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S I . IEatroductiorD. A senugroup S is called inversive if it satisfies the following 

( I ) S has an idempotellt, and the totality I of idempotents of S is a subband of S.2) 

(C) (2) For any element x of S, there exists an element x* such that xx* = X*x and 

xx*x = X. 

In this case, for any element x of S there exists one and only one element y such that 

xy = yx, xyx = X and yxy =y. In fact, Iet y = XX*x*xx*. 

Then, we have 

xy = x(xx*x*xx*) = xx* 

yx = (xx*x*xx*)x=xx* 

xyx = x(xx*x*xx*)X = x 

and yxy= (xx*x*xx*)x(xx*x*xx*)=xx*x*xx* y 
Next, suppose that there exist yl and y2 such that xyl = ylx, xylX=x, ylxyl = yl, xy2 = y2X, 

xy2x=x and y2xy2 = y2･ Since xylX = x and xy~X=X, we have xyi = Xy2xyi = y2Xylx=y2X = 

xy2･ Hence, yl = yiXyi = y~xyi = y~xy2 = y2 
Such a y is called the ,'elative invense of x, and denoted by x~i. Now, Iet S(e) = {x : xx 1

 

= e} for each element e of I. Then, it is easy to see that each S(e) is a subgroup of S and 

S is the class sum (i.e. the disjoint sum) of all S(e) (A.H. Clifford C1) has shown that a 

semigroup satisfying the condition (2) of (C), which is called a semigroup admitting relative 

inverses, is the class sum of subgroups). Therefore, inversive semigroups are not too far 

away from groups. Actually, as a special case, the author has proved in C6) that if I is a 

rectangular band then all S(e) are isomorphic to each other and S is isomorphic to the 

direct product of S(e) and I (an inversive semigroup in which the totality of idempotents 

is a rectangular subband is called an (R)-inversive semigroup). Further, in this case S satisfies 

the following (C.1) : 

(C.1) If xx~1 e and if f is an idempotent such that fze (i.e. fe=ef=f), then fx=xf. 

By a strictly inversive semigroup, we shall mean an inversive semigroup satisfying the con-

dition (C.1). As is stated above, an (R)-inversive semigroup is strictly inversive. More 

generally, rt Is easy to see that a semigroup M which is isomorphic to the direct product 

of a group and a band (hereafter, we shall call such a semigroup M a B-group) is strictly 

inversive. However, the converse is not true. 

That is, 

an inversive semigroup is not necessarily a B-group, even if it is strictly inversive. 

In fact, this can be seen from the following example : Consid~r the semigroup K defined 

by the following multiplication table 

1) An abstract of this paper has appeared in Proc. Japan Acad., 39, 100 106 (1963) 

2) A semigroup in which every element is an idempotent is called a band 
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It is easy to see that K is strictly inversive . 

However, K Is not a B-group, smce K consrsts 

of 7 elements and is nerther a group nor a 

band. 

From the above-mentioned result, it follows 

that the class of B-groups is properly contained 

in the class of stnctly inversive semigroups 

The main purpose of this paper is to present 

a structure theorem for strictly inversive semi-

groups, and sorne relevant matters. Particularly, 

in S 5 we shall also present necessary and suffi-

cient conditions for an inversive semigroup to be 

product of a group and a band 

S 2. The structure of strictly inversive 
If there exist a band ~ and a collection {G* : a ~~} 

that 

(i) G=U {G* : a~~} , 

(il) GpnGr = c for p~0f 
(lii) G p GrcG~r' and 

then we shall say that G is a band ~ of semigroups 

ing results follow from the papers C 1),C2) of A.H. 

( I ) A semigroup admitting relative inverses is a 

groups without zero. 

( 11 ) A semigroup G admitting relative inverses is 

Gba2 and abG = a2bG for any elements a,b of 

Next, we shall define some special inversive 

and I the subband consisting of all idempotents of S 

right normal, commutative, rectangular, Ieft singular, 

it satisfies the following corresponding identity 

(N) xyzw=xzyw, (L.N) xyz=xzy, (R.N) xyz=yxz, 
xy=x, (R.S) xy=y or (T) X=y. 

