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Strictly Inversive Semigroups.1)
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§ 1. Introduction. A semigroup S is called inversive if it satisfies the following
(1) S has an idempotent, and the totality I of idempotents of S is a subband of S.»
(C) +4(2) For any element x of S, there exists an element x* such that xx*=x*x and
XXX =X.
In this case, for any element x of S there exists one and only one element y such that
xy=yx, xyx=X and yxy=y. In fact, let y=xx*x*xx*,
Then, we have
XY = X(XX*¥x*xx*) =xx%,
yx= (XX¥X¥XX*)X =xx%*,
XyX = X(XX*XFXKF )X =X
and  yxy= (XXFXFXXF)X(XXFKEXXF) =XKFXFXX* =y,
Next, suppose that there exist y; and ys such that xyq=y1X, Xy1X=X, y1Xy1=Y1, Xy2=YaX,
Xyo X=X and ygXyg=ysa. Since Xxy;x=Xx and Xygx=X, we have Xyy=XygXyy=YyoXy1X=YyoX=
xyg. Hence, y1=y1Xy1=Y2Xy1=Ya2Xy2=Ys2.

Such a yis called the relative inverse of x, and denoted by x % Now, let S(e)= {x : xx
—e¢} for each element e of 1. Then, it is easy to see that each S(e) is a subgroup of S and
S is the class sum (i.e. the disjoint sum) of all S(e) (A.H. Clifford (1) has shown that a
semigroup satisfying the condition (2) of (C), which is called a semigroup admitting relative
inverses, is the class sum of subgroups). Therefore, inversive semigroups are not too far
away from groups. Actually, as a special case, the author has proved in (6) that if Iisa
rectangular band then all' S(e) are isomorphic to each other and S is isomorphic to the
direct product of S(e) and I (an inversive semigroup in which the totality of idempotents
is a rectangular subband is called an (R)-inversive semigroup). Further, in this case S satisfies
the following (C.D1):

(ChH If xx '=e and if f is an idempotent such that f<e (i.e. fe=ef=f), then fx=xf.
By a strictly inversive semigroup, we shall mean an inversive semigroup satisfying the con-
dition (C.l). As is stated above, an (R)-inversive semigroup is strictly inversive. More
generally, it is easy to see that a semigroup M which is isomorphic to the direct product
of a group and a band (hereafter, we shall call such a semigroup M a B-group) is strictly
inversive. However, the converse is not true.

That is,

an inversive semigroup is not necessarily a B-group, even if it is strictly inversive.

In fact, this can be seen from the following example : Consider the semigroup K defined
by the following multiplication table.

1) An abstract of this paper has appeared in Proc. Japan Acad., 39, 100—106 (1963).
2) A semigroup in which every element is an idempotent is called a band.
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It is easy to see that K is strictly inversive.

groups, and some relevant matters. Particularly,

. . g
However, K is not a B-group, since K consists
of 7 elements and is neither a group nor a alailbic|d)ie | f|g,
band. b b|lc|la|elf|d|g
From the above-mentioned result, it follows cleclalblf|dlels
that the class of B-groups is properly contained — |
in the class of strictly inversive semigroups. dja bjcjdje|f]s
The main purpose of this paper is to present e blclale|f|d]|g
a structure theorem for strictly inversive semi- flclalb|f|dle g
g

lg|s|g|8s|8|8|s

in § 5 we shall also present necessary and suffi-
cient conditions for an inversive semigroup to be isomorphic to some special subdirect
product of a group and a band.

§ 2. The structure of strictly inversive semigroups. Let G be a semigroup.
If there exist a band Q and a collection {G,: a=Q} of subsemigroups of type & such
that

D G=U (Ga: ey},
) d) GsNG, = ¢ for B=£Y
and (i) GG, =Gy,
then we shall say that G is a band Q of semigroups G, of type Z. In this sense, the follow-
ing results follow from the papers (1),(2) of A.H. Clifford:

(I) A semigroup admitting relative inverses is a semilattice of completely simple semi~

groups without zero.

