
 
 
 
 
 
  

 

 
Title 
Biosynthesis and Applications of Prenylquinones. 
 
Author(s) 
Makoto Kawamukai 
 
Journal 
Bioscience, Biotechnology, and Biochemistry  
Volume 82, 2018 - Issue 6: Special Issue: Recent advances in isoprenoid studies 
 
Published 
19 Feb 2018 
 
URL 
https://doi.org/10.1080/09168451.2018.1433020 
 
 

この論文は出版社版でありません。 

引用の際には出版社版をご確認のうえご利用ください。 

島 根 大 学 学 術 情 報 リ ポ ジ ト リ  

S W A N 
Shimane University Web Archives of kNowledge 

https://doi.org/10.1080/09168451.2018.1433020


 1 

Biosynthesis and applications of prenylquinones  1 

 2 

 3 

Makoto Kawamukai  4 

 5 

 6 

Department of Life Science and Biotechnology, Faculty of Life and Environmental 7 

Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.  8 

 9 

 10 

Corresponding author: Makoto Kawamukai 11 

E-mail: kawamuka@life.shimane-u.ac.jp. 12 

Telephone: 81-852-32-6583 13 

Fax: 81-852-32-6092 14 

 15 

  16 

  17 

 18 

Funding  19 

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, 20 

Sports, Science, and Technology of Japan (No. 17H03806). 21 

 22 

Disclosure statement 23 

The author declares that there is no conflict of interests. 24 

  25 



 2 

Abbreviations 26 

DHFL, dehypoxanthinylfutalosine 27 

DHNA, 1,4-dihydroxy-2-naphthoate 28 

DMK, demethylmenaquinone 29 

DMAPP, dimethylallyl pyrophosphate 30 

DXP, 1-deoxy-D-xylulose-5-phosphate 31 

FPP, farnesyl pyrophosphate  32 

GPP, geranyl pyrophosphate 33 

GGPP, geranylgeranyl pyrophosphate 34 

HGA, homogentisate 35 

IPP, isopentenyl pyrophosphate 36 

MEP, 2C-methyl-D-erythritol-4-phosphate 37 

MK, menaquinone 38 

MVA, mevalonate 39 

PDS, prenyl diphosphate synthase 40 

PHB, p-hydroxybenzoate 41 

PhQ, phylloquinone 42 

PQ, plastoquinone 43 

RQ, rhodoquinone 44 

UQ, ubiquinone 45 
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Abstract 47 

Prenylquinones are isoprenoid compounds with a characteristic quinone structure and 48 

isoprenyl tail that are ubiquitous in almost all living organisms. There are four major 49 

prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and 50 

rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among 51 

organisms. UQ, PQ, and RQ contain benzoquinone, while MK contains naphthoquinone. 52 

UQ, MK, and RQ are involved in oxidative phosphorylation, while PQ functions in 53 

photosynthetic electron transfer. Some organisms possess two types of prenylquinones; 54 

Escherichia coli has UQ8 and MK8, and Caenorhabditis elegans has UQ9 and RQ9. 55 

Crystal structures of most of the enzymes involved in MK synthesis have been solved. 56 

Studies on the biosynthesis and functions of quinones have advanced recently, including 57 

for phylloquinone (PhQ), which has a phytyl moiety instead of an isoprenyl tail. Herein, 58 

the synthesis and applications of prenylquinones are reviewed. 59 

 60 
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 63 

1. Introduction 64 

Isoprenoids are compounds built from two common precursors, isopentenyl 65 

pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). More than 50,000 66 

isoprenoid compounds are found in nature.1) Among them, isoprenylated quinones, in 67 

which the length of the isoprenoid side chain or tail varies, are widely distributed in 68 

almost all living organisms, and they function in electron transfer. Living organisms 69 

must acquire energy through oxidative phosphorylation or photosynthetic 70 

phosphorylation, and these processes require lipid molecules to transfer electrons and 71 

protons between protein complexes. Typically, ubiquinone (UQ) transfers electrons 72 

from Complex I or II to Complex III in oxidative phosphorylation, while plastoquinone 73 
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(PQ) transfers electrons from photosystem II to the cytochrome b6f complex in 74 

photosynthesis.2)  75 

  The isoprenoid side chain is responsible for the lipid-soluble nature of 76 

quinones, and anchors them in membrane lipid bilayers, while the electron transfer 77 

capacity is derived from the quinone head. The quinone ring undergoes a two-step 78 

reversible oxidation/reduction between reduced and oxidized forms. This common 79 

property allows electrons and protons to shuttle between different protein complexes in 80 

biological membranes, allowing it to function as both a cofactor in enzyme reactions, 81 

and as an antioxidant. 82 

  Widely distributed (major) and more restricted (minor) quinones are present 83 

in almost all living organisms. UQ, menaquinone (MK), PQ, and rhodoquinone (RQ) 84 

are major quinones, and UQ and RQ are distributed in prokaryotes and eukaryotes, 85 

while MK is found in bacteria and archaea, and PQ is restricted to cyanobacteria and 86 

plants. Minor quinones include thermoplasmaquinone, methionaquinone, 87 

chlorobiumquinone, sulfolobusquinone, and caldariellaquinone, and are found in 88 

bacteria and archaea.3)  89 

  The length of the isoprenoid side chain and the type of quinone are variable 90 

(side chain length is annotated in subscript in this review). For example, bacteria such 91 

as Bacillus subtilis produce MK7, Escherichia coli synthesize UQ8 and MK8, and 92 