Moreover, S is said to be (N)-inversive, (L.N)-inversive, 

inversive, (L.S) -inversive, (R.S)-inversive or 

mentioned corresponding identity (N), (L.N), (R.N), 

Remark. A band is of course an inversive 

one of the above-mentioned identities has 

N. Klmura C3) and N. Kimura and the author C5) . 

mversrve senugroup rs a group and a trivial inversive 

Under these definitions we have th.e following 

above-mentioned result ( I '). 

Theorem I . An inversive semigroup S is expressible as a 

groups. That is, there exist a semilattice r and a collection 

semigroups such that 

a b C d e f 9

a a b C d e f 9

b b C a e f d 9

C C a b f d e 9

d a b C d e f 9

e b C a e f d 9

f C a b f d e 9

9 9 9 9 9 9 9 9
isomorphic to some special subdirect 

semigroups. Let G be a semigroup. 
of subsemigroups of type ~_ such 

G* of type ~:. In this sense, the follow-

Cliff ord: 

semilattice of completely simple semi-

a band of groups if and only if Gba= 

G. 

senugroups. Let S be an mversrve semigroup. 

Then, S is called norlnal, Ieft normal, 

right singular or trivial respectively, if 

(C) xy yx (R) xyz=xz, (L.S) 

(R.N)-inversive. (C)-inversive, (R)-

(T)-inversive respectively, if I satisfies the above-

(C.), (R), (L.S), (R.S) or (T). 

senugroup. The structure of bands satisfying 

been completely determined by the author C6) . 

Further, it is also clear that any (T)-

semlgroup Is a trrvlal band. 

theoren], which is a special case of the 

semilattice of (R)-invensive seln i-

(Sr : Of~r} of (R)-inversive s ub-
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(i) S=U{Sr :7Er}, 
(ii) S*nSp=cfor a~p 

and (iii) S*SpclS*p. 
Further, r is determined uniquel.v up to isoinorphism, and accordingly so are the S r ' 

Proof. From the above-mentioned result ( I ) of A.H. Clifford, an inversive semigroup 

S rs a semilattice r of completely simple semigroups without zero ; that is, 

(i) S=U{Sr:OfEF}, 
(A) (il) S* n Sfi = c for a~p 

and (lii) S*SpcS*p, 

where each S?. is a completely simple semigroup without zero. 

Let Er be the totality of idempotents of S?.. Then, E?. is a subband of Sr' Now, Iet e,f be 

two elements of Er' Since Sr is completely simple, efee = eefe = efe implies efe = e. Hence 

Er rs rectangular. According to A.H. Clifford C I ) , a completely simple semigroup without 

zero rs a senugroup admrtting relative inverses. Therefore, S?. is an (R)-inversive semigroup, 

and hence S is a semilattice r of (R)-inversive semigroups 

Next, suppose that there exists another decomposition of S into a semilattice of (R)-inversive 

senugroups, say 

(i) S=U {s*~ : ~Er*}, 

(B) (il) S~ n S*.=c for ~~7 
and (iii) S*~ S**c:S*~., 

where each S*~ is an (R)-inversive semigroup and r* is a semilattice. 

Let E*~ be the totality of idempotents of S*~. Then, E*~ is a rectangular subband of S*~. 

Let I be the subband of idempotents of S. 

Then 
(i) I=U{Er:OrEr}, 
(il) E* n E~=c for a~p, 
(iii) - E*Ep cl E~p 

an d 

(i) I=U{E*~:~Er*}, 
(ii) E*c n E*.=c for ~~T, 

(iii) E*~ E**cE*~.. 

are semilattice decompositions of I into rectangular bands. According to D. MacLean C4) , 

such a decomposition of I is unique. Therefore, we can assume that r = r* and E7' = E*r 

for each lr e~ r. Now, smce two decompositions (A) and (B) are different, there exists ce E r 

such that S*~ S**. Hence, there exists p E r(p~a) such that S** n S~~c or S* n s*~~c 

If S** n sp~)x, then x-1ES** n S~. Hence, xx-1~S**nSfi, and hence XX-1EE* n Efi' 

Similarly, S* n s*p~c implies E* n Ep~c･ This is a contradiction. Hence, such a decomp-

osition of S Is umque. 

Now, for a strictly inversive semigroup we have 

Lemma I . If aa-1=e and bb-1 =f, then (ab)-1=eb-1a-If and (ab) (ab)-1 = ef 

Proof. Let a,b be any elements of a strictly inversive semigroup. Let aa- I = e and bb-i = f. 