(II) A semigroup G admitting relative inverses is a band of groups if and only if Gba=

Gba2 and abG=a2bG for any elements a,b of G.

Next, we shall define some special inversive semigroups. Let S be an inversive semigroup,
and I the subband consisting of all idempotents of S. Then, S is called normal, left normal,
right normal, commutative, rectangular, left singular, right singular or trivial respectively, if
it satisfies the following corresponding identity

M) xyzw=xzyw, (LN) xyz=xzy, (R.N) xyz=yxz, (C) xy=y%x, (R) xyz=xz, (L.S)

xy=X, (R.S) xy=y or (T) x=y.

Moreover, S is said to be (N)-inversive, (L.N )-inversive, (R.N)-inversive, (C)-inversive, (R)-
inversive, (L.S)-inversive, (R.S)-inversive or (T )-inversive respectively, if I satisfies the above-
mentioned corresponding identity (IN), (L.N), (R.N), (C), (R), (L.S), (R.S) or (T).

Remark. A band is of course an inversive semigroup. The structure of bands satisfying
one of the above-mentioned identities has been completely determined by the author (6),
N. Kimura (3] and N. Kimura and the author (5). Further, it is also clear that any (T)-
inversive semigroup is a group and a trivial inversive semigroup is a trivial band.

Under these definitions we have the following theorem, which is a special case of the
above-mentioned result ( I).

Theorem 1. An inversive semigroup S is expressible as a semilattice of (R)-inversive semi-
groups. That is, there exist a semilattice T and a collection {S, :veT} of (R)-inversive sub-
semigroups such that
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G S=u{s, :ven},
(D) SeNSp=¢ for atp
and (iii) SaSpC Sap.
Further, T is determined uniquely up to isomorphism, and accordingly so are the S, .
Proof. From the above-mentioned result ( T) of A.H. Clifford, an inversive semigroup
S is a semilattice T' of completely simple semigroupé without zero ; that is,
@ S=u{S,:very,
(A { (i) S.NSs = ¢ for a=£p
and (iii) S,SpC S,
where each S, is a completely simple semigroup without zero.
Let E, be the totality of idempotents of S,. Then, E, is a subband of S,. Now, let e,f be
two elements of E,. Since S, is completely simple, efee=eefe=efe implies efe—e. Hence,
E, is rectangular. According to A.H. Clifford (1), a completely simple semigroup without
zero is a semigroup admitting relative inverses. Therefore, S, is an (R)-inversive semigroup,
and hence S is a semilattice T' of (R)-inversive semigroups.
Next, suppose that there exists another decomposition of S into a semilattice of (R)-inversive
semigroups, say
() S=U {8*:: teTH,
® { (i) S¢NS*.=¢ for {7
and (i) S* S*.CS*c,
where each S*: is an (R)-inversive semigroup and I'* is a semilattice.
Let E*: be the totality of idempotents of S*:. Then, E*: is a rectangular subband of S*c.
Let T be the subband of idempotents of S.

‘Then
@ I=y E:7eTy,
{ (i) E.NEs=¢ for atp,
(iii) - E.EgCEqg
and

(i) E*;NEB%—¢ for ¢Ar,
. (iii) E*r E*.CE*..

are semilattice decompositions of I into rectangular bands. According to D. MacLean (4),
such a decomposition of I is unique. Therefore, we can assume that I'=T"%* and E,=E*,
for each Y&T". Now, since two decompositions (A) and (B) are different, there exists a=T
such that S,s~ S*,. Hence, there exists S=T'(B=4a) such that S*,NSg~p or S,N S*s=td.
If S*,NSg>x, then x-1=S*,NSz Hence, xx—1=S*,NSp and hence xx-1€E, N Eg.
Similarly, S,NS*gs~¢ implies E,NEg4¢. This is a contradiction. Hence, such a decomp-
osition of S is unique.

