = C(\gamma, \tau)c^{\overline{\gamma\tau}}C(\gamma, \tau)^{-1}C(\gamma, \tau)C(\gamma\tau, \delta) = C(\gamma, \tau)c^{\overline{\gamma\tau}} \cdot C(\gamma\tau, \delta)$. Thus, (A)=(B). That is, $N \otimes_{A} \Gamma$ is a semigroup.

Next, $(a, \gamma)(a, \gamma)^*(a, \gamma) = (at^{\overline{\gamma}}C(\gamma, \gamma^*), \gamma\gamma^*)(a, \gamma)$ (where $t^{\overline{\gamma}} = a^{-1}C(\gamma, \gamma^*)^{-1} = (at^{\overline{\gamma}}C(\gamma, \gamma^*)a^{\overline{\gamma\gamma^*}}(\gamma, \gamma)) = (at^{\overline{\gamma}}C(\gamma, \gamma^*)a^{\overline{\gamma\gamma^*}}(\gamma)) = (aa^{-1}C(\gamma, \gamma^*)^{-1}C(\gamma, \gamma^*)a, \gamma) = (a, \gamma)$. Hence, (a, γ) has an inverse in $N \otimes \Gamma$. That is, $N \otimes \Gamma$ is regular. Consider $F = \{(e_{\lambda}, \lambda): \lambda \in F_{\Gamma}\}$. For any $(a, \gamma) \in N \otimes \Gamma$, $(a, \gamma)(a, \gamma)^* = (at^{\overline{\gamma}}C(\gamma, \gamma^*), \gamma\gamma^*)$ (where $t^{\overline{\gamma}} = a^{-1}C(\gamma, \gamma^*)^{-1}) = (aa^{-1}C(\gamma, \gamma^*)^{-1}C(\gamma, \gamma^*), \gamma\gamma^*) \in F$. On the other hand, $(a, \gamma)^*(a, \gamma) = (ta^{\overline{\gamma^*}}C(\gamma^*, \gamma), \gamma^*\gamma)$, where $t^{\overline{\gamma}} = a^{-1}C(\gamma, \gamma^*)^{-1}$. Now, $t^{\overline{\gamma\overline{\gamma^*}}} = t^{\overline{\gamma^*\gamma}} \overline{C(\gamma^*, \gamma)} = C(\gamma^*, \gamma)t^{\overline{\gamma^*\gamma}}C(\gamma^*, \gamma)^{-1} = C(\gamma^*, \gamma)t^{-1}C(\gamma^*, \gamma)^{-1}$. Hence, $t = C(\gamma^*, \gamma)^{-1}(a^{-1})^{\overline{\gamma^*}}(C(\gamma, \gamma^*)^{-1})^{\overline{\gamma^*}}$. $C(\gamma^*, \gamma) = C(\gamma^*, \gamma)^{-1}a^{\overline{\gamma^{*-1}}}C(\gamma^*, \gamma)^{-1}C(\gamma^*, \gamma)$ (since $C(\gamma, \gamma^*)^{\overline{\gamma^*}} = C(\gamma^*, \gamma)$; in fact, $C(\gamma, \gamma^*)^{\overline{\gamma^*}}$. $C(\gamma^*, \gamma)a^{\overline{\gamma^{*-1}}}$. Accordingly, $ta^{\overline{\gamma^*}}C(\gamma^*, \gamma) = C(\gamma^*, \gamma)^{-1}a^{\overline{\gamma^{*-1}}a^{\overline{\gamma^*}}}C(\gamma^*, \gamma)^{-1}e_{\gamma^*\gamma}$. $C(\gamma^*, \gamma) = C(\gamma^*, \gamma)^{-1}C(\gamma^*, \gamma) = e_{\gamma^*\gamma}$. Thus, $(a, \gamma)^*(a, \gamma) = (e_{\gamma^*\gamma}, \gamma^*\gamma) \in F$. Next, $((a, \gamma)^*)^*$ $= (t, \gamma^*)^*$ (where $t^{\overline{\gamma}} = a^{-1}C(\gamma, \gamma^*)^{-1} = (d, \gamma)$ (where $d^{\overline{\gamma^*}} = a^{\overline{\gamma^*}}C(\gamma^*, \gamma)^{-1} = a^{\overline{\gamma^*}}$. Hence, $d^{\overline{\gamma^*\overline{\gamma}}} = a^{\overline{\gamma^*\overline{\gamma}}}$ implies $C(\gamma, \gamma^*)d^{\overline{\gamma\gamma^*}}C(\gamma, \gamma^*)^{-1} = C(\gamma, \gamma^*)a^{\overline{\gamma\gamma^*}}C(\gamma, \gamma^*)^{-1} = a^{\overline{\gamma^*}}$.

