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Spin susceptibility of magnetic-ion-diluted Kondo insulators

Yasuteru Sekiya, Hirofumi Hada, and Tetsuya Mutou∗

Interdisciplinary Faculty of Science and Engineering, Shimane University, Shimane 690-8504, Japan

The static spin susceptibility and spectral function of the system corresponding to the

magnetic-ion-diluted Kondo insulator is calculated using the framework of dynamical mean-

field theory with a coherent potential approximation. The system is described by a periodic

Anderson model with randomly distributed impurity sites which have no f electron. The

impurity concentration dependence of the static spin susceptibility in the present result

is in qualitative agreement with the experimental magnetic susceptibility measurements of

(Yb,Lu)B12.
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1. Introduction

Heavy fermion systems have received considerable attention because of their various

ground states, some of which can exhibit superconductivity. Certain heavy fermion compounds

have an insulating (or semiconducting) ground state, and are referred to as Kondo insulators

(or semiconductors). The origin of the tiny energy gap in these compounds has attracted in-

terest, and it is currently believed that the tiny energy gap is essentially a hybridization gap,

which is renormalized by a strong correlation effect.1,2) There have been experimental studies

in which non-magnetic ions were substituted for magnetic ions in heavy fermion compounds

to investigate the relationship between heavy fermion systems and single Kondo impurity

systems.3)

For Kondo insulators, magnetic-ion dilution experiments are another important area of

investigation, and play an essential role in the study of the properties of the tiny energy

gap.4,5) In theoretical studies of heavy fermion systems, including Kondo insulators, several

theoretical and numerical methods to treat the strong correlation effect have been developed.

In these methods, dynamical mean-field theory (DMFT) has been effectively used to investi-

gate strongly correlated electron systems.6) In order to study the above magnetic-ion-diluted

system theoretically, however, one must also appropriately treat the randomness effect caused

by non-magnetic ions distributed randomly at the same time.
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One of the authors developed a scheme by which one can treat the local electronic corre-

lation effect and the randomness effect on the same footing by including a coherent potential

approximation (CPA) in the DMFT using a perturbative approach.7) The scheme was also

applied to study a theoretical model corresponding to a magnetic-ion-diluted Kondo insu-

lator, and the temperature dependence of the static resistivity and the impurity concentra-

tion dependence of the optical conductivity were investigated.8) The transport properties of

heavy-fermion systems were also investigated by the DMFT-CPA scheme using a numeri-

cal renormalization-group method.9) For magnetic properties such as spin susceptibility in

magnetic-ion-diluted heavy fermion systems, however, the theoretical investigation is still

lacking since an appropriate treatment has yet to be developed. It is therefore necessary to

theoretically understand the magnetic properties of these systems.

In the present work, we apply the DMFT-CPA scheme with a perturbative approach to

calculate the static spin susceptibility of a theoretical model corresponding to a magnetic-ion-

diluted Kondo insulator. The purpose of the present study is to investigate the temperature

dependence of the spin susceptibility in the above magnetic-ion-diluted systems by extending

the DMFT-CPA scheme to a system with spin degrees of freedom. In particular, we consider

the spin susceptibility measurement of the Yb-based Kondo insulator Yb1−xLuxB12 by Iga

et. al. in order to compare the present results to the previous experimental results.

2. Model and Formulation

In the present paper, we treat the periodic Anderson model (PAM), in which non-magnetic

sites without f electrons are randomly distributed.10) Sites with and without f electrons are

referred as a host site (denoted by H) and an impurity site (denoted by I), respectively. The

former corresponds to a magnetic ion site (Yb3+ in Yb1−xLuxB12), and the latter corresponds

to a non-magnetic ion site (Lu3+ in Yb1−xLuxB12).

We define the model Hamiltonian as follows;

H = H0 + Hf

H0 =
∑
k,σ

εkc†kσckσ + V
∑
i,σ

(c†iσfiσ + H.c.)

