Mem. Fac. Sci., Shimane Univ.,
14, pp. 55-62 Dec. 20, 1980
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We discuss the existence and some properties of the biharmonic Green function of an infi-
nite network. Our results are very analogous to that of a Riemannian manifold. Some po-
tential-theoretic characterizations of the network are also given by means of the biharmonic
Green function.

§1. Harmonic Green functions

Let X be a countable set of nodes, Y be a countable set of arcs, K be the node-arc
incidence function and r be a strictly positive function on Y. The quartet N={X, Y,
K, r} is called an infinite network if the graph {X, Y, K} is connected, locally finite
and has no self-loop. For notation and terminology, we mainly follow [2] and [3].

Let L(X) be the set of all real functions on X and L*(X) be the subset of L(X)
which consists of non-negative functions. For u € L(X), the Laplacian du € L(X) of
u is defined by

(L.1) du(x)= = 3 K(v, )r)™ T, K(z yuca).

A function u € L(X) is called harmonic, superharmonic, subharmonic or biharmonic
on a set 4 according as Adu(x)=0, du(x)<0, du(x)=>0 or A%u(x)=A4(4u)(x)=0 on A4,
respectively. Let us put

SHP(N)={ue L*(X); 4u<0 on X},
HN)={ue L(X); du=0o0n X}.

For each finite subnetwork N'=<X’, Y'> of N, denote by nb(N’) the finite sub-
network <{nb(X"), nb(Y')> of N defined by nb(X')= U {X(x); xe X'} and nb(Y’)
={yeY; e(y)enb(X’)}. Letusput b(X)=nb(X)—X' and b(Y")=nb(Y")-Y".

Similarly to [3; Lemma 2.1], we can prove the following minimum principle:

LemMma 1.1. Let N'=<{X', Y') be a finite subnetwork of N. If u is super-
harmonic on X' and if m=min {u(x); x € b(X")}, then u(x)>m on X' and the equality
holds only if u=m on X'.

COROLLARY. If u is subharmonic on X' and if M =max {u(x); x € b(X")}, then
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w(x)<M on X' and the equality holds only if u=M on X'.
We have

TueoreM 1.1. If ue H(N) and Y u(x)?< oo, then u=0on X.
xeX

ProoF. For any >0, there exists a finite subnetwork N'=<(X’, Y"> of N such
that 3 wu(x)><e2. Then |u(x)|<e on X—X'. By Lemma 1.1 and its Corollary,

xeX—-X'
we have |u(x)]<e on X. By the arbitrariness of ¢, we conclude that u=0 on X.

For a finite subnetwork N’'={(X’, Y’> of N, the harmonic Green function g, of
N’ with pole at a e X' is defined by

(1.2) AgL(x)= —g,x) on X',
(1.3) gh(x)=0 on X-X/,

where g,(x)=0 if xs#a and ¢(a)=1.

The unique existence and some fundamental properties of g, were studied in [3].
Note that gi(x)=g.(a) for each a, xe X'.

Let {N,} be an exhaustion of N and let g{» be the harmonic Green function of
N, with pole at a. Then g <g{**? and the limit g, of {g{"} exists and either g,
€ SHP(N) or g,=c0. Note that g, does not depend on the choice of an exhaustion
of N and that g,= oo if and only if N €0y, i.e., SHP(N) consists only of constant
functions. In case g, SHP(N), we call g, the harmonic Green function of N with
pole at a. We have 4g,(x)= —¢,(x) and g,(x)=g.(a) for each a, xe X.

We prepare

Lemma 1.2. If ve SHP(N) and 4(v—g,) (x)<0 on X, then g (x)<v(x) on X.

PrOOF. Let g be the same as above. Since 4g{W=A4g, on X,, we have 4(v
—g™)(x)<0 on X,, where N,=<X,, Y,>. Since v(x)—g(x)>0 on b(X,), we see
by Lemma 1.1 that g{”(x) <o(x) on X,, so that g,(x)<uv(x) on X.

We give a discrete analog of Harnack’s principle:

LemMa 1.3. Let N'=<(X', Y'> be a finite subnetwork of N and let a,be X"
Then there exists a positive constant B=f(a, b) which satisfies f~u(b)<u(a)< fu(b)
for all ue L*(X) such that 4u(x)<0 on X'.

ProoF. Let us put
ix, 2)= 2 |K(x, p)K(z, ) [r(y)~"  for x#2z,
ye
#(z, z)=0,

Hz)= 2, |K(z, yr(y)".
yeY
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Then we have

Au(z)= —1(z)u(z) + EX t(x, 2)u(x).