Suppose that (a, λ) is an idempotent. Since $(a, \lambda)^2 = (a, \lambda)$, λ is an idempotent. Hence, there exist $\eta, \delta \in F_{\Gamma}$ such that $\eta \delta = \lambda$. $(a, \lambda)^2 = (aa^{\overline{\lambda}}C(\lambda, \lambda), \lambda) = (aa^{\overline{\eta\delta}}e_{\lambda\lambda^*}, \lambda)...(C)$. On the other hand, $a^{\overline{\delta}\overline{\eta}} = a^{\overline{\eta\delta}\overline{C(\eta,\delta)}} = C(\eta, \delta)a^{\overline{\eta\delta}}C(\eta, \delta) = e_{\lambda\lambda^*}a^{\overline{\lambda}}e_{\lambda\lambda^*} = a^{\overline{\lambda}}$.

Miyuki Yamada

Therefore, $a^{\bar{\lambda}} = e_{\eta}e_{\delta}ae_{\delta}e_{\eta} = e_{\eta}e_{\delta}e_{\eta\delta\eta}ae_{\eta\delta\eta}e_{\delta}e_{\eta} = e_{\eta\delta\eta}ae_{\eta\delta\eta} = a$. Thus, $(C) = (a^{2}e_{\lambda\lambda^{*}}, \lambda)$. Since $(a, \lambda)^{2} = (a, \lambda), a^{2}e_{\lambda\lambda^{*}} = a$, whence $a = e_{\lambda\lambda^{*}}$. Therefore, the set of idempotents of $N \otimes \Gamma$ is $E = \{(e_{\lambda\lambda^{*}}, \lambda): \lambda \in E_{\Gamma}\}$, (it is easy to see that each $(e_{\lambda\lambda^{*}}, \lambda)$ is an idempotent). Let $(e_{\lambda}, \lambda), (e_{\tau}, \tau) \in F$. Then, $(e_{\lambda}, \lambda)(e_{\tau}, \tau) = (e_{\lambda}e_{\tau}^{\bar{\lambda}}C(\lambda, \tau), \lambda\tau) = (e_{\lambda}e_{\lambda\tau\lambda}, \lambda\tau) = (e_{\lambda\tau(\lambda\tau)^{*}}, \lambda\tau)$ $\in E$. Hence, $F^{2} \subset E$. To prove that F is a p-system of $N \otimes \Gamma$, we shall next show that $(a, \gamma)^{*}(e_{\lambda}, \lambda)(a, \gamma) \in F$ for $(e_{\lambda}, \lambda) \in F$ and $(a, \gamma) \in N \otimes \Gamma$. Now, $(a, \gamma)^{*}(e_{\lambda}, \lambda)(a, \gamma) = (t, \gamma^{*})(e_{\lambda}aC(\lambda, \gamma), \lambda\gamma)$ (where $t^{\bar{\gamma}} = a^{-1}C(\gamma, \gamma^{*})^{-1} = (te_{\lambda}^{\bar{\gamma}^{*}}C(\lambda, \gamma)\bar{\gamma}^{*}C(\gamma^{*}, \lambda\gamma), \gamma^{*}\lambda\gamma).....$ (D).