Then, 

abeb-1a-If = abfef b- Ia~If = afef bb- Ia- If = aefefea-If = efef eaa-If = efef ef = ef , 
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eb- Ia- If ab = eb- Ia- Iefeab = eb - Ia- Iaefeb = eb- Ifef ef b = eb- Ibfefef = efefef = ef , 

eb-la-ifef =eb-1a-1efef =eb-1a-1ef =eb-1a-If, 

ef eb- Ia- If = ef ef b- Ia- if = ef b- Ia- If = eb- Ia- If , 

abef = abfef = afef b = aef ef b = aefb = ab 

and efab = efeab = aefeb = aefefb = aefb = ab. 

Thus, (ab)-1=eb-1a-If and (ab)(ab)-1=ef. 

Using this lemma, we:* obtam the following the orem as a special case of the above-

mentioned result ( Il ) . 

Theorem 2. Let S be an inversive semigroup, and I the subband consisting of all idempotents 

of S. Then. S is expressible as a band of groups if and only if S is strictly inversive. Further, 

in this case such a decomposition is uniquely determined, and it is the decomposition such that 

(i) S=U {S(e) : e~I} , 

(li) S(f) n S(h) =c for f~h 

and (iii) S(f)S(h) c] S(fh), 

where S(e) = {x : xx~i=e} for every e (EI. 

Proof. Let S be strictly inversive. The relations (i),(ii) of the theorem are obvlous 

Next, we prove the relation (iii). Let x,y be elements of S(f) and S(h) respectively. Then 

xx-1 = f and yy-1=h. By Lemma 1, (xy)(xy)-1 = fh. Hence, xyES(fh). Thus, S is expressible 

as a band of groups. 

Conversely, suppose that S is expressible as a band of groups 

(i) S=U {G* :cr~B}, 

(ii) Gp n Gr =c for ~~~r 

and (ili) GpGrCGpr' 
where B is a band and each G* is a group. 

Let e,f bc idempotents such that f~e. Let x be an element such that xx-1=e. There exist 

G6, G~ such that G6 ~)e and G~ ~f. It is clear that x and x-1 are also contained in G6-

Since ef=fe=f, we have xfEG~ and fx~G~. Since the identity element of G ~ is f, we 

obtain xf = fxf = fx. The; uniqueness of such a decomposition is obvious. 

We shall call r in Theorem I the structure semilattice of S and S r the v-kernel of S. 

Also in this case we write S-~ {Sr : ~/ ~ rj, and call it the struclure decomposition of S.3) 

Remark. If S is an inversive semigroup, then the subband I of all idempotents of 

S is also inversive. In this case, it is easy to see that S and I have the same structure semi-

lattice. Next, we have 

Lemma 2. A (N)-inversive semigroup is strictly inversive 

Let x be an element of S(e), and f an element snch that f~e, where e,f are Proof . 

idempotents. Puttmg fx(fx)~1=u and xf(xf)-i=V, we have fu=u, ue=eu=u, vf=V and 

ev= Ve=V. 
Now, fx = fxu = fxefue = fxeufe = fxf and xf = VXf = evfexf = efvexf = fxf. Hence, xf = fx. 

In particular a (C)-inversive semigroup is strictly inversive, because a semilattice satisfies~ 

normality. Therefore, by Theorem 2 a (C)-inversive semigroup is expressible as a band of 

grou ps. 

Further, for (C)-inversive semigroups Theorem 2 is sharpened as follows 

3) In particular, for the structure decomposition of a band see also N. Kimura C3) 
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Theorem 3 . (A.H. Clifford). A semigroup is expressible as a semilattice of groups if and 

only if it is (C)-inversive. 

Proof. Let S be a senugroup and I the totality of idempotents of S 

The 'only if' part : Suppose that S is expressibe as a semilattice of groups ; 

that is 

(i) S=U {Sr :7Er}, 
(il) S* n sp = c for c~~p, 

(iii) S*Sfi cl S~p, 

where each Sr is a group and r is a semilattice. 