Now, for a strictly inversive semigroup we have

Lemma 1. If aa—1=e and bb—1=f, then (ab)-1=eb—1a-1f and (ab) (ab)—1=ef.

Proof. Let a,b be any elements of a strictly inversive semigroup. Let aa—1=e and bb—1=f,

Then,

abeb—1a—1f =abfefb-1a—1f =afefbb-1a—1f — aefefea—1f —efefeaa—1f —efefef —ef,

{ () I=U {B*g EsTH),
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eb-1la-1fab=eb-1a-1lefeab=ecb-1a-laefeb—=eb-1fefefb—=eb-1bfefef = efefef —ef,

eb-1a-1fef —=eb-1la-lefef —eb-1la-1lef —eb-1a-1f,

efeb-1a-1f —efefb-1a-1f —efb-1a-1f =eb-1a-1f,

abef =abfef =afefb=aefefb=aefb=ab
and efab=efeab=aefeb=aefefb—=aefb=ab.

Thus, (ab)-1=eb-1a-1f and (ab)(ab)-1=ef.

Using this lemma, we obtain the following theorem as a special case of the above-
mentioned result (II).

Theorem 2. Let S be an inversive semigroup, and I the subband consisting of all idempotents
of S. Then, S is expressible as a band of groups if and only if S is strictly inversive. Further,
in this case such a decomposition is uniquely determined, and it is the decomposition such that

i S=Uui{SCe: esl},
G SHOHNShY=¢ for f+h
and (iii) S(HOS)S(fh),
where S(e)= {x : xx-1=e} for every e L.

Proof. Let S be strictly inversive. The relations (i),(ii) of the theorem are obvious.
Next, we prove the relation (iii). Let x,y be elements of S(f) and S(h) respectively. Then,
xx-1=f and yy-1=h. By Lemma 1, (xy)(xy)-1=fh. Hence, xy=S(fh). Thus, S is expressible
as a band of groups.

Conversely, suppose that S is expressible as a band of groups :

() S=U {G,:asB},

() G NG; =¢ for B=£Y

and (iii) GG, Gy,

where B is a band and each G, is a group.
Let e,f be idempotents such that f<e. Let x be an element such that xx-1=e. There exist
G;, Gr such that G; e and G =f. It is clear that x and x-1 are also contained in Gj;.
Since ef=fe=f, we have xfeG¢ and fxeG¢. Since the identity element of G is f, we
obtain xf=fxf=fx. The uniqueness of such a decomposition is obvious.

We shall call T' in Theorem 1 the structure semilattice of S and S, the Y-kernel of S.
Also in this case we write S~X (S, :Y<T'}and call it the structure decomposition of S.%

Remarlk. If S is an inversive semigroup, then the subband I of all idempotents of
S is also inversive. In this case, it is easy to see that S and I have the same structure semi-
lattice. Next, we have

Lemma 2. A (N)-inversive semigroup is strictly inversive.

Proof. Let x be an element of S(e), and f an element snch that f<e, where e,f are
idempotents. Putting fx(fx)-1=u and xf(xf)-1=v, we have fu=u, ue=eu=u, vf=v and
ev= ve=V.

Now, fx=fxu=fxefue=fxeufe=fxf and xf=vxf=evfexf—=efvexf={xf. Hence, xf=fx.

In particular a (C)-inversive semigroup is strictly inversive, because a semilattice satisfies
normality. Therefore, by Theorem 2 a (C)-inversive semigroup is expressible as a band of
groups.