Since $(t, \gamma^*)^* = (a, \gamma)$ (as was shown above), we have $a^{\overline{\gamma}^*} = t^{-1}C(\gamma^*, \gamma)^{-1}$. Hence, $(\mathbf{D}) = (te_{\gamma^*\lambda\gamma}t^{-1}C(\gamma^*, \gamma)^{-1}C(\lambda, \gamma)^{\overline{\gamma}^*}C(\gamma^*, \lambda\gamma), \gamma^*\lambda\gamma) = (te_{\gamma^*\lambda\gamma}t^{-1}e_{\gamma^*\lambda\gamma}, \gamma^*\lambda\gamma)$ (by (2) of $(C.3)) = (tt^{-1}e_{\gamma^*\lambda\gamma}, \gamma^*\lambda\gamma) = (e_{\gamma^*\gamma}e_{\gamma^*\lambda\gamma}, \gamma^*\lambda\gamma) = (e_{\gamma^*\lambda\gamma}, \gamma^*\lambda\gamma) \in F$. Thus, F is a p-system of $N \otimes \Gamma$. It is easy to see that $\sharp = *$.

LEMMA 2.2. The partial subgroupoid $\overline{N} = \{(a, \lambda) : \lambda \in F_{\Gamma}, a \in S_{\lambda}\}$ of $N \bigotimes_{A} \Gamma$ is isomorphic to the partial groupoid N.

PROOF. Define $\psi: N \to \overline{N}$ by $a\psi = (a, \lambda)$ if $a \in S_{\lambda}$. It is obvious that ψ is bijective. Suppose that $a \in S_{\lambda}$, $b \in S_{\delta}$, $ab \in S_{\lambda\delta}$ and λ , δ , $\lambda\delta \in F_{\Gamma}$. Then, $(ab)\psi = (ab, \lambda\delta)$. On the other hand, $(a\psi)(b\psi) = (a, \lambda)(b, \delta) = (ab^{\overline{\lambda}}C(\lambda, \delta), \lambda\delta) = (ae_{\lambda}be_{\lambda\delta}, \lambda\delta) = (ab, \lambda\delta) \in \overline{N}$. Hence, $(a\psi)(b\psi)$ is well defined in \overline{N} , and $(ab)\psi = (a\psi)(b\psi)$. Conversely, suppose that $(a, \lambda)(b, \delta)$ is well defined in \overline{N} . Then, $(a, \lambda)(b, \delta) = (ab, \lambda\delta)$ implies that ab is well defined in N and $((a, \lambda)(b, \delta))\psi^{-1} = ab = (a, \lambda)\psi^{-1}(b, \delta)\psi^{-1}$. Hence, N is isomorphic to \overline{N} .

LEMMA 2.3. Let μ be the maximum idempotent separating congruence on $N \underset{\Delta}{\otimes} \Gamma$. Then, $N \underset{\Delta}{\otimes} \Gamma/\mu$ is isomorphic to Γ .

PROOF. Since Γ is a fundamental regular *-semigroup, it is obvious that $\mu = \{((a, \gamma), (b, \gamma)): a, b \in S_{\gamma\gamma^*}, \gamma \in \Gamma\}$. Hence, of course $N \otimes \Gamma/\mu \cong \Gamma$.

Hereafter, we shall denote N above by $N_M(F_{\Gamma})$, and call $N_M(F_{\Gamma}) \otimes \Gamma$ the *-regular product of $N_M(F_{\Gamma})$ and Γ determined by the factor set $\Delta = \{\bar{\gamma}, C(\gamma, \delta)\}_{\gamma, \delta \in \Gamma}$ belonging to $\{N_M(F_{\Gamma}), \Gamma\}$.