−
∑
i,σ

(µ + hσ)(c†iσciσ + f †
iσfiσ)

Hf =
∑
i,σ

{
(1 − ξi)

(
U

2
f †

iσfiσf †
i−σfi−σ + ϵff †

iσfiσ

)
+ ξiEIf

†
iσfiσ

}
,

where εk, V , and µ denote the kinetic energy of conduction electrons, the hybridization energy
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between f electrons and conduction electrons, and the chemical potential, respectively. In H0,

there is also a term corresponding to the Zeeman energy; h corresponds to the magnetic field,

and should be expressed as h = µBH if the g factor values are the same for f electrons and

conduction electrons.11)

In the f -electron Hamiltonian Hf , a random variable ξi is defined as

ξi =

 1 (i ∈ I)

0 (i ∈ H).

The impurity concentration x is expressed as x =
∑

i ξi/N ; N denotes the number of lattice

sites. On impurity sites corresponding to non-magnetic ions, f electrons are excluded by taking

the limit EI → ∞ in the calculation.12–15)

Hereafter, we set ϵf = −U/2 and µ = 0. By setting these conditions, a system without a

magnetic field has particle-hole symmetry, and a hybridization gap opens at the Fermi level in

the homogeneous case (ξi = 0 for all sites). A simple PAM, which neglects orbital degeneracy

in the particle-hole symmetric case, had often been used as a theoretical model of Kondo

insulators.16–19) Since substituting impurity sites for host sites should break the coherence of

the insulating ground state, the Hamiltonian can be a model of Yb1−xLuxB12.

In order to treat the above system with the DMFT-CPA scheme, we apply the local ap-

proximation to the self energy of the Green’s function; the DMFT-CPA scheme is based on the

assumption that the self energy has no wavenumber dependence.6,7) Under this assumption,

the local f -electron Green’s function on a host site can be expressed as

Ghost
ff σ (z) =

∫
dν

ρ(ν)

z + hσ − εf − Σσ(z) − V 2

z + hσ − ν

, (1)

where Σσ(z) denotes the self energy. Eq.(1) introduces the density of states ρ(ν). For simplicity,

we assume a semi-elliptical density of states in the present calculations:

ρ(ν) =
2

πD

√
1 −

( ν

D

)2
,

where half of the total band width is denoted by D, and we hereafter take D = 1 as the energy

unit.

In the DMFT framework, there are several methods of solving the impurity problem

in the effective medium, and of constructing the self energy. We use the modified iterated

perturbation theory (MIPT)20) as the impurity solver, because it is easily applicable over a

wide temperature range. The self energy in the MIPT is approximated by the second-order

contribution constructed from the so-called Weiss function in the DMFT framework. With
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the Weiss function, the local f -electron Green’s function on a host site can be expressed as

Ghost
ff σ (z) =

1
G−1

σ (z) + hσ − µ̃σ − Σσ(z)
, (2)

where another parameter, µ̃σ, is defined. The self energy is approximated by µ̃σ as follows:21)

Σσ(z) ≅ Unf
σ̄ +

U2nf
σ̄(1 − nf

σ̄)Σ̃(2)
σ (z)

U2ñσ̄(1 − ñσ̄) − {(1 − nf
σ̄)U − hσ + µ̃σ}Σ̃(2)

σ (z)
, (3)

where nf
σ and ñσ are calculated using the Fermi distribution function f(ε), as

nf
σ =

∫
dε

(
− 1

π
ImGhost

ff σ (ε + iη)
)

f(ε),

ñσ =
∫

dε

(
− 1

π
ImGσ(ε + iη)

)
f(ε),

respectively, (σ̄ denotes an opposite spin to σ). In Eq.(3), the second-order contribution Σ̃(2)
σ (z)

is constructed from the Weiss function as follows:

Σ̃(2)
σ (z)

= U2

∫
dε1dε3dε3ρ̃σ̄(ε1)ρ̃σ(ε2)ρ̃σ̄(ε3)

× {1 − f(ε1)}f(ε2)f(ε3) + f(ε1){1 − f(ε2)}{1 − f(ε3)}
z + ε1 − ε2 − ε3

,

ρ̃σ(ε) = − 1
π

ImGσ(ε + iη).