Further, for (C)-inversive semigroups Theorem 2 is sharpened as follows:

3) In particular, for the structure decomposition of a band see also N. Kimura (3].
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Theorem 3. (A.H. Clifford). A semigroup is expressible as a semilattice of groups if and
only if it is (C)-inversive.
Proof. Let S be a semigroup and I the totality of idempotents of S.
The ‘only if” part : Suppose that S is expressibe as a semilattice of groups;
that is
A S=uU{S;:very,
(i) S.NSz=¢ for az£p,
(i)  SaSp CSap
where each S, is a group and T' is a semilattice.
Let e, be the identity element of S,. Then, I= {¢,:7=T}. Take two eclements e, ez of
L Clearly, esesESas. NOW, €4€ap€aCap=Ca€aCap—CaCap. Hence, e,8,5 is an idempotent of
Sap, and hence ese.p=€4p. Similarly, eseap—e€up. NOW, €,65 =€,85805= €45. Further, e.ep=
€ap=C€pa—©s8,. Therefore, I is a semilattice. Since S is the class sum of groups and I is a
band, it is clear that S is inversive. _
The ‘if’ part : Suppose that S is (C)-inversive. Since a (C)-inversive semigroup is (N)-
inversive, by Lemma 2 S is strictly inversive. Hence, by Theorem 2 S is expressible as a band
of groups. Thus S is expressible as a semilattice of groups since I is a semilattice.
Let I" be a given semilattice and S, be, for each YT, a given group. Let S be the class
sum of all S,.
Consider the semigroup S(o) which consists of all elements of S and in which a multiplication
o is defined such that
(1) for any YT, S, is a subsemigroup of S(o); a,ob, =a b, for any elements
(M) a,b,e8S,,
(2) for any a,BET, SaoSsCSap.
Such a semigroup S(o) is called a compound semigroup of (S,:Y=T} by I'. The author
(7) has shown that there exists at least one compound semigroup of {S,:¥&T} by I for
any given semilattice I' and any given collection {S,:Y<T} of groups S,. From Theorem
3, it follows that the problem of constructing all possible (C)-inversive semigroups is reduced
to the problem of finding all possible compound semigroups of {S,:v=T} by T for a given
semilattice T' and a given collection {S,:¥=I"} of groups S,. This problem was completely
solved by A.H. Clifford (1) and the author(7).9

4) Let {M¢ : E€L} be a disjoint family of non-empty sets with a semilattice L as its index set. For any
pair (&%), where €=¢, consider a mapping 8:.: M¢—M;. Then a family &= {SE: &&¢, gtel) is
called a normal family on the family (of sets) {Me : E=L}, if it satisfies the following two conditions:

(1) & is the identity mapping for all E<L.
(2) 8 85=5; for =t =r.
Now, let {S;:y=T} be a disjoint family of groups (commutative groups) with a semilattice T" as its
index set. Take a homomorphism @3 : Sx—Spg, for each pair («,8) of a,8=T such that a=g. If the
family {@§: a=g, «,B€T} of all ¢§ is a normal family on the family {Sy:y=T}, then such a
system {q:g:a;ﬁ, a,BETY is called a fransitive system of homomorphisms induced by {Sy : y&T}.
A.H. Clifford (1] and the author (7] have proved the following theorem:

Theorem. Every compound semigroup (commutative compound semigroup) S(o) (where S=|
{Sy:vyET} of {Sy: ¥vET} by T is found as follows. Let {p§: a=pB, a,S=T} be a transitive system
of homomorphisms induced by {S,: v=T}. Then S becomes a compound semigroup (commutative
compound semigroup) of {Sy: y=T} by T if multiplication o therein is defined by the following

P) aob=¢gﬁ(a)¢ag(b) Jor a=Sa, b= Sp.
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Next, we shall introduce a special kind of subdirect product,” which is called the spined
product.

Let S4, Ss be inversive semigroups having T' as their structure semilattices, and S1~J5
{S7: 7T} and Sg~X (S} : YT} be the structure decompositions of S; and Ss. Then,
the set S=U {S/xS;: YT} becomes a subdirect product of Sy and Sz. Such an S is
called the spined product of Sy and So with respect to I', and denoted by S1P<Ss (T').
We sometimes omit (I'), if there is no confusion.

Under this definition, we have the following main theorem.