Let er be the identity element of Sr ' Then, I = {eT:Or~r} . Take two elements e*, ep of 

I. Clearly, e*ep ~ S*fi' Now, e*e~fie*e*p = e*e*e*p = e*e*fi' Hence, e*e*p rs an idempotent of 

S*p, and hence e*e*p = e*p. Similarly, epe*fi = e*p. Now e*ep e*eBe*p e*p Further e*ep 

e*p = ep* = epe* . Therefore, I is a semilattice. Since S is the class sum of groups and I is a 

band it is clear that S is invers ive 

The 'if' part Suppose that S Is (C) mversrve Since a (C)-inversive semigroup is (N)-

inversive, by Lemma 2 S is strictly inversive. Hence, by Theorem 2 S is expressible as a band 

of groups. Thus S is expressible as a semilattice of groups since I is a semilattice. 

Let r be a given semilattice and Sr be, for each lr ~ r, a given group. Let S be the class 

sum of all Sr' 

Consider the semigroup S(･) which consists of all elements of S and in which a multiplication 

<) is defined such that 

(1) for any ofEr, Sr rs a subsenugroup of S(･); ar'bT arbr for any elements 

(M) ar'br ~ Sr , 
(2) for any a,p~r, S^･SpcS~p. 

Such a semigroup S(*) is called a compound semigroup of {Sr:~f~r} by r. The. author 

C7] has shown that there exists at least one compound semigroup of '*:Sr:~/Er} by r for 

any grven semilattice r and any given collection {Sr : Or eE r} of groups Sr' From Theorem 

3 , it follows that the problem of constructing all possible (C)-inversive semigroups is reduced 

to the problem of finding all possible compound semigroups of {S T : ~f E r), by r for a given 

semilattice r and a given collection {ST:~/Er} of groups Sr' This problem was completely 

'solved by A.H. Clifford C1) and the author C7) .4) 

4) Let {M~ : ~ ~L} be a disjoint family of non-empty sets with a semilattice L as its index set. For any 

pair (8,~, where 8>~, consider a mapping 8~ : M e-Mg. Then a family (~) = {8~ : e>~, 8,~EL} is 
called a nornlal family on the family (of sets) {M~ : ~ E L} , if it satisfies the following two conditions 

(1) 8~ is the identity mapping for all e~L 

(2) 8~ ~~=8~ for 8~~~>7. 

Now, Iet {S. :IfEr} be a disjoint farDily of groups (commutative groups) with a semilattice r as its 

index set. Take a homomorphism ~~ : S*-Se, for each pair (a,/3) of a,~Er such that a~p. If the 

family {~e: a~~p, Gc,pEr} of all 9'e rs a normal faraily on the family {S Y :VEr} , then such a 

system {~~:a>p, a,p~r} is called a transitive system of homomorphisms induced by {SY : If ~ r} 

A .H. Clifford C I ~ and the author C7) have proved the following theorem: 

Theorem. Every conlpound senligroup (commutative compound semigroup) S ( ･) (where S = U 
{SY:7e~r} of {SY: OreEr; by r isfound asfollows. Let {~~: a>p, cr,pEr} be a transitive system 

of homomorphisms induced by {SY : V ~E r} . Then S becomes a coinpound semigroup (commutative 

compound semigroup) of {Sy : 7+-._- r} by r if multiplication ･ therein is defined by the following 

(P) a･b=9)~e(a)~*~(b) for a(3S*, b~ESe-
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Next, we .shall introduce a special kind of subdirect product,5) which is called the spined 

product. 

Let S1, S~ bc mversrve semigroups havmg r as their structure semilattices, and Sl-2 

{s~ : 7 ~ r} and S2-~ (Sr2 : 7~r} be the structure decompositions of Sl and S2･ Then, 

the set S = U {S~ x S~ : Of E r} becomes a subdlfect product of Sl and S2･ Such an S is 

called the splned product of Si and S_Q with respect to r, and denoted by SIMS2 (r). 

We sometimes omrt (r), if there rs no confusron. 

Under this definition, we have the following main theorem. 

Theorem 4. (Structure theorem) Let S be a strictly inversive selnigroup having r as its 

structure semilattice. Let I be the subband consisting of all idempotents of S. Then, S is 

isomorphic to CMI (r) for some ( C)-inversive semigroup C having r as its structure semt-

lattice. Conversely, if C and I are a ( C)-inversive semigroup and a band having r as their 

structure semilattices, then C~<II (r) is a strictly inversive semigroup. In other words, a 

semigroup is isomorphic to the spined product of a (C)-inversive semigroup and a bard if and 

only if it is strictly inversive. 