Synechocystis spp. generate PQ9. Yeasts such as Saccharomyces cerevisiae and 93 

Schizosaccharomyces pombe produce UQ6 and UQ10, respectively. Plants such as 94 

Arabidopsis thaliana produce UQ9 and PQ9, while Nicotiana tabacum synthesize UQ10 95 

and PQ9. Nematodes such as Caenorhabditis elegans produce UQ9 and RQ9, and higher 96 

animals such as Mus musculus and Homo sapiens make UQ9 and UQ10, respectively 97 

(Fig. 1). The types of prenylquinones in organisms are highly variable; hence they have 98 

been used for classification of microbes.4, 5)  99 

  The biosynthesis of prenylquinones has been extensively studied, and despite 100 

significant knowledge accumulated, some biosynthetic reactions remain poorly 101 
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understood. In this review, the biosynthesis of four major prenylquinones and 102 

phylloquinone (PhQ) is summarized in detail. 103 

 104 

2. Isoprenoid side chains are synthesized via 2C-methyl-D-erythritol-4-phosphate 105 

(MEP) and mevalonate (MVA) pathways 106 

The isoprenoid side chains of prenylquinones are synthesized by prenyl diphosphate 107 

synthase (PDS) from DMAPP, geranyl pyrophosphate (GPP), geranylgeranyl 108 

pyrophosphate (GGPP), or farnesyl pyrophosphate (FPP) by condensation of IPP. IPP 109 

and DMAPP are synthesized from either the 2C-methyl-D-erythritol-4-phosphate 110 

(MEP) pathway 6-8) or the mevalonate (MVA) pathway.9) The MEP pathway is present 111 

in most prokaryotes, and the MVA pathway occurs in archaea and eukaryotes.10) Plants 112 

and Streptomycetes possess both pathways.  113 

The MVA pathway was discovered in the 1960s and consists of seven 114 

enzyme-catalyzed reactions. It performs several key functions within cells, and is an 115 

important central metabolic pathway in all higher eukaryotes. The MVA pathway of S. 116 

cerevisiae is shown in Fig. 2 as representative of eukaryotes. Formation of 117 

acetoacetyl-CoA from two acetyl-CoA molecules by acetyl-CoA acetyltransferase 118 

(Erg10) is followed by the synthesis of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) 119 

by Erg13. In the third step, MVA is generated by reduction of HMG-CoA by 120 

HMG-CoA reductase (Hmg), the target of the famous “statin” drugs.11) MVA is 121 

phosphorylated by Erg12 to generate phosphomevalonate, and further phosphorylated 122 

by Erg8. Finally, diphosphomevalonate is used by Erg19/Mvd1 to generate IPP or 123 

DMAPP. Idi isomerizes between IPP and DMAPP, and DMAPP and IPP are further 124 

utilized in condensation reactions for the biosynthesis of isoprenoids. The reactions of 125 

all enzymes in the MVA pathway and their three-dimensional structures have been 126 

summarized previously.9) 127 

The MEP pathway for the biosynthesis of IPP and DMAPP was discovered in 128 

the 1990s and consists of eight enzyme-catalyzed reactions. The MEP pathway of E. 129 
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coli is shown in Fig. 3. Condensation of pyruvate and D-glyceraldehyde-3-phosphate to 130 

form 1-deoxy-D-xylulose-5-phosphate (DXP) is catalyzed by Dxs (Fig. 3). The second 131 

step is the conversion of DXP to MEP by IspC, and 132 

4-diphosphocytidyl-2C-methyl-D-erythritol (CDP-ME) is then generated from MEP 133 

and CTP by IspD. The fourth step is the phosphorylation of CDP-ME to generate 134 

4-diphosphocytidyl-2C-methyl-D-erythritol-2-phosphate (CDP-ME2P) by IspE, and 135 

IspF subsequently removes CMP from CDP-ME2P to generate 136 

2C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcPP). In the sixth step, IspG 137 

catalyzes the ring opening of the cyclic pyrophosphate and C3-reductive dehydration of 138 

MEcPP to generate 4-hydroxy-3-methylbut-2-enyl diphosphate (HMB-PP). Finally, 139 

IspH generates IPP or DMAPP from HMB-PP by reduction. Idi catalyzes isomerization 140 

between IPP and DMAPP in the eighth step, and some organisms lack this enzyme. 141 

Enzymes of this MEP pathway are attractive targets for the development of drugs 142 

against infectious diseases because this pathway occurs in pathogenic prokaryotes but is 143 

absent in humans. The antimalarial drug fosmidomycin, which inhibits Dxr, is one of 144 

the best-known examples of a drug that targets the MEP pathway. Three-dimensional 145 

structures of E. coli Dxs, IspC, IspD, IspE, IspF, IspG, and IspH have been solved, and 146 

their precise structure-based catalytic mechanisms have been described.6) Further details 147 

about these biosynthetic pathways synthesizing IPP can be found in previous 148 

reviews.6-10) 149 

 150 

3. Prenyl diphosphate synthase 151 

The side chain of prenylquinone is supplied by polyprenyl diphosphate synthase (PDS) 152 

and determines the side chain length of prenylquinones (Fig. 4).12, 13) Numerous PDS 153 

enzymes have been analyzed,5, 14-17) and all consist of seven conserved regions including 154 

two DDXXD motifs involved in binding substrates such as FPP (GPP or GGPP) and 155 

IPP. PDS occurs in both homomeric and heteromeric forms. PDSs in Gram-negative 156 

bacteria are mostly homomeric, while those in Gram-positive bacteria are mostly 157 
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heteromeric.15, 18) Eukaryotes have both heteromeric (e.g., Coq1 and SPS1) and 158 

homomeric types (e.g., human PDSS1 and PDSS2).19-21) The distribution of these PDSs 159 

differs among organisms, and among different components in organisms. For example, 160 

E. coli contains only one polyprenyl diphosphate synthase (IspB) and shares the side 161 

chain of UQ and MK.22, 23) Meanwhile, plants such as Arabidopsis possess three 162 

different PDSs, in this case three solanesyl diphosphate synthases (SPS1, SPS2, and 163 

SPS3), which are localized to different subcellular organelles (the ER, chloroplasts, and 164 

mitochondria, respectively).24, 25) Humans contain one PDS comprising two subunits, 165 

PDSS1 and PDSS2,21) similar to S. pombe PDS, which also consists of a heteromeric 166 

complex and served as the basis for analysis of the human enzyme.20, 21) A heteromeric 167 

form of PDS was probably evolved in S. pombe or earlier organisms and succeeded to 168 

humans. The result that artificial heteromeric PDSs between Coq1 and Dps1 or IspB 169 

and Dps1 is functional19, 26) supported an idea that heteromeric form was evolved from 170 

homomeric form. 171 

The three-dimensional structure of PDS has been solved, and octaprenyl 172 

diphosphate synthase (IspB) from E. coli consists of 14 α-helices.27) Recent 173 

co-crystallization of IspB with its substrates (FPP and IPP) revealed aspartate-rich 174 

motifs surrounding the binding regions of substrates, and indicated a product pocket 175 

that determines the chain length. The three-dimensional structure of the heteromeric 176 

heptaprenyl diphosphate synthase from Staphylococcus aureus was solved,28) revealing 177 

a regulatory subunit that does not resemble the catalytic subunit.  178 

 E. coli ispB is essential for growth, while ispA encoding FPS is not,22) 179 

presumably because ispB replaces the function of ispA.29) Since ispB is required for the 180 

synthesis of the side chain of both UQ and MK, E. coli cannot survive without both 181 

quinones. Coq1 in S. cerevisiae19) and Dps1 (or Dlp1) in S. pombe are not essential for 182 

growth,20, 30) while C. elegans coq1 and PDSS1 (or PDSS2) in mouse are essential for 183 

development.31, 32)  184 

 185 
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4. Prenylquinones 186 

Different groups of prenylquinones such as UQ, MK, PQ, and RQ (Fig. 1) are present in 187 

different taxonomic groups, and prenylquinone profiling is a useful taxonomic tool.4) 188 