Theorem 4. (Structure theorem) Ler S be a strictly inversive semigroup having T' as its
structure semilattice. Let 1 be the subband consisting of all idempotents of S. Then, S is
isomorphic to CX|I (T") for some (C)-inversive semigroup C having T as its structure semi-
lattice. Conversely, if C and I are a (C)-inversive semigroup and a band having T as their
structure semilattices, then CIX|I (T") is a strictly inversive semigroup. In other words, a
semigroup is isomorphic to the spined product of a (C)-inversive semigroup and a band if and
only if it is strictly inversive. :

Proof. The first half of the theorem : Let S be a strictly inversive semigroup and S~%
{S,:v<T} its structure decomposition. Let I be the subband consisting of all idempotents
of S. Let E, be the totality of all idempotents of S, . The structure decomposition of I is
clearly I~2 (E,:v<T}.

Now, we introduce a relation R in S as follows :
x R y if and only if x,y S, for some YT and xy-1<E,.
Then, R is a congruence on S. In fact, it is proved as follows.
(1) x R x for any x 8. Obvious from the fact that each S, is (R)-inversive.
(2) x Ry implies y R x. Since x R y, there exists S, such that x,y & S, and xy-1=E,.
Let xx~1=e, yy-1=f and xy-1=h. Then, eyx-1f=(xy-1)-1=h. Hence, fefyx-lefe=fhe=
fe=E,. Thus, yx-1=E,. Hence, y R x.
(3) xRy,y R zimpliesx Rz. Since x Ryandy R z, there exists S, such that x,y,zeS,
and xy-1, yz-1E,. Now, let xx-1=e¢, yy-1=f and zz-1=h.
Then,
xy-1yz-1=xfz-1=xefhz-1=xehz-1=xz-1.
Since xy-1yz-i=E,, we have xz-1=E,.
(4) x Ry implies cx R cy and xc R yc for any ¢ S. Since x R y, there exists S, such
that x,y =S, and xy-1=E,. Let ¢ be an element of S. Then, ¢ is contained in some kernel
of S, say Sg. It is clear that cx, cy are elements of Sg,. Let xx~1=e, yy-1=f, cc-1=h
and xy-1=k.
Then,
cx(cy)~1=cxhy-1c-1f =cxehfefy-1c-1f =cehfexfy-1c-1f =cehfexy-1c-1f
=chehfkhe-1f = Che)(hfk)(hf)=E,.
Hence, cx R cy. Similarly, we can prove the relation xc R yc.
‘Consequently, R is a congruence on S. Therefore, we can consider the factor semigroup S/R
of S mod R. We denote the congruence class containing x by X, and put {')Z;: x, 8,1 =G,.
‘Then, it is easy to ses that each G,, YT, is a group. Let ;a, 7?; be elements of G, and

5) For definition of a subdirect product, see G. Birkhoff, Lattice Theory, p. 91.
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Gy respectively. Clearly, '§a7(ﬁ=;<:;ﬁ. Since XXz Sap, ;:x'; is an element of G, There-
fore, GoGpGap. This means that S/R is the semilattice ' of the groups G, ; i.e. S/R~
J{G;;veTy.
Next, consider the spined product S/RPI (T); i.e.

S/RX (I)= U {G, xE,: YT}.
Define a mapping @ of S into S/RJX|I (T") as follows:

p(x)=(x%, xx~1), xeS.
Then, it is easily proved that ¢ is an isomorphism of S onto S/R}}|l (T'). The second half
of the theorem: Let C and I be a (C)-inversive semigroup and a band having I'" as their
structure semilattices.  Since both C and I are strictly inversive, Cx I is also strictly inversive
and CIX[I (T") is inversive. ~ Since any inversive subsemigroup of a strictly inversive semigroup
is strictly inversive and since C[X(I (I") is an inversive subsemigroup of CxI, CPI (I') is
also strictly inversive.