Proof. The first half of the theorem : Let S be a stnctly inversive semigroup and S -2 

{Sr : ~r I~ r} its structure deoomposition. Let I be the subband consisting of all idempotents 

of S. Let ET be the totality of all idempotents of Sr ' The structure decomposition of I is 

clea,rly I-~ ,[ET : ~/ E r} . 

Now, we introduce a relation R in S as follows : 

x R y if and only if x,y (ESr for some ~(eEr and xy~1~Er' 

The.n, R is a congruence on S. In fact, it is proved as follows. 

( I ) x R x for any x ~S. Obvious from the fact that each Sr is (R)-inversive. 

(2) x R y implies y R x. Since x R y, there exists ST such that x,y e~ Sr and xy~i~Er' 

Let xx-1=e, yy~1=f and xy-1=h. Then, eyx-if=(xy-i)-1=h. Hence, fefyx-1efe=fhe= 

fe(EEr' Thus, yx-1F_ET. Hence, y R x. 

(3) x R y, y R z implies x R z. Since x R y a,nd y R z, t,here exists Sr such that x,y,z~Sr 

and xy-1, yz~iEEr' Now, Iet xx-1=e, yy~1=f and zz~1=h. 

Then, 
xy- Iyz~ I = xfz~ I = xefhz~ i = Xehz~ i = Xz~ i. 

Since xy~iyz~1EET, we have xz~1~:ET. 

,(4) x R y implies cx R cy and xc R yc fbr any c F_ S. Since x R y, there exists S* such 

that x,y ~ S* and xy~1EE*. Let c be an element of S. Then, c is contained in some kernel 

Of S, say Sp. It Is clear that cx, cy are elements of Sp*. Let xx-1=e, yy~1=f, cc~1=h 

~and xy~1=k. 

Then, 

cx(cy)-1 = cxhy~1c-If = cxehfefy-ic~ If = cehfexfy~ic~If = cehfexy~1c~If 

= chehf khc~ If = (he)(hfk)(hf ) ~~ E*p. 

Hence, cx R cy. Similarly, we can prove the relation xc R yc. 

~Consequently, R is a congruence on S. Therefore, we can consider the factor semigroup S/R 

of S mod R. We denote the congruence class containing x by x, and put {xT: XT E ST} = Gr' 

Then, it is easy to see: that each Gr' 7 ~ r, is a group. Let x*, xp be elements of G* and 

5) For definrtron of a subdirect product see G Brrkhoff Lattrce Theory, p. 91 
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Gp respectively. Clearly, ~. ~: =~' ~-p x~xp. Since x^xpcES*p, x*xp is an element of G*p. There-

fore, G*Gfi c G*fi' This means that S/R is the semilattice r of the groups GT ; i.e. S/R-

S {Gr ;7 E r} . 

Next, consider the spined product S/R><II (r); i.e. 

S/R><II (r)= U {GrXEr: Qf~Er}. 

Define a mapping ~) of S into S/R~il (r) as follows 

9)(x)=(x, xx~1), x~S. 

Then, it is easily proved that ~) is an isomorphism of S onto S/R~II (r). The second half 

of the theorem: Let C and I be a (C)-inversive semigroup and a band having r as their 

structure semilattices. Since both C and I are strictly inversive, C >( I is also strictly inversive 

and C~II ( r) is inversive. Since any inversive subsemigroup of a strictly inversive semigroup 

rs stnctly inversive and since CM;1 (r) is an inversive subsemigroup of C x I, CMI (r) is 

also strictly inversive. 

From Theorem 4, the problem of determining the structure of strictly inversive semigroups 

Is reduced to the problems of determining the structures of (C)-inversive semigroups and 

bal~:ds. As stated above, the formar was completely solved by Theorem 3, A.H. Clifford C1) 

and the author C7] . The latter was also partially solved by several papers. Particularly, the 

structure of normal bands (hence, of course, the structure of left normal, right normal, 

rectangular, commutative, Ieft singular, right singular or trivial bands) was completely dete-

rmined by the author C6) , N. Kimura C3) and the author and N. Kimura C5) . 6) 

S 3. Applications for (N)-inversive senaignoups. Since a P-inversive semigroup, 

where P is (N), (L.N), (R.N), (C), (R), (L.S), (R.S) or (T), is (N)-inversive and since 

any (N)-inversive semigroup is strictly inversive, we have the following corollaries for P-

inversive semigroups as special cases of Theorem 4. 

