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Two-Particle Excitations of the Kondo Insulator around the
Critical Point
Tetsuya Mutou1, Shohei Fujita1, and Hiroaki Kusunose2

1 Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue 690-8504,
Japan
2 Department of Physics, Ehime University, Matsuyama 790-8577, Japan

The spin and the charge excitations of the Kondo insulator are investigated based on the periodic An-
derson model at half-filling. We employ the self-consistent fluctuation approximation, where the two-
particle correlation functions and the effective irreducible vertices are determined self-consistently
to satisfy the Pauli principle. When the system approaches the antiferromagnetic critical point with
the strong electron correlation, the spin excitation spectrum is enhanced while the charge excitation
spectrum is suppressed. The characteristic energy of the spin excitation is more strongly renormal-
ized than that of the charge one.
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1. Introduction

The periodic Anderson model (PAM) at half-filling is known to exhibit an insulating behavior at
low temperatures as an ordinary non-interacting band insulator. Since the gap opens at the Fermi level
in the model as decreasing temperature, it is often considered as a fundamental theoretical model of
the Kondo insulator [1,2], i.e., a renormalized band insulator in heavy fermions. Since the hybridiza-
tion gap of the PAM is adiabatically connected to that of the non-interacting limit, at first glance, there
were no distinctions of the indirect gap magnitudes in the charge and spin channels as an ordinary in-
sulator, in which particle-hole pairs across the gap contribute similarly to both excitations. However,
the strong correlation must change the character of the charge and the spin excitations, individu-
ally, and the difference could be most prominent near the quantum critical point of the magnetically
ordered phase. In the present study, we investigate two-particle excitation spectra of the PAM at half-
filling to elucidate the character of the charge and the spin excitations of the Kondo insulator around
the magnetic quantum critical point. Moreover, it is considered that the self-consistent renormaliza-
tion (SCR) theory [3–6] and its equivalents [7,8] well describe the system around the quantum critical
point. However, in the presence of the excitation gap in the renormalized quasiparticle bands, it is a
nontrivial issue since there exists no infinitesimally small excitation continuum. Motivated by these
questions, we adopt the self-consistent fluctuation (SCF) approximation, and address how the charge
and spin spectra behave with taking account of various fluctuations.

2. Model and Method

We consider the PAM on the square lattice,

H =
∑
kσ

{
(εk − µ)c†kσckσ + (ε f − µ) f †kσ fkσ + V(c†kσ fkσ + f †kσckσ)

}
+ U
∑

i

f †i↑ fi↑ f †i↓ fi↓,

εk = −2t(cos kx + cos ky), (1)
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where the nearest-neighbor hopping on the square lattice is assumed and a lattice constant is set to
be unity. Hereafter, the hopping energy t of the conduction electron is used as an energy unit. Under
the particle-hole symmetric condition ε f + U/2 = µ = 0 among the f level ε f , the on-site Coulomb
energy U and the chemical potential µ, the system is always insulating at ground state for arbitrary
strength of U.

To investigate charge and spin excitations of the system, we adopt the SCF approximation [9].
The SCF approximation treats various two-particle fluctuations self-consistently on an equal footing
by enforcing the crossing symmetry, i.e., a fully anti-symmetric nature of the full vertex functions.
In this scheme, the local and instantaneous renormalized couplings for the irreducible vertices in
the charge and the spin channels are introduced and they are denoted by Λc and Λs, respectively.
According to Ref. 9, the charge (c) and the spin (s) correlation functions are expressed as

χc(q) =
χ0(q)

1 + Λcχ0(q)
, χs(q) =

χ0(q)
1 − Λsχ0(q)

, (2)

where q indicates a set of valuables for a wave vector q and the bosonic Matsubara frequency iωm;
q = (q, iωm). Note that the renormalized coupling and the corresponding correlation function in the
even-parity Cooper channel are the same as Λc and χc at half-filling. Following Ref. 9, the SCF
equations are now expressed under the particle-hole symmetry as

Λc = U − 1
2χ02

( fc − 3 fs), Λs = U − 1
2χ02

(3 fc − fs),

fc(s) = −
∑

q

(χ0(q))2Φc(s)(q), χ02 =
∑

q

(χ0(q))2 , Φc(s)(q) = −Λ2
c(s)χc(s)(q), (3)

where
∑

q ≡ (T/N)
∑

q
∑

m with the number N of the lattice points at temperature T . The proper
part χ0(q) of the two-particle correlation function is given by the non-interacting (or equivalently
Hartree) f -electron Green’s function G f f

0 (k), and they are expressed for the present model under the
particle-hole symmetry as

χ0(q) = −
∑

k

G f f
0 (k)G f f

0 (k + q),

G f f
0 (k) =

1

iεn −
V2

iεn − εk

, (4)

where k = (k, iεn) with the fermionic Matsubara frequency, εn. Solving the above equations self-
consistently, we obtain the effective irreducible vertices Λc and Λs, and the corresponding charge and
spin correlation functions.

3. Results

In the present study, we have solved the self-consistent equations given in Sec. 2 in the first
Brillouin zone with equally spaced mesh of 64 × 64 and on 2048 Matsubara-frequency points. We
have adopted the Padé approximation to obtain the real-frequency spectrum. In the results shown
below, the hybridization strength V is fixed as V/t = 0.5.

