Mem. Fac. Sci., Shimane Univ., 15, pp. 23–27 Dec. 20, 1981

Prehomomorphisms on Regular *-Semigroups

Teruo Імаока

Department of Mathematics, Shimane University, Matsue, Japan

To Kentaro MURATA

on his 60th birthday on the 7th of November, 1981 (Received September 5, 1981)

The purpose of this paper is to study prehomomorphisms on regular *-semigroups which were firstly introduced in [5]. Firstly, we shall give a generalization of the natural order on a regular *-semigroup. Secondly, we shall discuss prehomomorphisms on regular *-semigroups. Finally, we shall obtain a generalization of a Preston-Vagner's representation to a regular *-semigroup.

§1. Natural order

A semigroup S with a unary operation $*: S \rightarrow S$ is called a *regular* *-semigroup if it satisfies

- $(i) (x^*)^* = x,$
- (ii) $(xy)^* = y^*x^*$,
- (iii) $xx^*x = x$.

An idempotent e of a regular *-semigroup is called a *projection* if $e^* = e$. For a regular *-semigroup S, we denote the set of projections of S by P(S). The notation and terminology are those of [1] and [2], unless otherwise stated.

Let S be a regular *-semigroup. For elements $a, b \in S$, let us define a relation \leq on S by

 $a \leq b \iff a = eb = bf$ for some $e, f \in P(S)$.

LEMMA 1.1. Let a and b be elements of S. Then the following statements are equivalent:

- (i) $a \leq b$,
- (ii) $aa^* = ba^*$ and $a^*a = b^*a$,
- (iii) $aa^* = ab^*$ and $a^*a = a^*b$,

Teruo Імаока

(iv) $a = aa^*b = ba^*a$.

PROOF. Assume that $a \leq b$, that is, a = eb = bf for some $e, f \in P(S)$. Then

 $aa^* = bffb^* = bfb^* = b(bf)^* = ba^*,$

 $a^*a = b^*eeb = b^*eb = (eb)^*b = a^*b.$

Thus we have (i) \Rightarrow (ii). Let $aa^* = ba^*$ and $a^*a = b^*a$. Then

$$aa^* = (aa^*)^* = (ba^*)^* = (a^*)^*b^* = ab^*,$$

 $a^*a = (a^*a)^* = (b^*a)^* = a^*(b^*)^* = a^*b.$

Hence (ii) \Rightarrow (iii). Now assume that (iii) holds. Then

$$a = a(a^*a) = aa^*b,$$

 $a = (aa^*)a = (aa^*)^*a = (ab^*)^*a = ba^*a.$

So (iv) holds. Since aa^* and a^*a are projections, it is obvious that (iv) \Rightarrow (i).

THEOREM 1.2. The relation \leq on a regular *-semigroup S, defined above, is a partial order relation on S. Moreover, if $a \leq b$ then $a^* \leq b^*$.

PROOF. Since $a = (aa^*)a = a(a^*a)$, \leq is reflexive. Let $a \leq b$ and $b \leq a$. By the lemma above,

$$a = b(a^*a) = b(b^*a) = b(b^*b) = b,$$

and hence \leq is anti-symmetric. Assume that $a \leq b$ and $b \leq c$. By the lemma above,

$$a = aa^*b = aa^*bb^*c = (ab^*)c = aa^*c,$$

 $a = ba^*a = cb^*ba^*a = c(b^*a) = ca^*a.$

Then $a \leq c$, and so \leq is transitive. It is obvious that $a \leq b$ implies $a^* \leq b^*$, and hence we have the theorem.

We call the relation \leq defined above the natural order on S.

COROLLARY 1.3. The natural order on a generalized inverse *-semigroup S is compatible.

PROOF. Assume that $a \leq b$ and let c be any element of S. Then

 $(ac)^*ac = c^*(a^*a)c = c^*(b^*a)c = (bc)^*ac$,

 $ac(ac)^* = acc^*a^* = b(a^*a)(cc^*)a^* = b(cc^*)(a^*a)a^* = bc(ac)^*.$

24

Thus $ac \leq bc$. Similarly $ca \leq cb$, and hence we have the corollary.

§2. Prehomomorphisms

In his papers [3], [4], McAlister investigates prehomomorphisms on inverse semigroups and regular semigroups. In this section, we shall obtain basic properties on regular *-semigroups.

Let S and T be regular *-semigroups. A mapping $\phi: S \rightarrow T$ is called a $\vee -[\land -]$ prehomomorphism, if it satisfies

- (i) $(ab)\phi \leq (a\phi)(b\phi)$,
- $[(i)' (ab)\phi \ge (a\phi)(b\phi)]$
- (ii) $(a\phi)^* = a^*\phi$,

for any $a, b \in S$.

LEMMA 2.1. Let ϕ be a \vee -prehomomorphism of a regular *-semigroup S to a regular *-semigroup T. Then we have the followings:

(i) ϕ maps an idempotent of S to an idempotent of T, then ϕ also maps a projection of S to a projection of T,

(ii) ϕ is isotone, that is, $a \leq b$ implies $a\phi \leq b\phi$,

(iii) ϕ preserves Green's relations, that is, if \mathscr{K} is any one of Green's relations then a \mathscr{K} b implies $a\phi \mathscr{K} b\phi$,

(iv) regular *-semigroups, with \lor -prehomomorphisms as morphisms, constitute a category.