§3. A structure theorem

Next, let S be a regular *-semigroup and μ the maximum idempotent separating congruence. Then, $S/\mu = \Gamma$ is a fundamental regular *-semigroup, and the natural homomorphism $\xi: S \rightarrow S/\mu$ gives a *-homomorphism (see [3]) (hence, a *-operation * in Γ can be defined by $(a\xi)^* = a^*\xi$, where \sharp is a *-operation in S). Further, it is obvious that $\lambda\xi^{-1} = S_{\lambda}$ is a subgroup of S for each $\lambda \in E_{\Gamma}$. Hence, $M = \bigcup \{S_{\lambda}: \lambda \in E_{\Gamma}\}$ (where E_{Γ} is the set of idempotents of Γ) is a partial subgroupoid of S and satisfies (C.0).

Let $N_M(F_\Gamma) = \bigcup \{S_{\lambda} : \lambda \in F_{\Gamma}\}$, where F_{Γ} is the set of projections of Γ , that is, $F_{\Gamma} = \{\tau \in E_{\Gamma} : \tau^* = \tau\}$. For any $\gamma \in \Gamma$, let $\gamma \xi^{-1} = S_{\gamma}$. Since $\gamma \gamma^* \in F_{\Gamma}, S_{\gamma \gamma^*} \subset N_M(F_{\Gamma})$. For $\lambda \in E_{\Gamma}$, let e_{λ} be the identity of S_{λ} . Let x_{γ} be a representative of S_{γ} for each $\gamma \in \Gamma$, especially $x_{\lambda} = e_{\lambda}$ for each $\lambda \in E_{\Gamma}$. Then, clearly $S_{\gamma \gamma^*} x_{\gamma} \subset S_{\gamma}$. Conversely, for any $\gamma \in S_{\gamma}$, we have $yx_{\gamma}^* \in S_{\gamma \gamma^*}$, whence $yx_{\gamma}^* x_{\gamma} \in S_{\gamma \gamma^*} x_{\gamma} = S_{\gamma}$. Now, for any $y \in S_{\gamma}$ there exists a unique $u \in S_{\gamma \gamma^*}$ such that $ux_{\gamma} = y$ (the uniqueness of u is obvious).

For any $ux_{\gamma} \in S_{\gamma}$ (where $u \in S_{\gamma\gamma^*}$) and $vx_{\delta} \in S_{\delta}$ (where $v \in S_{\delta\delta^*}$), $ux_{\gamma}vx_{\delta} = wx_{\gamma}x_{\delta}$ for some $w \in S_{\gamma\delta(\gamma\delta)^*}$. Since $ux_{\gamma}vx_{\delta}x_{\delta}^*x_{\gamma}^* = wx_{\gamma}x_{\delta}(x_{\gamma}x_{\delta})^*$, it follows that $w = ux_{\gamma}vx_{\gamma}^*$. Hence, $ux_{\gamma}vx_{\delta} = uv^{\gamma}x_{\gamma}x_{\delta}$, where $v^{\gamma} = x_{\gamma}vx_{\gamma}^*$. Put $x_{\gamma}x_{\delta} = C(\gamma, \delta)x_{\gamma\delta}$, where $C(\gamma, \delta) \in S_{\gamma\delta(\gamma\delta)^*}$. Then

Then,

(C.4)
$$ux_{\gamma}vx_{\delta} = uv^{\overline{\gamma}}C(\gamma, \delta)x_{\gamma\delta}$$
 for $u \in S_{\gamma\gamma^*}, v \in S_{\delta\delta^*}$.

Now, it is easy to verify that $\Delta = \{\bar{\gamma}, C(\gamma, \delta)\}_{\gamma,\delta\in\Gamma}$ satisfies the condition (C.3). Therefore, we can consider the *-regular product $N_M(F_\Gamma) \bigotimes_{\Delta} \Gamma$ determined by Δ . That is,

(C.5)

$$N_{M}(F_{\Gamma}) \bigotimes_{\Delta} \Gamma = \{(a, \gamma) : a \in S_{\gamma\gamma^{*}}, \gamma \in \Gamma\},$$

$$(a, \gamma)(b, \delta) = (ab^{\overline{\gamma}}C(\gamma, \delta), \gamma\delta),$$

$$(a, \gamma)^{*} = (t, \gamma^{*}), \text{ where } t^{\overline{\gamma}} = a^{-1}C(\gamma, \gamma^{*})^{-1}.$$

Then,

LEMMA 3.1. S is *-isomorphic to $N_M(F_{\Gamma}) \otimes \Gamma$.