Exactly why such a wide variety of quinones are found in nature is an interesting 189 

question. The isoprenoid side chain gives these molecule their lipid-soluble character, 190 

the quinone ring defines the redox mid-potential, and organisms have evolved the 191 

optimal quinone types for survival. The redox potential (E0) of MK is -74 mV, 192 

compared with -63 mV for RQ and +100 mV for UQ. The lower redox potential of MK 193 

and RQ explains why they are used in electron transfer systems under anaerobic 194 

conditions, while UQ is employed in aerobic conditions. Differences in the natural 195 

environment of living organisms probably affect selection of the preferred quinone type. 196 

Evolutionally, MK probably arose in archaea, while PQ and UQ evolved later in 197 

bacteria and became distributed in eukaryotes, and RQ forms evolved most recently. 198 

However, some researchers believe that PQ may have evolved first in cyanobacteria, 199 

and was then distributed to other organisms, because the pathway for UQ biosynthesis 200 

is similar to that of PQ, and PQ has the simplest structure among prenylquniones.33)  201 

Some organisms possess two types of quinones, such as E. coli that 202 

synthesizes UQ8 and MK8, and C. elegans that has UQ9 and RQ9. Possessing different 203 

types of quinones may be beneficial for adapting to changing environmental conditions. 204 

In E. coli, the level of UQ8 is 4–5 times higher than that of MK8 and demethyl 205 

menaquinone (DMK)8 when growing under aerobic conditions, whereas UQ is three 206 

times less abundant than MKs under anaerobic conditions. In Euglena gracilis, RQ9 is 207 

present at a similar concentration to UQ9 under aerobic conditions, but is more abundant 208 

under anaerobic culture conditions. In C. elegans, UQ9 is 3.56-fold more abundant than 209 

RQ9, indicating a preference for aerobic growth, although anaerobic growth also 210 

occurs.34) 211 

The significance of the length of the side chain of prenylquinones remains 212 

contentious, and only UQ has been thoroughly investigated. The side chain of UQ is 213 
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determined by the supplied prenyl diphosphate synthesized by PDS.12) Genetically 214 

engineered S. cerevisiae produce UQ5 to UQ10 and grow well, but the native form (UQ6 215 

in this case) is preferred for better growth.13) E. coli producing UQ6 to UQ10 also grow 216 

well, but a longer side chain is preferable for better growth.22) C. elegans clk-1 mutant, 217 

which lacks the penultimate enzyme (Coq7) in UQ synthesis, lives longer than wild 218 

type. When engineering E. coli producing UQ6 to UQ10 were used as diet, they reverse 219 

the longevity of this mutant, but the effect is different.35) C. elegans prefers longer UQs 220 

such as UQ8 to UQ10, and the preference for a certain length may reflect the affinity for 221 

binding proteins or the membrane lipid composition. Why plants prefer the isoprene 222 

unit 9 form in PQs, while animals prefer the isoprene unit 4 form in MKs (or PQs) is 223 

also interesting. 224 

A variety of scarcer prenylquinones other than those widely distributed in 225 

nature have been identified. Thermoplasmaquinone and methionaquinone are found in 226 

Thermoplasma spp. and Hydrogenobacter thermophilus, respectively.36, 37) 227 

Chlorobiumquinone, containing oxygenized isoprenoid in MK, is found in the 228 

photosynthetic bacterium Chlorobium limicola and in Leishmania parasitic 229 

protozoans.38) Sulfolobusquinone, caldariellaquinone, and benzodithiophenoquinone, 230 

containing sulfur in an additional heterocyclic ring, are found in Sulfolobales, an order 231 

of thermophilic and aerobic archaebacteria.39) Sulfomenaquinone, containing sulfur in 232 

the end of the side chain, is found in Mycobacterium tuberculosis,40) and a saturated 233 

isoprenoid in UQ is found in Fungi.41) There are a few known organisms, such as 234 

obligatory fermentative bacteria, that lack prenylquinones.4)  235 

 236 

5. Ubiquinone (coenzyme Q)  237 

Ubiquinone (UQ; 2,3-dimethoxy-5-methyl-6-polyprenyl-1,4-benzoquinone) is an 238 

essential cofactor in oxidative phosphorylation, present in all eukaryotes and alpha-, 239 

beta-, and gamma-proteobacteria.4) UQ was discovered by F. Crane in 1957, and the 240 

structure was determined by K. Folkers the following year.42) UQ functions in many 241 
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physiological processes including sulfide oxidation,43, 44) first discovered in fission yeast 242 

and later in humans, as well as regulation of the mitochondrial permeability transition 243 

pore, and the translocation of protons and Ca2+ across biological membranes in 244 

eukaryotes.45) UQ is the only lipid-soluble antioxidant produced in humans, and it is 245 

present in almost all membranes, ranging from mitochondrial membranes, Golgi, ER, 246 

and plasma membranes, to very low density lipoproteins. UQ10 production decreases 247 

with aging in humans, as does the antioxidant capability of cells.46) In humans, 248 

the heart, liver, and kidney have higher UQ10 levels than other organs.47)  249 

In model organisms such as E. coli, S. cerevisiae, and S. pombe, UQ 250 

deficiency is not lethal, but causes growth defects on minimum medium, and a 251 

heightened sensitivity to oxidative stress.17) In C. elegans,31) UQ deficiency leads to 252 

gamma-aminobutyric acid (GABA) neuron degeneration, and in Drosophila 253 

melanogaster,48) it can cause mitochondrial stress and neuronal apoptosis. In 254 