From Theorem 4, the problem of determining the structure of strictly inversive semigroups
is reduced to the problems of determining the structures of (C)-inversive semigroups and
bands. As stated above, the formar was completely solved by Theorem 3, A.H. Clifford (1
and the author (7). The latter was also partially solved by several papers. Particularly, the
structure of normal bands (hence, of course, the structure of left normal, right normal,
rectangular, commutative, left singular, right singular or trivial bands) was completely dete-
rmined by the author (6), N. Kimura (3) and the author and N. Kimura (5).%

§ 3. Applications for (N)-inversive semigroups. Since a P-inversive semigroup,
where P is (IN), (L.N), (R.N), (C), (R), (L.S), (R.S) or (T), is (N)-inversive and since
any (N)-inversive semigroup is strictly inversive, we have the following corollaries for P-
inversive semigroups as special cases of Theorem 4.

Corollary 1. 4 semigroup is isomorphic to the spined product of a (C)-inversive semigroup
and a normal (left normal, right normal) band if and only if it is (N)-((L.N)-, (R.N.)-)
inversive.

Proof. Obvious.

Corollary 2. A4 semigroup is isomorphic to the direct product of a group and a rectangular
(left singular, right singular) band if and only if it is (R)-((L.S)-, (R.S)-) inversive (see
also the author (6)).

Proof. The ‘only if’ part of the corollary is clear.

The “if” part of the corollary: Let S be an (R)-((L.S)-, (R.S)-) inversive semigroup, and
I the subband consisting of all idempotents of S. Then, each of the structure semilattices

6) N. Kimura and the author (5] has proved the following two theorems:

Theorem. Let T be a semilattice, let {S,: y=T} be a disjoint family of non-empty sets with T as its index
set, and let S=J{S, : y=T. Let ® :{<pg s a=R, a,B=T} be a normal family of mappings on the
Samily {Sy: y=T}. Then S becomes a left (right) normal band whose structure decomposition is S~
{Sy:yET} under the multiplication defined by

ab=gas(a) (ab=pls (b))
Jfor a =84, b=Ss.
Further every left (right) normal band is constructed by this way.
Theorem. A band is normal if and only if it is isomorphic to the spind product of a left normal band and @
right normal band.
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of S and I consists of a single element. Hence S/R in the proof of Theorem 4 is a group,
and S/R)I=S/RxI.

Corollary 3. A semigroup is isomorphic to the spined product of a commutative inversive
semigroup and a normal (left normal, right normal) band if and only if it is normal (left
normal, right normal) inversive semigroup.

Proof. The ‘only if’ part of the corollary is clear.

Let S be a normal inversive semigroup. To prove the ‘if’ part, we need only to show that
S/R in the proof of Theorem 4 is commutative. Let X,y be elements of S/R. Let xx-1=¢
and yy-1=f. Then, xy(yx)-1=xyfx-1ly-le=xx-1yy-le =efe by the normality of S. Hence
Xy=yX, i.e. Xxy=yx. Thus, S/R is commutative.

Remark. For construction of commutative inversive semigroups, see the author (7],
for that of normal, left normal or right normal bands, see N. Kimura and the author (5).®

Corollary 4. A rectangular (left singular, right singular) inversive semigroup is a rectangular
(left singular, right singular) band. _

§ 4. Group-semilattices. Let G be a group, and T a semilattice. Let {G,:Y=T} be
a collection of subgroups G, of G such that

(1 G=U{G.:veT}
and (2) GGy for a<p.

Let S=2 G,, where 5 denotes the class sum of sets. If x &G is an element of G,, then
vyl .
we denote x by (x,7) when we regard x as an element of G, in S. Now, S becomes a

semigroup under the multiplication o defined by the following
(MD* (x,@)0(¥,6)=(xy,af3).

That is, S is compound semigroup of {G,:¥Y=T'} by T, and accordingly a (C)-inversive
semigroup. We shall call such an S a group-semilattice of G, and denote it by {G,|T', G}.
Moreover, in this case we shall call G the basic group of S. Now, let I be a band whose
structure decomposition is I~Z2 {I,:Y<T}. Then, we can consider the spined product of S
“and I with respect to T, because S and I have the same structure semilattice T'.
As a connection betwesn subdirect products of G and I and the spined product of S and
I, we have

Theorem 5. The spined product of a group-semilattice of G and a band I is isomorphic to
an inversive subdirect product of G and 1. Conversely, any inversive subdirect product of a
group G and a band I is isomorphic to the spined product of a group-semilattice of G and I.