In the DMFT-CPA scheme, we introduce the extended coherent potential, which is the

homogeneous potential obtained in the sense of the CPA, by averaging the local self energy

at a host site and the impurity energy level EI at an impurity site in the lattice system on

which host and impurity sites are distributed randomly. By introducing the extended coherent

potential, the (averaged) CPA Green’s function matrix can be expressed as follows;

ĜCPA
σ (z; ν)

=

 GCPA
cc σ (z; ν) GCPA

cf σ (z; ν)

GCPA
fc σ (z; ν) GCPA

ff σ (z; ν)

 ,

=

 z + hσ − ν −V

−V z + hσ − εf − Sσ(z)

−1

, (4)

where the extended coherent potential is denoted by Sσ(z). The local CPA f -electron Green’s

function is obtained as

GCPA
ff σ (z) =

∫
dνρ(ν)GCPA

ff σ (z; ν),
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and can also be expressed using the Weiss function, as

GCPA
ff σ (z) =

1
G−1

σ (z) + hσ − µ̃σ − Sσ(z)
. (5)

The CPA condition in the limit EI → ∞ can be expressed by the following equation;12)

{Σσ(z) − Sσ(z)}GCPA
ff σ (z) = x (x ̸= 1). (6)

If x = 0, then the extended coherent potential is equal to the self energy, as expected. Elimi-

nating the Weiss function Gσ(z) from eqs. (2) and (5), and using eq. (6), we obtain the relation

GCPA
ff σ (z) = (1−x)Ghost

ff σ (z) (x ̸= 1) in the present case. We determine these functions GCPA
ff σ (z),

Gσ(z), Σσ(z), and Sσ(z) self-consistently. In the practical calculation, we start with Gσ(z) and

GCPA
ff σ (z). Using Gσ(z), we construct Σσ(z) by eq. (3). From GCPA

ff σ (z) and Σσ(z), we obtain

Sσ(z) through eq. (6). Using Sσ(z) itself and new GCPA
ff σ (z) calculated with Sσ(z), we obtain

new Gσ(z) by eq. (5). Finally, we confirm the self-consistency of the calculation by checking

the convergence of Gσ(z).

In the above scheme, the parameter µ̃σ in the MIPT has not yet been determined. In the

homogeneous case, the corresponding parameter is determined by a condition corresponding

to a relation22,23) from which the Luttinger sum rule is derived at absolute zero.24) In the

inhomogeneous case, however, the relation corresponding to the Luttinger sum rule does

not hold between the CPA Green’s function and the extended coherent potential. In the

present calculation, we employed the condition nf
σ = ñσ to determine the parameter µ̃σ for

simplicity,21) although we could have used the condition based on the corresponding relation

between the local host-site Green’s function and the local self energy on a host site.25)

3. Results

In the present study, we calculate the spectral functions ρf σ(ε, ν) and ρc σ(ε, ν), defined

as

ρf σ(ε, ν) = − 1
π

ImGCPA
ff σ (ε + iη; ν),

ρc σ(ε, ν) = − 1
π

ImGCPA
cc σ (ε + iη; ν),

(7)

respectively, and the static spin susceptibilities χf and χc, which are numerically approximated

as magnetizations mf and mc divided by h (we take h = 0.005 in these calculations). Here,

the magnetization is defined using (7) as follows:

mf =
1
2

∑
σ

σ

∫
dνρ(ν)

∫
dερf σ(ε, ν)f(ε),

mc =
1
2

∑
σ

σ

∫
dνρ(ν)

∫
dερc σ(ε, ν)f(ε).
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We first show the impurity-concentration dependence of contour graphs of the spectral

functions ρc(ε, ν) and ρf (ε, ν) in the paramagnetic case with zero field (the spin indices are

omitted here) in Figs. 1 and 2. The horizontal axis represents ν, and corresponds to the wave

vector through the relation ν = εk. Near the Fermi level (ε ≅ 0), the strong-intensity compo-

nent (the highlighted part) of the contour graph shows the energy dispersion of quasiparticles.