Arabidopsis, UQ is necessary for seed development.49) In humans, UQ10 deficiency has 255 

been implicated in various diseases involving muscle and neural development, with the 256 

severity of the disease correlated with the acuteness of the UQ10 shortfall.50)  257 

The biosynthetic pathway of UQ has been reviewed previously,17, 51-55) but 258 

important progress has been made in recent years. Biosynthesis of UQ has received 259 

greatest attention in E. coli and S. cerevisiae, serving as representative prokaryotes and 260 

eukaryotes, respectively (Fig. 4). Some variation in UQ biosynthetic enzymes is 261 

observed in prokaryotes and eukaryotes; in particular, decarboxylation and C1 262 

hydroxylation enzymes are not defined in eukaryotes, and likely to be different from 263 

prokaryotic enzymes.51) 264 

In E. coli, PHB is first condensed with trans-polyprenyl diphosphate by 265 

UbiA,56) and the ring structure is then modified. The decarboxylation step is catalyzed 266 

by UbiD with the assistance of UbiX, which generates the prenylated FMN cofactor for 267 

UbiD.57) UbiX functions as a flavin prenyltransferase. The ring is further hydroxylated 268 

by UbiI,58) O-methylated by UbiG,59) hydroxylated by UbiH, C-methylated by UbiE,60) 269 
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hydroxylated by UbiF,61) then O-methylated by UbiG. It is reported that ubiK and ubiJ 270 

are required for efficient biosynthesis of UQ in E. coli.62) Hydroxylation and ring 271 

formation are reportedly catalyzed by enzymes encoded by ubiM and ubiL in 272 

Rhodospirillum.33) The ubiZ gene product is predicted to be involved in UQ synthesis in 273 

Acinetobacter junii, based on genomic analysis of 254 human gut microbes.63) However, 274 

verification of these genes in the biosynthesis of UQ awaits further evidence. An 275 

attempt to produce a higher amount of UQ by genetic engineering was first succeeded 276 

in E. coli by expressing ubiA, ubiB, ubiC, ubiG, ubiH and ispB 64)    277 

In S. cerevisiae, PHB and para-amino benzoic acid (pABA) are used for UQ 278 

synthesis. PHB is synthesized from 4-hydroxybenzaldehyde by Hfd1 in S. cerevisiae.24) 279 

A conserved homolog of Hfd1 is found in humans, but it is still not clear how many 280 

steps are required to form 4-hydroxybenzaldehyde from tyrosine.65) pABA was 281 

originally identified as a precursor of ring formation in S. cerevisiae, and we observed 282 

that it is also used in S. pombe (unpublished). The first ring is prenylated by Coq2,66) 283 

modified via hydroxylation by Coq6,67) followed by O-methylation by Coq3.59) The 284 

enzymes responsible for decarboxylation and hydroxylation remain unclear. The ring is 285 

then modified further via C-methylation by Coq5,68) a final hydroxylation by Coq7,69) 286 

and O-methylation by Coq3. The genes involved in biosynthesis in eukaryotes are well 287 

conserved among yeasts, plants, and humans,70) although there is some variation among 288 

species. Even between the two model yeasts S. cerevisiae and S. pombe, components of 289 

PDS are different.19) There are at least four genes (COQ4, COQ8, COQ9, and COQ11) 290 

responsible for the synthesis of UQ, but their functions are not known. The function of 291 

Coq4 is clearly conserved in humans and plants.70) Conservation of Coq9 in higher 292 

eukaryotes is not so obvious, but interestingly, a homolog is also found in some 293 

prokaryotes.33) Coq11 is associated with the UQ synthetic enzyme complex named CoQ 294 

synthome, and is required for UQ synthesis in S. cerevisiae.71) Coq11 is also required 295 

for efficient UQ synthesis in S. pombe (unpublished). A deamination step is required for 296 

the synthesis of UQ from pABA, and the involvement of Coq9 or Coq6 has been 297 



 12 

proposed.72, 73) The UbiD and UbiX homologs Pad1 and Fdc1 found in yeasts are not 298 

involved in UQ synthesis, but are required for ferulic acid synthesis.74) How 299 

decarboxylation takes place during ring formation in eukaryotes is a long-standing 300 

question in UQ synthesis. 301 

In addition to the three-dimensional structure described previously,51) the 302 

structure of Coq3 was recently solved.75) Coq3 forms a typical Class I S-adenosyl 303 

methionine methyltransferase (SAM-MTase) fold. Coq3 is a membrane-binding protein 304 

specifically binding to liposomes containing phosphatidylglycerol (PG), cardiolipin 305 

(CL), or diphosphatidylglycerol (DPPG). The three-dimensional structures of Coq7 and 306 

Coq11 are yet to be reported.  307 

How UQ is transported has been a long-standing question. By searching for 308 

the binding protein using UQ, three UQ-binding proteins, Coq10, saposin, and 309 

voltage-dependent anion channel (VDAC1), were identified.76, 77) Coq10 is localized to 310 

mitochondria in eukaryotes, and homologs are found in prokaryotes. Lack of Coq10 311 

results in respiration deficiency in yeasts.76, 78) Coq10 itself is not required for the 312 

biosynthesis of UQ, but it is thought to be required for efficient operation of electron 313 

transfer systems. The binding site of Coq10 for UQ10 was determined by 314 

affinity-purified Coq10 using a UQ analog in S. pombe.77) Saposin is another protein 315 

that binds UQ, but it is only found in mammals. Among different types, saposin B was 316 

shown to bind UQ as well as tocopherol.79) VDAC1, located in the mitochondrial outer 317 

membrane of S. cerevisiae, is another UQ-binding protein.80) The role of VDAC1 in 318 

Ca2+-induced mitochondrial permeability is affected by binding to UQ, but whether this 319 

function is conserved in other organisms is not known. 320 

The unique fission yeast Schizosaccharomyces japonicus produces 200-fold 321 

less UQ10 than S. pombe.81) This fission yeast acquires energy through fermentation and 322 

has abandoned respiration. How this yeast survives in its natural environment with such 323 

a small amount of UQ10 is interesting and worthy of study.  324 

 325 
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6. Menaquinones 326 

Menaquinone (MK; 2-methyl-3-polyprenyl-1,4-naphthoquinone) is found in bacteria, 327 

and is the sole quinone in anaerobically growing bacteria.82, 83) MK was discovered in 328 