Corollary I . A semigroup is isomorphic to the spined product of a ( C)-inversive semigroup 

and a normal (left normal, right normal) band if and only if it is (N)-((L.N)-, (R.N.)-) 

in versive. 

Proof . Obvious . 

Corollary 2. A semigroup is isomorphic to the direct product of a group and a rectangular 

(left singular, right singular) band if and only if it is (R)-((L.S)-, (R.S)-) inversive (see 

also the author C6) ). 

Proof. The 'only if' part of the corollary is clear. 

The 'if' part of the corollary Let S be an (R) ((L S) (R S) ) mversrve semlgroup, and 

I the subband consisting of all idempotents of S. Then, each of the structure semilattices; 

6) N. Kimura and the author C5) has proved the following two theorems 

Theorem. Let r be a semilattice, Iet {SY: ~r~r} be a disjoint family ofnon-empty sets with r as its index 

set, and let S= U {SY : O(~r} . Let (~) ={9)p : a>p, a,~~r} be a normal family of mappings on the 

family {Sy : 7 I~ r}･ Then S becomes a left (right) normal band whose structure decomposition is S-~ 

{SY:7 (~ r} under the multiplication defined by 

ab=9)~p(a) (ab ~fip (b)) 

for a F_Sa, b~Sp. 

Further every left (right) norma/ band is constructed by this way. 

Theorem. A band is nornlal if and only if it is isomorphic to the spindproduct of a left normal band and a 

right normal band. 
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of S and I consists of a single element. Hence S/R in the proof of Theorem 4 is a group. 

and S/R><ll= S/R x I. 

Corollary 3 . A seinigroup is isomorphic to tll.e spined product of a commutative invefsive' 

seinigroup and a norma/ (left normal, right normal) band if and only if it is normal (left 

normal, right normal) inversive seinigroup. 

Proof. The 'only if' part of the corollary is clear. 

Let S be a normal inversive semigroup. To prove the 'if' part, we need only to show that 

S/R in the proof of Theorem 4 is commutative. Let x,y be elements of S/R. ,Let xx~i=e 

and yy~1=f. Then, xy(yx)-1=xyfx~1y~1e=Xx~tyy~1e =efe by the normality of S. Hence 

xy=yx, i.e. xy = yx. Thus. S/R is commutative 

Relnark. For construction of commutative inversive semigroups, see the author C7) ,4) 

for that of normal, Ieft normal or right normal bands, see N. Kimura and the author C5) .6) 

Corollary 4. A rectangular (left singular, right singular) inversive semigroup is a rectangular 

(left singular, right singular) band. 

S 4. Group=semilattices. Let G be a group, and r a semilattice. Let {Gr:7Er} bc 

a collection of subgroups Gr Of G such that 

(1) G=U{GT:~/Er} 
and (2) G*[DGp for cc~~. 

Let S = 2 Gr' where S denotes the class sum of sets. If x E G is an element of G then r' 

7Er 
we denote x by (x,1r) when we regard x as an element of Gr m S. Now, S becomes a 

semigroup under the multiplication o defined by the followmg 

(M)* (x,oc)o(y,p) = (xy,cep). 

That is, S is compound semigroup of {Gr : ~/ E r} by r, and accordingly a (C)-inversive 

semigroup. We shall call such an S a group-semilattice of G, and denote rt by {Grlr, G} . 

Moreover, in this case we shall call G the basic group of S. Now, Iet I be a band whose 

structure decomposition is I-~ {Ir : ~f ~ r} . Then, we can consider the. spined product of S; 

and I with respect to r, because S and I have the same structure semilattice r. 

As a connection between subdirect products of G and I and the spmed product of S and 

I, we have 

Theorem 5. The spined product of a group-semilattice of G and a band I is isomorphic to 

an inversive subdirect product of G and 1.7) Conversely, any inversive subdirect product of a 

group G and a band I is isomorphic to the spined product of a group-semilattice of G and I. 

Proof. Let S bc an mversive subdirect product of a group G and a band I. Let I-~ {Er : 

7Er} be the structure decomposrtion of I. Let S(Er)= {x: xEG, eeE_Er' (x,e)eES} . Then. 

S(Er) is a subgroup of G and the structure decomposrtion of S is S-2{S(Er)xE7' : 

'yl~r} . Now, Iet a,~ be elements of r such that (x~~. Take an element of S(Ep), say x. 