PROOF. (i) Let e be an idempotent of S. Then $e\phi = e^2\phi \leq e\phi e\phi$. By Lemma 1.1, $e\phi = e\phi(e\phi)^*e\phi e\phi = e\phi e\phi$.

(ii) Let $a \leq b$. By Lemma 1.1, $a = aa^*b = ba^*a$. Then

$$a\phi = (aa^*b)\phi \leq (aa^*)\phi b\phi.$$

On the other hand, $(aa^*)\phi \leq a\phi(a\phi)^*$, and so $(aa^*)\phi = a\phi(a\phi)^*e$ for some $e \in P(T)$. Thus $a\phi \leq (aa^*)\phi b\phi = a\phi(a\phi)^*e(b\phi)$. By using Lemma 1.1 again,

$$a\phi = a\phi(a\phi)^*a\phi(a\phi)^*e(b\phi) = a\phi(a\phi)^*e(b\phi)$$
.

Then we have $a\phi = (aa^*)\phi b\phi$. Similarly, we have $a\phi = b\phi(a^*a)\phi$. Since $(aa^*)\phi$ and $(a^*a)\phi$ are projections of T (by (i) above), we have $a\phi \leq b\phi$.

To see (iii), it is sufficient to show that $a \mathcal{L} b$ implies $a\phi \mathcal{L} b\phi$. Assume that $a \mathcal{L} b$. Then there exist $x, y \in S$ such that a = xb and b = ya. Then $a\phi = (xb)\phi \leq x\phi b\phi$. By Lemma 1.1, $a\phi = a\phi(a\phi)^*x\phi b\phi$. Similarly, $b\phi = b\phi(b\phi)^*y\phi a\phi$. Hence

Teruo Імаока

we have $a\phi \mathcal{L} b\phi$.

Since the composition of \vee -prehomomorphisms is also a \vee -prehomomorphism, (iv) holds.

Let S be a regular *-semigroup. For each $a \in S$, let $\phi_a: Sa^* \rightarrow Sa$ be a mapping defined by

$$x\phi_a = xa$$
 for any $x \in Sa^*$.

It is clear that ϕ_a is an element of the symmetric inverse semigroup \mathscr{I}_S on S. Let $\mathscr{M}_S = \{\phi_a : a \in S\}$, and define a product \circ on \mathscr{M}_S by

$$\phi_a \circ \phi_b = \phi_a \phi_{a^*abb^*} \phi_b,$$

where the product on right side is the usual product on \mathcal{I}_{S} .

THEOREM 2.2. $\mathcal{M}_{S}(\circ)$ is a regular *-semigroup with a unary operation $(\phi_{a})^{*} = \phi_{a^{*}}$. Let $\phi: S \to \mathcal{M}_{S}$ be a mapping defined by $a\phi = \phi_{a}$. Then ϕ is a *-isomorphism of S onto \mathcal{M}_{S} .

PROOF. Firstly, we shall show that $\phi_a \phi_{a^*abb^*} \phi_b = \phi_{ab}$. Since $Sbb^*a^*a \subset Sa$ and $Sa^*abb^* \subset Sb^*$,

$$Dom (\phi_a \phi_{a^*abb^*} \phi_b) = Sa^*abb^* \phi_{a^*abb^*} \phi_a^{-1}$$
$$= Sa^*abb^*bb^*a^*aa^*$$
$$= Sa^*abb^*a^*$$
$$= Sabb^*a^*.$$

Similarly, we have Ran $(\phi_a \phi_{a^*abb^*} \phi_b) = S(ab)^*ab$. For any x in $Sab(ab)^*$,

 $x\phi_a\phi_{a^*abb^*}\phi_b = xaa^*abb^*b = xab = x\phi_{ab}$.

Since \mathscr{I}_S is a semigroup, \mathscr{M}_S is a regular *-semigroup. To see that ϕ is a *-isomorphism, it is sufficient to show that ϕ is one-to-one. Let $\phi_a = \phi_b$. Since each \mathscr{R} -class and each \mathscr{L} -class have one and only one projection, $aa^* = bb^*$ and $a^*a = b^*b$. Then

$$a = aa^*a = bb^*a = (bb^*)\phi_a = (bb^*)\phi_b = bb^*b = b.$$

Thus ϕ is one-to-one, and hence we have the theorem.

COROLLARY 2.3. Let $\psi: S \to \mathscr{I}_S$ be a mapping defined by $a\psi = \phi_a$. Then ψ is a \vee -prehomomorphism.

26

References

- Clifford, A. H. and G. B. Preston, The algebraic theory of semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence, Vol. I, 1961.
- [2] Imaoka, T., Some remarks on fundamental regular *-semigroups, to appear.
- [3] McAlister, D. B., v-prehomomorphisms on inverse semigroups, Pacific J. Math. 67 (1976), 215-231.
- [4] McAlister, D. B., Regular semigroups, fundamental semigroups and groups, J. Austral. Math. Soc. (Series A), 29 (1980), 475-503.
- [5] McAlister, D. B. and N. R. Reilly, E-unitary covers for inverse semigroups, Pacific J. Math. 68 (1977), 161-174.