1939 by E. A. Doisy.84) MKs are found in archaea and bacteria such as γ-, δ-, and 329 

ε-proteobacteria, Gram-positive bacteria, green sulfur bacteria, green filamentous 330 

bacteria, and flavobacteria. As MKs have a low midpoint redox potential, they are 331 

believed to have appeared early in evolution before UQ, since they function in a 332 

reducing atmosphere as was present before the increase in oxygen concentration 333 

following the arrival of photosynthetic organisms. 334 

MKs occur in different forms, with the number of isoprene units varying 335 

between 4 and 13. Some bacteria such as E. coli possess both UQ8 and MK8, and the 336 

relative amounts of each depend on oxygen levels; while UQ levels are higher under 337 

aerobic conditions, MK8 is more abundant under anaerobic conditions. Neither MK nor 338 

UQ is essential for survival in E. coli, but at least one of these prenylquinones is 339 

needed.22) The side chain of MK is usually fully unsaturated, but it can be also be 340 

partially or fully saturated in some organisms.85) 341 

Two pathways are known for the synthesis of MK. The classical pathway 342 

involves nine steps catalyzed by MenF, MenD, MenH, MenC, MenE, MenB, MenI, 343 

MenA, and MenG (Fig. 6).86) The biosynthesis of MK in E. coli starts from the 344 

conversion of chorismate to isochorismate by MenF, and succination is then catalyzed 345 

by MenD. In the third step, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate 346 

(SHCHC) is synthesized by MenH, and O-succinylbenzoate (OSB) is then synthesized 347 

from SHCHC by MenC. In the fifth step, CoA is adducted to OSB by MenE, and MenB 348 

then cyclizes OSB-CoA to form DHNA-CoA. In the seventh step, MenI synthesizes 349 

naphthoate,87) which is prenylated by MenA, and the product is methylated by MenG 350 

(UbiE) in the final step. Prenylation takes place during the later stages via MenA, in 351 

contrast with the synthesis of UQ in which it occurs earlier via UbiA (Fig. 5). The 352 

methylation enzyme (MenG) for MK is homologous to UbiE functioning in UQ 353 
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synthesis in E. coli. MenJ works as a reductase of the side chain in Mycobacterium 354 

tuberculosis.88) Further methylation of MK is observed in some bacterium such as 355 

Shewanella oneidensis.89)  356 

The novel pathway for MK synthesis was first discovered in Streptomyces coelicolor 357 

and subsequently in Helicobacter pylori and Thermus thermophilus.90, 91) Six enzymes 358 

are engaged in 1,4-dihydroxy-6-naphthoate biosynthesis. MqnA converts chorismate to 359 

3-[(1-carboxyvinyl)oxy]benzoic acid, which is condensed with SAM by MqnE, leading 360 

to aminofutalosine (AFL). MqnE is a radical SAM enzyme that catalyzes the addition of 361 

the adenosyl radical to the double bond of 3-[(1-carboxyvinyl)oxy]benzoic acid. 362 

Deamination of AFL is catalyzed by a specific deaminase for which no common gene 363 

name has been assigned.92) MqnB (futalosine hydrolase) then removes hypoxanthine, 364 

forming dehypoxanthinylfutalosine (DHFL).93) MqnC cyclizes DHFL, and MqnD 365 

cleaves the cyclic 1,4-dihydroxy-6-naphthoate to release 1,4-dihydroxy-6-naphthoate 366 

(Fig. 7). In H. pylori, MqnB directly converts aminodeoxyfutalosine into DHFL,94) 367 

indicating an alternative way in the futalosine pathway.  368 

The novel genes mqnP, mqnL, and mqnN were predicted to encode enzymes 369 

involved in MK synthesis in Helicobacter cinaedi following genomic analysis of 254 370 

human gut microbes.63) MqnP is predicted to be involved in prenylation of 371 

1,4-dihydroxy-6-naphthoate, and MqnL and MqnN are likely involved in 372 

decarboxylation. Comparing gene clusters can be useful for predicting biosynthetic 373 

genes such as those orchestrating the synthesis of MK. However, biochemical analysis 374 

is essential for confirming any predictions, and analysis of this futalosine pathway 375 

leading to MK is still under investigation. 376 

The three-dimensional structures of MK biosynthetic enzymes MenC from E. 377 

coli 95) and Thermosynechococcus elongatus,96) and MenB,97) MenD,98) MenE,99) 378 

MenF,100) MenH,101) and MenI102) from E. coli, have been determined (Fig. 8). The 379 

structure of MenC is similar to that of other members of the enolase superfamily.95) The 380 

structure of MenB, a crotonase superfamily member, was solved in complex with a 381 
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substrate analog, revealing an intramolecular Claisen condensation reaction 382 

mechanism.97) MenD is highly dependent on thiamine diphosphate for its structural 383 

stability.98) MenE requires a conserved arginine for binding the OSB carboxylate, and 384 

catalyzes CoA ligation via an acyl-adenylate intermediate.99) Structural and biochemical 385 

analyses of MenF revealed Lys190 as the base that activates a water molecule for 386 

nucleophilic attack at the chorismate C2 carbon.100) MenH has an α/β-hydrolase fold 387 

with a catalytic triad comprising Ser86, His232, and Asp210.101) MenI (YdiI) belongs to 388 

the hotdog fold enzyme superfamily.102) The three-dimensional structures of MqnA103) 389 

and MqnD, and AFL deaminase (Nis0429) functioning in the futalosine-mediated MK 390 

pathway, have been solved.92) The structure of MqnA (DUF178) from Deinococcus 391 

radiodurans was originally solved as a domain of unknown function before being 392 

identified as MqnA.103) The structure of MqnD from Thermus thermophilus HB8 393 

comprises two alpha/beta domains, a large domain, and a small domain.104) The 394 

three-dimensional structure of MqnB from H. pylori has a Rossmann fold.93) The 395 

structures of AFL deaminase (Nis0429) from Nitratiruptor sp. and Dr0824 from D. 396 

radiodurans reveal that Ser145 interacts with the carboxylate moiety of the substrate.92) 397 

 398 

7. Phylloquinones (PhQs, vitamin K1) 399 

Phylloquinone (VK1; 2-methyl-3-phytyl-1,4-naphthoquinone) functions as an essential 400 

photosynthetic electron transporter in photosystem I, and was discovered by H. C. P. 401 