Then, (x,e)ES(Ep)xEp for each eEEp. For (1,f)~S(E*)xEr' we have (1,f) (x,e)= 

(x,fe) ES(E*)xE*. Hence, x~S(E*). This implies S(Ep)cS(E*). Accordingly, S is 
isomorphtc to the spined product of the group-semilattice {S(Er ) I r, G} and the band I. 

Conversely, Iet S be the spined product of a group-semilattice {Sr I r, G} and a band I. 

Let I-2{Er : ~f ~ r} be the structure decomposition of I. Then, S is clearly inversive and 

7) Let D be a subdirect product of G and I. Then, D is clearly a semigroup. If D is an inversive 

semigroup, then D is called an inversive subdirect product of G and I 
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the structure decomposition of S is S-2{Sr X Er: OfEr} . Since Sr x ErCGXEr for every 

~I~r if we regard every element of Sr as an element of G, we have ~ Sr x Er CGxl. 

7~r Hence, S Is isomorphic to an inversive subdirect product of the group G and a band I. 

Corollary 5. An inversive semigroup is isomorphic to a subdirect product of a group G and 

a band I if and only if it is isomorphic to the spined product of a group-semilattice of G and I. 

Proof . Obvious from Theorem 5. 

Let G be a group, and I a band whose structure decomposition is I-~ {Ir Remark. 
V ~E r} . Then, the direct product of G and I is isomorphic to the spined product of ･fGr J r,G} 

and I, where Gr=G for all 7, and vice versa. 

By Theorem 5 and its remark, the counection betwesn direct products, subdirect products 

and spined products is somewhat clarified. These results will be used in the next paragraph. 

S 5. Necessary and sufficient conditions for an inversive senaigroup to be 

isomorphic to the spined product of a group-semilattice and a band. 
The followrng rs a well-known result : If Cl, C2 are congruences on an algebraic system 

A such that 

(S.1) C.1 n C2=0, 

then A is isomorphic to a subdirect product of A/CI and AIC2 

Further, if Ci, C2 are permutable congruences and if they satisfy (S. 1) and 

(S.2) C1 U C2= 1, 

then A is isomorphic to the direct product of A/CI and AIC2-

Using Theorem 5, its corollary and the result above, we have 

Theorem 6. An inversive semigroup S is isomorphic to the spined product of a group-

semilattice and a band if and only if the following relations R1. R2 a,'e congruences on S: 

(1) a Rlb if and only if ab-1 and ba~1 are idempotents. 

(2) a R2b if and only if aa~1=bb-1. 

Further, if S is isomorphic to the spined product of a group-semilattice L alid a band B, then 

the basic group of L and the band B are isomorphic to S/RI and S/R2 respectively. Accor-

dingly, in this case S is also isomorphic to a subdirect product of S/RI and S/R2-

Proof. Let S be an inversive semigroup, and I the subband consisting of all idempotents 

of S. 

The first half of the theorem: I ･ The 'if' part. Let R1, R2 be the relations on S defined by 

( 1), (2) of the theorem. Assume that Rl, R2 are congruences on S. We shall show that 

R1 n R2 = O. Suppose that there exist x and y such that x Rly and x R2y. Then, both xy~1 

and yx~1 are idempotents and xx~1=yy~1. Put xx~1=e, and {t: tt-1=e} = S(e). Then, S(e) 

is a group and contains x,y. Hence, xy~1=e, and hence x = y. Thus, R1 r] R2 = O. Therefore, 

S is isomorphic to a subdirect product of S/RI and S/R2･ On the other hand, it is easy 

to ses that S/RI is a group and S,/R2 is isomorphic to I. Accordingly, by the corollary to 

Theorem 5 S rs Isomorphic to the spined product of a group-semilattice of the group S/R1 

and the band S/R2-

II . The 'only if' part. Assume that S is the spined product of a group-semilattice {Sr J r, 

G} and a band B. Then, B is clearly isomorphic to I.. Hence, we ca.n assume that B = I 

Now, the structure decomposition of S is S-~ {Sr X Er : DfErJ¥ , where Er is the ~/-kernel 

of I. For any xEG, there exists Sr Suc,h that S7' EE~ x (such an Sr is not necessarily unique). 
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we denote x by (x,~/) when we regard it as an element of Sr' Then, ( I ) and (2) in the 

theorem are paraphrased as follows : 

(1)/ ((x,a),oi)Rl((y,p), p) if and only if xy-1= I and yx~1= 1. 

