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The purpose of this paper is to study prehomomorphisms on regular +-semigroups which
were firstly introduced in [5]. Firstly, we shall give a generalization of the natural order on a
regular «-semigroup. Secondly, we shall discuss prehomomorphisms on regular *=-Semigroups.
Finally, we shall obtain a generalization of a Preston-Vagner’s representation to a regular
#-semigroup.

§1. Natural order

A semigroup S with a unary operation *: S—S is called a regular *-semigroup
if it satisfies : C

(i) *)*=x,
(i) (xp)y*=yp*x*,
(iii) xx*x=x.

An idempotent e of a regular *-semigroup is called a projection if e¥*=e. For a regular
x-semigroup S, we denote the set of projections of S by P(S). The notation and
terminology are those of [1] and [2], unless otherwise stated.

Let S be a regular -semigroup. For elements a, be S, let us define a relation
< on S by

a<b&e=a=eb=bf forsome e, feP(S).

LeEMMA 1.1. Let a and b be elements of S. Then the following statements are
equivalent:

(i) ash,
(ii) aa*=ba* and a*a=Db*a,

(i) aa*=ab* and a*a=a*b,
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(iv) a=aa*b=ba*a.
PROOF. Assume that a<b, that is, a=eb=bf for some e, fe P(S). Then
aa* = bffb* = bfb* = b(bf)* = ba*,
a*a=>b¥*eeb=>b*eb=(eb)*b=a*b.

Thus we have (i)=>(ii). Let aa*=>ba* and a*a=b*a. Then
aa*=(aa*)*=(ba*)*=(a*)*b* =ab*,
a*a=(a*a)*=(b*a)* =a*(b*)*=a*b.

Hence (ii)=(iii). Now assume that (iii) holds. Then
a=a(a*a)=aa*b,
a=(aa*)a=(aa*)*a=(ab*)*a=ba*a.

So (iv) holds. Since aa* and a*a are projections, it is obvious that (iv)=>(i).

THEOREM 1.2. The relation < on a regular s-semigroup S, deﬁned above, is a
partial order relation on S. Moreover, if a<b then a*<b*.

PrROOF. Since a=(aa*)a=a(a*a), < is reflexive. Let a<b and b<a. By the
lemma above,: :

a=>b(a*a)="b(b*a)=b(b*b)=D,

and hence < is anti-symmetric. Assume that a<b and b<c. By the lemma above,
a=aa*b=aa*bb*c=(ab*)c=aa*c,
a=ba*a=cb*ba*a=c(b*a)=ca*a.

Then a<c, and so < is transitive. It is obvious that a <b implies a* <b*, and hence
we have the theorem.
We call the relation < defined above the natural order on S.

CoROLLARY 1.3. The natural order on a generalized inverse -semigroup S is
compatible.

. PROOF. Assume that a<b and let ¢ be any element of S. Then
(ac)y*ac= c*(a*a)c =c*(b*a)c=(bc)*ac,

ac(ac)* =acc*a* = b(a*a)(cc*)a* = b(cc*) (a*a)a* = be(ac)*.
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Thus ac<bc. Similarly ca <cbh, and hence we have the corollary.

§2. Prehomomorphisms

In his papers [3], [4], McAlister investigates prehomomorphisms on inverse
semigroups and regular semigroups. In this section, we shall obtain basic properties on
regular x-semigroups. '

Let S and T be regular *-semigroups. A mapping ¢: S—Tiscalled a v -[ A-]pre-
homomorphism, if it satisfies

(i) (ab)p=(ad)(b9),
[(1)" (ab)¢=(ad)(bd)]
(i) . (ag)*=a*d,
for any a, beS.

LemMMA 2.1. Let ¢ be a v -prehomomorphism of a regular %-semigroup S to a
regular %-semigroup T. Then we have the followings:

(i) ¢ maps an idempotent of S to an idempotent of T, then ¢ also maps a pro-
Jjection of S to a projection of T,

(ii) ¢ is isotone, that is, a<b implies ap < b,

(iii) ¢ preserves Green’s relations, that is, if 2 is any one of Green’s relations
then a o b implies a¢p A" b, )

(iv) regular x-semigroups, with v -prehomomorphisms as morphisms, con-
stitute a category.

ProoF. (i) Let e be an idempotent of S. Then e =e?¢p<epep. By Lemma

L1, ep=ed(ep)*eped =eped.
(ii)) Leta<b. By Lemma 1.1, a=aa*b=>ba*a. Then

ap=(aa*b)p <(aa*)pb¢.

On the other hand, (aa*)¢ <ad(ag)*, and so (aa*)¢p=ad(ag)*e for some ee P(T).
Thus a¢ £ (aa*)pbd=ap(ad)*e(bp). By using Lemma 1.1 again,

ap=ag(ad)*ad(ap)*e(bp)=ad(a¢)*e(bs).

Then we have a¢=(aa*)pbe. . Similarly, we have ad =bp(a*a)p. Since (aa*)¢ and
(a*a)¢ are projections of T (by (i) above), we have a¢ < b¢.

To see (iii), it is sufficient to show that a % b implies a¢ £ b¢p. Assume that
a % b. Then there exist x, ye S such that a=xb and b=ya. Then ap=(xb)p =
x¢pbp. By Lemma 1.1, ap=ad(ad)*xpb¢. Similarly, bo=>bp(bg)*ypap. Hence
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we have a¢p £ bg.
Since the composition of v -prehomomorphisms is also a v -prehomomorphism,
(iv) holds.

Let S be a regular *-semigroup. For each a€ S, let ¢,: Sa*—Sa be a mapping
defined by '

Xp,=xa for any xe Sa*.

It is clear that ¢, is an element of the symmetric inverse semigroup .5 on S. Let
Ms={¢,: ae S}, and define a product o on .#; by

P22 Py= D oParabpDs »
where the product on right side is the usual product on %,

THEOREM 2.2. (o) is a regular x-semigroup with a unary operation (¢,)*=
@qv. Let ¢: S—.s be a mapping defined by ap=¢,. Then ¢ is a x-isomorphism of
S onto M.

Proor. Firstly, we shall show that @, =04 Since Shb*a*acSa and
Sa*abb* = Sb*, . .

Dot (§obasasiebs) = Sa*abb* k"
' =Sa*abb*bb*a*aa*
~ =Sa*abb*a* “
=Sabb*a*.
Similarly, we have Ran (¢,@uapse®s)=S(ab)*ab. For any x in Sab(ab)*,
XD orappnp=xaa*abb*b=xab=x¢,,.

Since S is a semigroup, .Zg is a regular *-semigroup. To see that ¢ is a *-isomor-
phism, it is sufficient to show that ¢ is one-to-one. Let ¢,=¢,. Since each %-class
and each .#-class have one and only one projection, aa*=bb* and a*a=>b*b. Then

a=aa*a=bb*a=(bb*)¢p,=(bb*)¢,=bb*b=>b.
Thus ¢ is one-to-one, and hence we have the theorem.

COROLLARY 2.3. Let Y: S—J5 be a mapping defined by ay=¢,. Then y is a
v -prehomomorphism, :
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