Proof. Let S be an inversive subdirect product of a group G and a band L. Let I~3{E,:
7T} be the structure decomposition of I. Let S(E,)= {(x: x&G, e<E,, (x,6)=8}. Then,
S(E,) is a subgroup of G and the structure decomposition of S is S~I{S(E,)xE,:
veT}. Now, let a,8 be elements of I' such that «<3. Take an element of S(Ep), say x.
Then, (x,e)ES8(Eg)<Eg for each eeEg. For (1,/)eS(E.)xE,, we have (1,f) (x,e)=
(x,fe) =S(Es) < E,. Hence, xeS(E,). This implies S(E3z)CS(E,). Accordingly, S is
isomorphic to the spined product of the group-semilattice {S(E, )|T', G} and the band I.
Conversely, let S be the spined product of a group-semilattice S, |, G} and a band I
Let I~ {E, : YT} be the structure decomposition of I. Then, S is clearly inversive and

7) Let D be a subdirect product of G and I. Then, D is clearly a semigroup. If D is an inversive
semigroup, then D is called an inversive subdirect product of G and 1.
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the structure decomposition of S is S~ (S, <E,: Y<T}. Since S, <E,CcGxE, for every
YET if we regard every element of S, as an element of G, we have & S, <E,cGxL

Hence, S is isomorphic to an inversive subdirect product of the group G ’).;:ng a band I.

Corollary 5. An inversive semigroup is isomorphic to a subdirect product of a group G and
a band I if and only if it is isomorphic to the spined product of a group-semilattice of G and I.

Proof. Obvious from Theorem 5.

Remarlk. Let G be a group, and I a band whose structure decomposition is I~% {L:
yeT'}. Then, the direct product of G and I is isomorphic to the spined product of {G, |T,G}
and I, where G, =G for all 7, and vice versa.

By Theorem 5 and its remark, the connection betwesn direct products, subdirect products
and spined products is somewhat clarified. These results will be used in the next paragraph.

§ 5. Necessary and sufficient conditions for an inversive semigroup to be
isomorphic to the spined product of a group-semilattice and a band.

The following is a well-known result: If Cy, Co are congruences on an algebraic system
A such that

(S.1) CiNCa2=0,
then A is isomorphic to a subdirect product of A/Cy and A/Cas.

Further, if Cy, Co are permutable congruences and if they satisfy (S.1) and

(8.2) C1UCe=1,
then A is isomorphic to the direct product of A/Cy and A/Cs.

Using Theorem 5, its corollary and the result above, we have

Theorem 6. An inversive semigroup S is isomorphic to the spined product of a group-
semilattice and a band if and only if the following relations Ry, Ro are congruences on S:

(1) a Ryb if and only if ab-1 and ba-1 are idempotents.

(2) a Rob if and only if aa-1=>bb-1.

Further, if § is isomorphic to the spined product of a group-semilattice L and a band B, then
the basic group of L and the band B are isomorphic to S/Ry and S/Rs respectively. Accor-
dingly, in this case S is also isomorphic to a subdirect product of S/Ry1 and S/Rs.

Proof. Lat S be an inversive semigroup, and I the subband consisting of all idempotents
of S.

The first half of the theorem: T. The ‘if* part. Let Ry, Ro be the relations on S defined by
(1), (2) of the theorem. Assume that Ry, Rg are congruences on S. We shall show that
R1NR2=0. Suppose that there exist x and y such that x Ry and x Rgy. Then, both xy-1
and yx-1 are idempotents and xx-1=yy-1. Put xx-1=¢, and {t: tt-1=e¢} =S(e). Then, S(e)
is a group and contains X,y. Hence, xy-1=e, and hence x=y. Thus, Ry Rs=0. Therefore,
S is isomorphic to a subdirect product of S/R; and S/Rg. On the other hand, it is easy
to ses that S/Ry is a group and S7/Rg is isomorphic to I. Accordingly, by the corollary to
Theorem 5 § is isomorphic to the spined product of a group-semilattice of the group S/R1
and the band S/Ro.