For x = 0.1, the system is almost homogeneous, and the energy dispersion is similar to

that of the renormalized hybridization band expressed as
(
ν ±

√
ν2 + 4(V ∗)2

)
/2, in which

V ∗ denotes a renormalized hybridization energy. The renormalized hybridization gap, which

is an indirect gap given by
√

D2 + 4(V ∗)2 − D (D has been set to D = 1), almost opens. In

the renormalized hybridization gap, there is a non-dispersive impurity band. As the impurity

concentration x increases, the impurity band grows and the renormalized hybridization gap

disappears. Then, the energy dispersion in the conduction-electron part ρc(ε, ν) of the spectral

function approaches that of a simple conduction band, without the hybridization shown in

Fig. 1.

As shown in Fig. 2, at higher impurity concentration (x ≅ 1), the strong-intensity compo-

nent of the f -electron spectral function loses its dispersion and approaches the renormalized

f level (note that the intensity of the spectral function ρf (ε, ν) is divided by 1 − x since the

f -electron spectral function decreases proportionally to the host-site concentration (1− x) as

the value of x increases). In higher energy regions (|ε| ∼ 2), there are side bands (the so-called

Hubbard bands), and these are not dispersive. This behavior reflects local (non-dispersive)

charge excitations in the present model at large values of U .

Figure 3 shows the temperature dependence of the total static spin susceptibility χtotal =

χf + χc. At higher temperatures, χtotal increases following Curie-Weiss law as temperature

decreases, with a peak that falls off at lower temperatures. The decrease in χtotal at lower

temperatures reflects an opening of the energy gap. For a homogeneous system with x = 0,

the hybridization gap opens completely, and the susceptibility reaches zero at absolute zero.

For systems with finite impurity concentrations, however, a residual susceptibility exists at

absolute zero, since the hybridization gap disappears because of the impurity band. As the

impurity concentration increases, the decrease in susceptibility at lower temperatures becomes

weaker, and the peak disappears. The higher the impurity concentration, the smaller the total

static susceptibility, because the f -component of the susceptibility becomes smaller as the

impurity concentration increases.

The temperature dependence of the f -component χf of the static spin susceptibility for

several values of x is shown in Fig. 4. χf becomes small as the impurity concentration increases,
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Fig. 1. (Color online) Impurity concentration dependence (x = 0.1, 0.3, 0.5, 0.7, and 0.9) of contour

graphs of the spectral function ρc(ε, ν) for a conduction electron with U = 3 and V = 0.5 at

T = 0.

except in the lower temperature region. At lower temperatures, χf increases as the impurity

concentration increases because of the growth of the in-gap state. Fig. 5 (a) shows the impurity

concentration dependence of χf at low and high temperatures. At the highest temperature

investigated (T = 1.0), χf monotonically decreases as the impurity concentration increases.
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Fig. 2. (Color online) Impurity concentration dependence (x = 0.1, 0.3, 0.5, 0.7, and 0.9) of contour

graphs of the spectral function ρf (ε, ν) for an f electron with U = 3 and V = 0.5 at T = 0.

χf (T = 1.0) decreases proportionally to 1−x, as shown in Fig. 5 (b). On the other hand, χf at

absolute zero does not change monotonically in Fig. 5 (a). We will discuss the non-monotonic

behavior of χf (T = 0) in a later section.

Regarding the correlation effect, the variation of the temperature dependence of χtotal

with U for x = 0.1 is plotted, as shown in Fig. 6, to examine the enhancement of the static
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Fig. 3. (Color online) Impurity concentration dependence of the variation of the total static spin
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Fig. 4. (Color online) Temperature dependences of the f component of the static spin susceptibility

for several values of x (U = 0.5 and V = 0.5).

spin susceptibility. It is generally expected that the spin susceptibility is enhanced by electron

correlation, since the on-site Coulomb repulsion suppresses charge fluctuation and enhances

the spin fluctuation. In the present result, the static spin susceptibility is strongly enhanced

by the correlation effect.