First, we show the U dependence of the effective irreducible vertices at T/t = 0.1 in Fig. 1.
With increasing U, Λs is strongly suppressed as compared with Λc, The values of Λsχ0(Q, 0 + iη)
approaches 1 and the antiferromagnetic spin fluctuation is enhanced for larger values of U. When the
value of Λsχ0(Q, 0 + iη) reaches 1 for an antiferromagnetic vector Q = (π, π), the system shows the
antiferromagnetic order. Although the magnetic order should not occur in the two-dimensional system
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at finite temperature according to the Mermin-Wagner theorem [10], it is shown that Λsχ0(Q, 0 + iη)
approaches 1 as temperature decreases and the system approaches the antiferromagnetic critical point
as shown in Fig. 2.
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Fig. 1. (Color online) U dependence of the effective irreducible vertices Λc and Λs at T/t = 0.1. The param-
eter Λsχ0(Q, 0 + iη) indicates a measure toward the antiferromagnetic instability (see text).
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Fig. 2. (Color online) Temperature dependence of the effective irreducible vertices Λc and Λs for U/t = 10.

Figure 3 shows a contour map of the imaginary part of the dynamical spin susceptibility, Im
χs(q, ω + iη), along the high-symmetry line. Owing to the existence of the hybridization gap at the
Fermi level, ∆∗/t ' 0.2, the intensity of the spectrum is cut below ω/t . 0.2 (this disappearance of the
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intensity may be an artifact of the frequency independent vertices used in the present approximation).
The lowest-energy excitation is located at the M point (q = Q), and the dominant weight of the
intensity is distributed around the renormalized energy, ω/t ' 0.3. On the other hand, in the charge
excitation, the most of the spectral weight is distributed around ω/t ' 3 as shown in Fig. 4.
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Fig. 3. (Color online) Contour map of the imaginary part of the dynamical spin susceptibility, t Im χs(q, ω +
iη), for U/t = 10 at T/t = 0.1 along the high-symmetry line. X : qX = (π, 0),Γ : qΓ = (0, 0),M : qM = (π, π),
and M′ : qM′ = (π/2, π/2).
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Fig. 4. (Color online) Contour map of the imaginary part of the dynamical charge susceptibility,
t Im χc(q, ω + iη), for U/t = 10 at T/t = 0.1 along the high-symmetry line.

We compare the spin and charge excitation spectra in Fig. 5. The spin excitation spectrum is
strongly enhanced because of the electron correlation and the sharp peak develops at lower energy
near the excitation gap [11]. On the other hand, the charge excitation spectrum is suppressed and the
peak slightly moves toward higher energy. In the spectra at high temperature (T/t = 0.5), the gap
structure vanishes due to the disappearance of the hybridization gap.
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Fig. 5. (Color online) Imaginary parts of the spin and charge correlation functions at Q for U/t = 10 at
T/t = 0.3. The inset shows those at higher temperature, T/t = 0.5.

4. Summary and Discussions

In the present study, we have investigated the charge and spin excitations of the Kondo insulator
by taking account of the strong antiferromagnetic fluctuation. We have adopted the self-consistent
fluctuation approximation for the periodic Anderson model at half-filling on the square lattice. As U
increases, the effective irreducible vertex in the spin channel is strongly renormalized, while that in
the charge channel is hardly suppressed. For large U, the antiferromagnetic fluctuation is enhanced
with decreasing temperature. In this situation, the spin excitation spectrum at lower energy is strongly
enhanced. The charge excitation spectrum is suppressed and the peak of the spectrum slightly moves
toward higher energy. The spin excitation energy scale is smaller than the charge one at finite tem-
perature. Let us consider more about the spin gap at zero temperature. In the present scheme, the spin
excitation spectrum is expressed as

Im χs(q, ω + iη) =
Im χ0(q, ω + iη)

(1 − ΛsRe χ0(q, ω + iη))2 + (ΛsImχ0(q, ω + iη))2 . (5)

The energy dispersion of the spin excitation (paramagnon) is determined by the condition, Λs Re
χ0(q, ω + iη) = 1, and its minimum corresponding to the spin gap should approach to zero when
the system approaches to the magnetic instability. However, the intensity of the spin excitation is
cut below the energy gap determined by the proper (bare) part Imχ0(q, ω + iη) due to the factor in
the numerator. The true spin gap should be determined by the gap in the paramagnon dispersion as
mentioned above, which has been obscured by the bare gap of χ0. This is the reason why the excitation
gap is almost unchanged with increasing U in Fig. 5. In reality, the numerator should depend on U
and the true spin gap would show up. This could be achieved by more sophisticated approximations.

Nevertheless, the effective irreducible vertices Λs and Λc themselves reflect the characteristic
energy scales corresponding to the spin and charge gaps, respectively. In fact, the U dependence of
the spin and charge gaps for the 1D PAM by the numerical diagonalization method [12] are very
similar to those obtained by the present scheme. Thus, an improvement of the proper correlation
function would yield a better behavior of the magnetic excitation spectra.
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of the Padé approximation, and they have been omitted in drawing of Fig. 5.
[12] T. Nishino and K. Ueda : Phys. Rev. B 47 (1993) 12451.

6


	e26215表紙
	e26215