PROOF. Define $\psi: S \to N_M(F_\Gamma) \bigotimes_{\Delta} \Gamma$ by $x\psi = (u, \eta)$ if $x = ux_\eta$, $u \in S_{\eta\eta^*}$. It is obvious that ψ is bijective. For any $x = ux_\eta$, $y = vx_\delta$, where $u \in S_{\gamma\gamma^*}$, $v \in S_{\delta\delta^*}$, $ux_\gamma vx_\delta = uv^{\overline{\gamma}}C(\gamma, \delta)x_{\gamma\delta}$. Hence, $(xy)\psi = (uv^{\overline{\gamma}}C(\gamma, \delta), \gamma\delta) = (u, \gamma)(v, \delta) = (x\psi)(y\psi)$. This implies that ψ is an isomorphism. Let $a = ux_\gamma$, $u \in S_{\gamma\gamma^*}$. Then, $a^* = x^*_\gamma u^* = vx_{\gamma^*}$, $v \in S_{\gamma^*\gamma}$. Now, $vx_{\gamma^*}x_\gamma = x^*_\gamma u^*x_\gamma$ implies $vC(\gamma^*, \gamma) = x^*_\gamma u^{-1}x_\gamma$. By (2) of (C.3), $u^{-1} = x_\gamma vC(\gamma^*, \gamma)x^*_\gamma$, that is, $u^{-1} = v^{\overline{\gamma}}C(\gamma^*, \gamma)^{\overline{\gamma}} = v^{\overline{\gamma}}C(\gamma, \gamma^*)$. Since $(v, \gamma^*) = (u, \gamma)^*$, it follows that $a^*\psi = (u, \gamma)^* = (a\psi)^*$. Hence, ψ is a *-isomorphism.

Summerizing the results above, the following is obtained:

THEOREM 3.2. Let S be a regular *-semigroup. Then, there exist a fundamental regular *-semigroup Γ , a partial groupoid $M = \Sigma\{S_{\lambda} : \lambda \in E_{\Gamma}\}$ (where each S_{λ} is a subgroup of M) satisfying (C.0) and a factor set $\Delta = \{\bar{\gamma}, C(\gamma, \delta)\}_{\gamma, \delta \in \Gamma}$ belonging to $\{N_M(F_{\Gamma}), \Gamma\}$, where $N_M(F_{\Gamma}) = \cup \{S_{\lambda} : \lambda \in F_{\Gamma}\}$, such that S is *-isomorphic to $N_M(F_{\Gamma}) \otimes \Gamma$.

Conversely, let Γ be a fundamental regular *-semigroup, and $M = \Sigma \{S_{\lambda} : \lambda \in E_{\Gamma}\}$ (where each S_{λ} is a subgroup of M) a partial groupoid satisfying (C.0). Put $N_{M}(F_{\Gamma})$

Miyuki Yamada

 $= \cup \{S_{\lambda} : \lambda \in F_{\Gamma}\}, \text{ and let } \Delta = \{\bar{\gamma}, C(\gamma, \delta)\}_{\gamma, \delta \in \Gamma} \text{ be a factor set belonging to } \{N_{M}(F_{\Gamma}), \Gamma\}.$ Then, the *-regular product $N_{M}(F_{\Gamma}) \bigotimes_{\Delta} \Gamma$ is a regular *-semigroup.

References

- [1] Nordahl, T.E. and H.E. Scheiblich, Regular *-semigroups, Semi-group Forum 16 (1978), 36 9-377.
- [2] Yamada, M., P-systems in regular semigroups, to appear.

[3] _____, On the structure of fundamental regular *-semigroups, to appear.