4. Summary and Discussion

We have calculated the spectral function and static spin susceptibility of a periodic An-

derson model with randomly distributed on-site Coulomb interactions between f electrons by

the DMFT-CPA scheme, which corresponds to a theoretical model of a magnetic-ion-diluted

Kondo insulator.
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Fig. 5. (a) Impurity concentration dependence of the f component of the static spin susceptibility at

T = 0 and T = 1.0 (U = 0.5 and V = 0.5). (b) χf (T = 0) and χf (T = 1.0) divided by
√

x(1 − x)

and 1 − x, respectively (see text).
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Fig. 6. Temperature dependence of the total static spin susceptibility for U = 0.5 and U = 1.0

(V = 0.5 and x = 0.1).

In the impurity concentration dependence of the spectral functions, the hybridization gap

disappears because of the growth of the impurity band, and the renormalized hybridization

band is continuously separated into a conduction electron component and an f electron com-

ponent as the impurity concentration increases. The former becomes the original conduction

band dispersion (ε = ν = εk), and the latter becomes the renormalized f level without disper-

sion (ε = 0). The upper and lower satellite bands in the f component of the spectral function

have no energy dispersion. Since these bands correspond to local charge excitations, they are

not affected by diluting the host sites on which on-site Coulomb interactions exist (although
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the total intensity of the f component of the spectral function becomes small as the host sites

are diluted).

The impurity concentration dependence of the variation of static susceptibility with tem-

perature in the experimental results obtained for Yb1−xLuxB12
5) is in qualitative agreement

with that for the f -component χf of the susceptibility (Fig. 4) . If the theory is applicable to

treat the system with a sufficiently large value of U , the susceptibility obtained experimen-

tally should be compared with the total susceptibility χtotal. In the present study, however,

it is difficult to calculate the Green’s function for much larger values of U than the band

width since the scheme is based on the perturbative construction of the self energy, and we

cannot obtain the spin susceptibility for a system with such a large value of U . In such a case,

it is appropriate to compare the magnetic susceptibility in the experimental result with χf

rather than χtotal because it is expected that the spin fluctuation of f electrons in real heavy

fermion compounds is strongly enhanced by the correlation effect and the f component is a

major component of the magnetic susceptibility. Actually, the experimental result obtained

for Yb1−xLuxB12 is comparable with the f component of the susceptibility in the present

results. We believe that the above qualitative agreement between χf in the present results

and the magnetic susceptibility in the experimental result indicates that the treatment of the

present model with the DMFT-CPA scheme is a valid description of a magnetic-ion-diluted

Kondo insulator.

Finally, let us discuss the non-monotonic impurity concentration dependence of the static

spin susceptibility at absolute zero. The Pauli susceptibility at low temperatures is propor-

tional to the density of states at the Fermi level, and the f component χf (T = 0) of the static

spin susceptibility at absolute zero should also be proportional to ρf (0) =
∫

dνρ(ν)ρf (0, ν). In

the present system with particle-hole symmetry, the f component of the density of states at

the Fermi level can be expressed as ρf (0) = D/(2πV 2)
√

x(1− x).8,15) Fig. 5 (b) shows a plot

of χf (T = 0) divided by
√

x(1 − x) versus x. The proportional relationship holds, although

χf (T = 0) at the lowest impurity concentration deviates from proportionality. This devia-

tion may be due to the numerical approximation of the spin susceptibility, which is obtained

by dividing the magnetization by the finite magnetic field. The plot indicates that the non-

monotonic behavior of χf (T = 0) can be explained by the proportional relationship between

χf (T = 0) and ρf (0).

The present study demonstrates that the DMFT-CPA scheme with an MIPT impurity

solver is applicable to the calculation of magnetic properties. Moreover, the present scheme

can effectively treat the general system without particle-hole symmetry, and we will discuss
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the application of the present scheme to the generalized system in a future report.
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