Dam in 1934 as a vitamin.105) Higher amounts are found in green leafy 402 

vegetables because it is directly involved in photosynthesis. Humans rely on PhQ uptake 403 

from vegetables as a precursor for the synthesis of MK4. PhQ is thought to be converted 404 

to MK4 by UBIAD in humans. Experiments performed on rodents showed that at least 405 

some of their tissues are able to convert PhQ to MK4. UBIAD mediates the conversion 406 

of PhQ into MK4, probably by cleaving the side chain of PhQ to generate 407 

2-methyl-1,4-naphthoquinone (menadione; VK3), then prenylating it with GGPP to form 408 

MK4.106) 409 
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The biosynthetic pathway of PhQ in cyanobacteria and plants is thought to 410 

resemble the MK pathway.2, 107) Four genes, menF, menD, menC, and menH, involved in 411 

PhQ biosynthesis in Arabidopsis, are fused at a single locus named PHYLLO.108) The 412 

structure of the MenI ortholog AtDHNAT1 (DHNA-CoA thioesterase) has been 413 

solved.109) O-succinylbenzoyl-coenzyme A (OSB-CoA) ligase (a MenE ortholog) 414 

encoded by aae14 is essential for PhQ synthesis.110) A MenG ortholog was identified as 415 

the methyltransferase catalyzing the last step of PhQ synthesis in Arabidopsis,111) and a 416 

MenB homolog has been identified in the Arabidopsis genome sequence. MenB, MenI, 417 

and MenG orthologs localize to the peroxisome,112) while PHYLLO, comprising MenF, 418 

MenD, MenC, and MenH orthologs, is localized to chloroplasts.108) 419 

Carboxy-1,4-naphthoquinone phytyltransferase (a MenA ortholog) is involved in PhQ 420 

synthesis chloroplasts.113) The phytyl moiety of PhQ is synthesized either by reduction 421 

of GGPP in de novo synthesis, or via the salvage pathway. Recent analysis of 422 

Arabidopsis vte6 encoding phytyl phosphate kinase revealed that it performs an 423 

essential role in PhQ synthesis.114) The entire biosynthetic pathway of PhQ in plants is 424 

still under investigation. 425 

  426 

8. Plastoquinones 427 

Plastoquinone (PQ; 2,3-dimethyl-1,4-benzoquinone), discovered in 1946,115) functions 428 

in the electron transport chain of oxygenic photosynthesis, and plays an indispensable 429 

role in plant growth and development. PQ is found in cyanobacteria and plants. PQ9 is 430 

distributed widely among organisms, while PQ8 is found in maize. In the biosynthesis of 431 

PQ in plants, tyrosine is converted to p-hydroxyphenylpyruvate (PHPP) by tyrosine 432 

aminotransferase (TAT).2) Homogentisate (HGA) is then synthesized from HPP by 433 

p-hydroxyphenylpyruvate dioxygenase (Fig. 9). The prenyl tail is synthesized 434 

independently from the head group by SPS1, and IPP for prenyl tail synthesis is supplied 435 

by the MEP pathway in chloroplasts. Condensation of HGA with the prenyl tail is 436 

catalyzed by homogentisate solanesyl transferase (HST).116) Finally, a methylation 437 
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reaction is catalyzed by methyl transferase (Vte3).117) The vte genes are required for 438 

vitamin E synthesis and perform some functions in PQ synthesis. The lipid-associated 439 

protein Fibrillin5 (FBN5), required for PQ synthesis, interacts with SPS1 and SPS2.118) 440 

Overexpression of SPS1 in Arabidopsis resulted in enhanced phototolerance.119)  441 

Similar to UQ, the biosynthesis of PQ differs in eukaryotes and prokaryotes. 442 

Chorismate lyase generates PHB in the synthesis of PQ in the cyanobacterium 443 

Synechocystis.120) PHB is prenylated by Slr0926, and decarboxylated by Slr1099 and 444 

Sll0936, then oxygenized and methylated to make PQ (Fig. 9). 445 

There are other forms of PQ with shorter side chains such as PQ3 and PQ4, as 446 

well as analogs such as PQ-B, and PQ-C, which differ in the modification pattern of their 447 

side chains.115) PQ-C contains hydroxyl group in the prenyl chain and PQ-B is a fatty acid 448 

ester form of PQ-C.115) 449 

  450 

9. Rhodoquinones 451 

Rhodoquinone (RQ; 2-methoxy-3-Amino-5-methyl-6-polyprenyl-1,4-benzoquinone) 452 

was discovered in the bacterium Rhodospirillum rubrum in 1965, and subsequently in 453 

other organisms such as Rhodoferax fermentansi,121) E. gracilis,122) C. elegans,33) 454 

planaria, parasitic helminths, snails, mussels, lungworms, and oysters. Anaerobically 455 

and aerobically grown E. gracilis cells contain similar total amounts of RQ and UQ, but 456 

RQ constitutes 43% and 28% of the pool under anaerobic and aerobic conditions, 457 

respectively.122) Helminth parasites can use fumarate as a terminal electron acceptor in 458 

the respiratory chain since they possess RQ-fumarate oxidoreductase. C. elegans 459 

produce both UQ9 and RQ9, and the relative amounts are thought to be of relevance to 460 

lifespan.123) Rhodoplanes serenus produces UQ10 and RQ10.124) As these examples 461 

demonstrate, organisms possessing RQ also have UQ, and UQ was shown to be 462 

required for the biosynthesis of RQ in R. rubrum. A novel gene named rquA was found 463 

in R. rubrum that is required only for RQ synthesis but not UQ synthesis.125) The 464 

biosynthesis of RQ is still not fully understood. 465 



 18 

 466 

10. Applications of prenylquinones 467 

UQ10 (coenzyme Q10) is popular as a food supplement and sold worldwide in both 468 

reduced and oxidized forms. The demand for skin care cosmetics and public awareness 469 

of the importance of antioxidants such as UQ10 has increased, and UQ10 is also used 470 

therapeutically in Alzheimer’s, Huntington’s, Parkinson’s, and cardiovascular 471 

diseases.47) As UQ10 is naturally produced in humans, and available from foods such as 472 

meat and fish, side effects are very rare. Taking statins to reduce the amount of 473 

cholesterol also lowers UQ10 levels, and so taking both simultaneously is 474 

recommended.47) The UQ10 commercial market is large, and UQ10 is purified from yeast 475 

or photosynthetic bacteria. Several native producers of UQ10 have been investigated to 476 

optimize UQ10 production. S. pombe, Sporidiobolus johnsonii, Rhodobacter 477 

sphaeroides, and Agrobacterium tumefaciens reportedly produce 1.0, 10.5, 8.7, and 4.5 478 

mg/g dry cell weight (DCW), respectively.126) However, because these amounts were 479 

measured by different groups using different methods, direct comparison is necessary to 480 

assess the efficiency of UQ10 production by these microorganisms. Attempts to produce 481 