(2) / ((x,cc),a)R2((y,p),~) if and only if cr=~. 

Now, it is easy to see that R1 and R2 are congruences on S and S/R1, SIR_9 are isomorphic 

to G and I respectively. 

The second half of the theorem : Obvious from I and 11 . 

Remark. In Theorem 6, Iet I be the subband consisting of all idempotents of S. Then 

it is also easily seen from the proof of Theorem 6 that S/R2 is isomorphic to I 

Corollary 6. An inversive selnigroup ,S is a B-group if and only if R1, R2 are permutable 

congruences on S and satisfy the condition 

(S.2) R1 U R2 = 1. 

Proof. Obvlous from the corollary to Theorem 5, Theorem 6 and the definitions of 

R~L and R2-

Moreover, Theorem 6 is paraphrased as follows : 

Theorem 7. Let S be an inversive semigroup, and I the subband consisting of all idempotents 

of S. Then, S is isomorphic to the spined product of a group-semilattice and a band if and 

only if it satisfies the following (C.]) and (C.2) 

(C.1) S is strictly inversive. 

(C.2) For any e (~I, ab (EI if and only if aeb EI. 

Proof. To prove the theorem, we need only to show that Rl,R2 are congruences on S 

if and only if S satisfies (C. I ) and (C.2). If R1' R2 are, congruences on S, then S is 

Isomorphic to a subdirect product of a group and a band. He,nce, S satisfies (C.. I ) and 

,(C.2). Conversely, suppose that S satisfies the conditions (C.1) and (C.2). Since S is strictly 

inversrve, S is expressible as a band of groups. Hence, it is clear that R2 is a congruence 

on S. Next, we shall show that R1 is also a congruence on S. At frst, it is clear that Ri 

is refiexive and symmetrical. Let xRly and yRiZ. Then, xy-1, yz~1, yx-1, zy~1~I. Let 

yy~1=fF_1. Smce xy~1, yz~l~I, we have xy~1 yz~1 F_1, i.e. xfz~lEI. Hence xz~1;EI 

Similarly, zx~1EI. Accordingly xRlz. Next, Iet xRly and let c be any element of S. Then 

xy~1, yx-1~I. Puttrng cc~1 =e and yy-1=f, we have cx(cy)~1 =cxey-1c-If =c,hc~If, where 

xey~1=hEI. Hence, cx(cy)~1=cehec~ If=ehecc~If=ehef~I. Similarly, we can prove the 

relation cy(cx)~1EI. Therefore cxRlcy. Similarly, we can also prove that xRly implies 

xcRlyc for any element c of S. Thus, Ri is a congruence on S 

Corollary 7. Let S be an inversive semigroup, and I th,e subband consisting of all idempotents 

of S. Then, S is a B-group if and only if it satisfies t/1e conditions (C.1), (C.2) and the 

_following (C.3) : 

(C.3) For any a,b ~S, there exist x,y such that aa~1=xx~1, bb-1=yy~1 and 

xb-1, ya~1, bx~1, ay~1EI. 

Proof. Obvious from the corollary to Theorem 6, Theorem 7 and the definitions of 

R1 and R2-



1
.
 

2., 

3
.
 
4
.
 
5
.
 

6
.
 

7. 

138 Mryukl YAMADA 

Reference s 

A.H. Clifford, Semigroups admitting relative inverses, Annals of Math., 42, 1037 1049 (1941). 

Bands ofsemigroups, Proc. Amer. Math. Soc., 5, 499 504 (1954) . 

N. Kimura, The structure of idenlpotent semigl'oups (1), Pacific Jour. Math., 8, 257 275 (1958) 

D. McLean, Idempotent semigroups, Amer. Math. Monthly, 61, 1 10 1 13 (1954) 

M. Yamada and N. Kimura, Note on idempotent semigroups. II., Proc. Japan Acad., 34, 1 10-112 
( 1958) . 

M. Yamada, A note on middle unitary semigroups, K(idai Math. Sem. Rep., 7, 49-52(1955) 

, Compositions of semigroups, KOdai Math. Sem. Rep., 8, 107 _ 1 1 1 (1956) (C,orrection to 

compositions ofsemigroups, KOdai Math. Sem. Rep., 8, 189 (1956)). 