I. The ‘only if* part. Assume that S is the spined product of a group-semilattice S, |T,
G} and a band B. Then, B is clearly isomorphic to I. Hence, we can assume that B=I.
Now, the structure decomposition of S is S~ {S, XE, : y=T'}, where E, is the -kernel
of L. For any x&G, there exists S, such that S,=x (such an S, is not necessarily unique).
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we denote x by (X,y) when we regard it as an element of S,. Then, (1> and (2) in the
theorem are paraphrased as follows:

(D (xa),a)R1((¥,B), B) if and only if xy-1=1 and yx-1=1,

2)" ((x,a),a)R2((y,8),R8) if and only if a=g.

Now, it is easy to see that Ry and Rg are congruences on S and S/Ry, S/R=a are isomorphic
to G and I respectively.
The second half of the theorem: Obvious from I and TJ.

Remark. In Theorem 6, let I be the subband consisting of all idempotents of S. Then,
it is also easily seen from the proof of Theorem 6 that S/Rs is isomorphic to I

Corollary 6. An inversive semigroup +S is a B-group if and only if R1, Ra are permutable
congruences on S and satisfy the condition

(8.2) RyURs=1.

Proof. Obvious from the corollary to Theorem 5, Theorem 6 and the definitions of
R]_ and Rag.

Moreover, Theorem 6 is paraphrased as follows :

Theorem 7. Let S be an inversive semigroup, and I the subband consisting of all idempotents
of 8. Then, S is isomorphic to the spined product of a group-semilattice and a band if and
only if it satisfies the following (C.ID) and (C.2) :

(C.I) § is strictly inversive.

(C.2) For any e €I, ab =1 if and only if aeb <1.

Proof. To prove the theorem, we need only to show that Ry,Rs are congruences on S
if and only if S satisfies (C.1) and (C.2). If Ry, Ro are congruences on S, then S is
isomorphic to a subdirect product of a group and a band. Hence, S satisfies (C.1) and
(C.2). Conversely, suppose that S satisfies the conditions (C.1) and (C.2). Since S is strictly
inversive, S is expressible as a band of groups. Hence, it is clear that Rs is a congruence
on S. Next, we shall show that Ry is also a congruence on S. At first, it is clear that Ry
is reflexive and symmetrical. Let xRy and yRyz. Then, xy-1, yz-1, yx-1, zy-1<l. Let
yy-1=fcl. Since xy-1, yz-1<lI, we have xy-1 yz-1 I, ie. xfz-1=l. Hence xz-1=1.
Similarly, zx-1<1. Accordingly xRjz. Next, let xRy and let ¢ be any element of S. Then,
xy-1, yx~1l. Putting cc-1 =e and yy-1=f, we have cx(cy)-1=cxey-1c-1f =chc-1f, where
xey~-1=hel. Hence, cx(cy)-1=cehec-1f=ehecc-1f=ehef=]I. Similarly, we can prove the
relation cy(cx)~1=l. Therefore cxRjcy. Similarly, we can also prove that xRqy implies
xcRyyc for any element ¢ of S. Thus, Ry is a congruence on S.

Corollary 7. Let S be an inversive semigroup, and I the subband consisting of all idempotents
of S. Then, S is a B-group if and only if it satisfies the conditions (C.1), (C.2) and the
Jollowing (C.3) :

(C.3) For any a,b =S8, there exist x,y such that aa-1=xx"1, bb-1=yy-1 and
xb-1, ya-1, bx~1, ay-1<=1.

Proof. Obvious from the corollary to Theorem 6, Theorem 7 and the definitions of
R1 and Ro. »
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