UQ10 in rice and tobacco have proven successful,127, 128) and regulation of genetically 482 

modified organisms (GMOs) hampers the commercial production of UQ10 in rice.  483 

MK is also sold as a food supplement in the form of MK4 or MK7. MK7 is 484 

from B. subtilis, and MK4 is produced in animals. The Japanese food Natto, fermented 485 

by B. subtilis, contains MK7, and increases bone mineral density and reduces bone 486 

fractures. Humans do not biosynthesize MK, but it is utilized for blood coagulation, 487 

bone metabolism, and cell-cycle regulation. The major sources of MK in humans are the 488 

diet and gut flora. As MK is only synthesized in bacteria, inhibitors of MK synthesis are 489 

useful for inhibiting the growth of harmful bacteria such as methicillin-resistant 490 

Staphylococcus aureus (MRSA). Using this concept, analogs of each reaction step were 491 

synthesized and shown to be efficient inhibitors such as 7-methoxy naphthalene 492 
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derivatives, methyl 4-oxo-4-phenylbut-2-enoate, and lysocin E of MenA,129) MenB,130) 493 

and MenE, respectively.131)  494 

PhQ (VK1) is used as a vitamin supplement since mammals are not able to 495 

synthesize it, and must obtain it from their diet. PhQ is as a cofactor for coagulation 496 

factors II, VII, IX, and X, required for the formation of anticoagulant factors protein C 497 

and S, and for bone protein formation. PhQ is commonly used to treat warfarin toxicity. 498 

PQ itself is not a commercially useful product, but derivatives such as 499 

plastoquinonyl-decyl-triphenylphophonium (SkQ1) and its methylated derivative SkQ3 500 

are under consideration for usage as antioxidants. Mitochondrial-targeted SkQ1 is 501 

currently under clinical trial for glaucoma treatment and prevention of dry eye.132)  502 

RQ is only found in a limited number of organisms that are not used for food, 503 

and applications for RQ have not been reported. 504 

 505 

11. Concluding remarks 506 

There are a wide variety of prenylquinones in nature, but their synthesis is not fully 507 

understood. In this review, the biosynthesis of prenylquinones was summarized, with 508 

emphasis on UQ, MK, PhQ, PQ, and RQ. Extensive studies have uncovered in detail 509 

MEP and MVA biosynthetic pathways that lead to the synthesis of IPP and DMAPP. 510 

Enzymes condensing IPP with DMAPP to produce polyprenyl diphosphate have been 511 

particularly well studied. While the synthesis of the isoprenoid side chain is relatively 512 

well characterized, many aspects of the modification of prenylquinones remain obscure. 513 

UQ synthesis in bacteria is quite well defined, but our knowledge of UQ synthesis in 514 

eukaryotes is incomplete. Classical MK synthesis is mostly understood, but the novel 515 

MK pathway mediated by futalosine is vague in comparison. Many three-dimensional 516 

structures related to UQ and MK synthesis have been solved, but some reactions in PhQ 517 

synthesis remain undefined. Furthermore, exactly how RQ is synthesized after UQ 518 

remains to be solved. Bioinformatics and genomics approaches are proving useful for 519 

predicting the biosynthetic pathways of these prenylquinones, but details of such work 520 
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fall beyond the scope of this review. Nevertheless, this summary of recent progress on 521 

the biosynthesis of prenylquinones should prove useful, and will likely accelerate the 522 

characterization of unknown reactions and enzymes.  523 
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Figure legends 1001 

Figure 1. Distribution of four major prenylquinones in different organisms 1002 

Ubiquinone (UQ) is present in almost all living organisms from bacteria to higher 1003 

eukaryotes. Menaquinone (MK) is distributed in bacteria and archaea, and therefore 1004 

considered the oldest type of prenylquinone, first synthesized in primitive living 1005 

organisms. Plastoquinone (PQ) occurs in cyanobacteria, and was presumably 1006 

subsequently transferred to plants. Rhodoquinone (RQ) is the most recently evolved 1007 

quinone, and is synthesized from UQ.  1008 

 1009 

Figure 2. The mevalonate (MVA) pathway in Saccharomyces cerevisiae 1010 

The MVA pathway consists of seven enzyme-catalyzed reactions. The first step is the 1011 

formation of acetoacetyl-CoA from two acetyl-CoA molecules by Erg10 (acetyl-CoA 1012 

acetyl transferase). Subsequently, Erg13 (HMG-CoA synthase), Hmg1/Hmg2 1013 

(HMG-CoA reductase), Erg12 (mevalonate kinase), Erg8 (phosphomevalonate kinase), 1014 

and Erg19 (diphosphomevalonate decarboxylase) lead to the production of isopentenyl 1015 

pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Idi1 isomerizes 1016 

between IPP and DMAPP. 1017 

 1018 

Figure 3. The 2C-methyl-D-erythritol-4-phosphate (MEP) pathway in Escherichia coli 1019 

The MEP pathway consists of eight enzyme-catalyzed reactions. The first step is the 1020 

condensation of pyruvate and glyceraldehyde-3-phosphate to form 1021 

1-deoxy-D-xylulose-5-phosphate by Dxs (DXP synthase). Subsequent steps catalyzed 1022 

by IspC (DXP reductoisomerase), IspD (MEP cytidyltransferase), IspE (CDP-ME 1023 

kinase), IspF (MECDP synthase), IspG (4-hydroxy-3-methylbut-2-enyl diphosphate 1024 

synthase), and IspH (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) lead to the 1025 

production of IPP and DMAPP. 1026 

 1027 

Figure 4. Biosynthetic pathway of the isoprenoid tail of prenylquinones 1028 
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Polyprenyl diphosphate synthase synthesizes trans-polyprenyl diphosphate of a certain 1029 

length. S. cerevisiae Coq1 (hexaprenyl diphosphate synthase) forms products from six 1030 

isoprene units, E. coli IspB (octaprenyl diphosphate synthase) synthesizes products with 1031 

eight isoprene units, Arabidopsis SPS1, SPS2, and SPS3 (solanesyl diphosphate 1032 

synthase) generate products with nine isoprene units, and human and 1033 

Schizosaccharomyces pombe decaprenyl diphosphate synthase (DPS; a heteromer of 1034 

PDSS1 and PDSS2 or Dps1 and Dlp1, respectively) catalyzes the formation of products 1035 

with ten isoprene units. S. cerevisiae Coq2 (PHB-hexaprenyl diphosphate transferase), 1036 

E. coli UbiA (PHB-octaprenyl diphosphate transferase), and human COQ2 1037 

(PHB-decaprenyl diphosphate transferase) or S. pombe Ppt1 (Coq2; PHB-decaprenyl 1038 

diphosphate transferase) condense p-hydroxybenzoate (PHB) with trans-polyprenyl 1039 

diphosphate to form UQ6, UQ8, and UQ10, respectively. MenA prenylates DHNA, and 1040 

homogentisate solanesyl transferase (HST) prenylates homogentisate (HGA). DPP, 1041 

decaprenyl diphosphate; HexPP, hexaprenyl diphosphate; NPP, nonaprenyl 1042 

diphosphate; OPP, octaprenyl diphosphate. 1043 

 1044 

Figure 5. Overview of the proposed UQ biosynthetic pathway 1045 

The UQ biosynthetic pathways of E. coli and S. cerevisiae are shown. In E. coli, PHB is 1046 

first condensed with trans-polyprenyl diphosphate, and the ring structure is then 1047 

modified. Decarboxylation catalyzed by UbiD (3-octaprenyl-4-hydroxybenzoate 1048 

decarboxylase) and UbiX (flavin prenyl transferase) follows. The ring is further 1049 

hydroxylated by UbiI (2-octaprenylphenol hydroxylase), O-methylated by UbiG 1050 

(2-octaprenyl-6-hydroxy phenol methylase), hydroxylated by UbiH 1051 

(2-octaprenyl-6-methoxyphenol hydroxylase), C-methylated by UbiE 1052 

(2-octaprenyl-6-methoxy-1,4-benzoquinone methylase), hydroxylated by UbiF 1053 

(2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone oxygenase), and O-methylated by 1054 

UbiG (3-demethylubiquinone 3-methyltransferase). In S. cerevisiae, para-amino 1055 

benzoic acid (pABA) and PHB are used for UQ synthesis. The first ring is modified via 1056 
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hydroxylation by Coq6 (PHB-2-hexaprenyl hydroxylase), followed by O-methylation 1057 

by Coq3 (2-hexaprenyl-6-hydroxy phenol methyltransferase). After decarboxylation and 1058 

hydroxylation steps, the ring is further modified via C-methylation by Coq5 1059 

(2-hexaprenyl-6-methoxy-1,4-benzoquinone methyltransferase), a final hydroxylation 1060 

by Coq7 (2-hexaprenyl-3-methyl-6-methoxy-1,4-benzoquinone oxygenase), and 1061 

O-methylation by Coq3. H. sapiens contains similar enzymes with S. cerevisiae except 1062 

PDSS1 an PDSS2.70)  1063 

 1064 

Figure 6. Menaquinone biosynthesis in E. coli 1065 

The biosynthesis of menaquinone in E. coli starts from the conversion of chorismate to 1066 

isochorismate by MenF. Subsequently, MK is synthesized by MenD 1067 

(succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase), MenH 1068 

(2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase), MenC 1069 

(O-succinylbenzoate synthase), MenE (O-succinylbenzoic acid-CoA ligase), MenB 1070 

(naphthoate synthase), MenI (DHNA-CoA thioesterase), MenA 1071 

(1,4-dihydroxy-2-naphthoate octaprenyltransferase), and MenG (UbiE). *MenJ 1072 

functions as a reductase of the side chain in Mycobacterium tuberculosis. 1073 

 1074 

Figure 7. Novel pathway of menaquinone synthesis via futalosine 1075 

A novel menaquinone biosynthesis pathway was originally discovered in Streptomyces 1076 

coelicolor, in which 1,4-dihydroxy-6-naphthoate is synthesized by MqnA (chorismate 1077 

dehydratase), MqnD (1,4-dihydroxy-6-naphthoate synthase), MqnE (aminofutalosine 1078 

synthase), AFL deaminase, MqnB (futalosine hydrolase), and MqnC (dehypoxanthine 1079 

futalosine cyclase). MK synthesis from 1,4-dihydroxy-6-naphthoate is still not clearly 1080 

understood, but a prenylation step catalyzed by MqnP has been proposed.  1081 

 1082 

Figure 8. Crystal structures of menaquinone biosynthetic enzymes 1083 
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(A) MenF from E. coli (PDB ID: 2EUA). (B) MenC from E. coli (PDB ID: 1FHU). (C) 1084 

MenB from E. coli (PDB ID: 3T89). (D) MenD from E. coli (PDB ID: 3HWX). (F) 1085 

MenE from E. coli (PDB ID: 5C5H). (G) MenH from E. coli (PDB ID: 4GDM). (H) 1086 

MenI from E. coli (PDB ID: 4K4B). (I) MqnA from Deinococcus radiodurans (PDB 1087 

ID: 216E). (J) MqnD from Thermus thermophilus HBB (PDB ID: 3A3U). (K) MqnB 1088 

from Helicobacter pylori (PDB ID: 4BMX). 1089 

 1090 

Figure 9. The biosynthesis of plastoquinone 1091 

In plants, tyrosine is converted to p-hydroxyphenylpyruvate (PHPP) by TAT (tyrosine 1092 

amino transferase), and the product is oxidized to HGA by HPPD 1093 

(p-hydroxyphenylpyruvate dioxygenase). HGA is prenylated by HST (homogentisate 1094 

prenyltransferase), and methylated by VTE3 (MSBQ methyltransferase) to yield PQ. In 1095 

Synechocystis, PHB is used as a quinone backbone, and after prenylation of PHB by 1096 

Slr0926, decarboxylation, oxidation, and methylation take place. 1097 

 1098 
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