We may assume that a7#b. There exists a set {x;; i=1,..., n} in X' such that x;,,
€ X(x;) for i=0, 1,..., n with x,=a and x,,,;=>b. LetueL*(X) and 4u(x)<0 on X'.
Then

Hxu(x) 2 3 106, x)u(x) 2 Uy 15 XU(Xir 1),
(s D112 T 08 X D)2 5 XU,
Thus we have B;u(b) <u(a) < B,u(b), where
Bu=T1 tCxier, x)ftCx) and By =TT Goos iCxi i),

Taking f=max (8,, 1), we see easily that § has the desired property.

COROLLARY. For any a, be X, there exists a positive constant f such that
B~ tu(b)<u(a) < pu(b) for all ue SHP(N).

§2. Biharmonic Green functions

Let N'=(X’, Y’ be a finite subnetwork of N. We define the biharmonic Green
function ¢, of N’ with pole at a e X’ by

@.1) £ ()=e(x) on X,
(2.2) 4q.(x)=0 on b(X"),
(2.3) q,(x)=0 on X-—nb(X’').

We shall prove

THEOREM 2.1. There exists a unique biharmonic Green function q, of a finite
subnetwork N' of N with pole at a.

Proor. First we prove the uniqueness of ¢g,. Let ¢, and ¢, be biharmonic
Green functions of N’ with pole at a and put u=gq,—q) and v=4u. Then 4v=0 on
X" and v=0 on b(X"), so that v=0 on X’ by the minimum principle. Since 4u=0 on
nb(X") and u=0 on X —nb(X’), we conclude by the minimum principle that u=0 on
nb(X"). In-order to prove the existence of g, let g, and g, be the harmonic Green
functions of N’ and nb(N') with pole at a respectively. Taking

u= T guT),
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we easily see that u(x)=0 on X —nb(X"),
Aux)= % 9o(2)[4G:()]= —ga(x)

on nb(X'). It follows that 4u(x)=0 on b(X’) and that 4%u(x)= — A4g,(x)=g,(x) on X".

Let {N,} (N,=<(X,, Y,>) be an exhaustion of N with a € X, and let g{” and §{»
be harmonic Green functions of N, and nb(N,) with pole at a respectively. Then the
biharmonic Green function ¢{» of N, with pole at a is given by

(2.4) 4= % 4"@5().

z€Xn

Since g <g*+1) and W <gi* on X, we have ¢ <q("*V on X, so that g,(x)
—lnn q{M(x) exists for each xe X. It is easily seen that this function g, does not

depend on the choice of an exhaustion of N. Since ¢{* is superharmonic on X,, we
have either g, SHP(N) or q,= oo (cf. [3; Lemma 2.4]).
We have

THEOREM 2.2. Let a, beX. Then q,= if and only if q,=

Proor. Let {N,} (N,=<(X,, Y,>) be an exhaustion of N. There exists n, such
that a, be X,,. By Lemma 1.3, we can find a positive constant f# such that

B1g(b)<g{(a) < Bgi(b)

for each ze X, (n>n,). Thus we have for n>n,
B1g5”(x) < g{(x) < fa (%),

and hence f~1g,(x) < g (x) < Bq,(x) on X. This shows our assertion.

DEerFINITION 2.1.  We write N € Oy if there exists a € X such that g,=o0. In case
N&Oy, we call g, the biharmonic Green function of N with pole at a.
By our definition, the biharmonic Green function ¢, of N is given by

2.5) : 2= X 9(2)9:(%).

Clearly, q,(b)=q,(a) for all a, be X. Furthermore g, has the following properties:
(2.6) 4q,(x)=—g,x) on X,

2.7 _ ‘ Azqa(x)'-:_aa(x) on X.

‘It is clear that Og=Oy. We show by the followmg example that Og#Oy.

ExampLE 2.1. Let J be the set of all non-negative integers and take X= {x,,,
neJy and Y={y,,; neJ}. Define K by K(x,, ¥,+1)=—1 and K(X,+1, yp+1)=1
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for each neJ and K(x, y)=0 for any other pair. For a strictly positive function r on
Y, N={X, Y, K, r} is an infinite network. Let us put ¢,= Z r(y,). Then we have

G, (X)) =Cpq1 if 0<k<mand g, (x)=cp4; if k=m+1(cf. [3 Example 3.1]). Note
that N € Og if and only if ¢; =00. We have by (2.5)

D

m
on(xm)=2 ck+lcm+l+ Z c%+1 .
k=0 k=m+1

Thus N&O; if and only if i c2<oo. Let us now take r(y,)=n"12—(m+1)"1/2

m=1
Then ¢, =k™1/2. Hence q,,(x,)=o0 for all meJ. Thus N eOr—0Oq.
As a characterization of the condition N € O, we have

THEOREM 2.3. The condition N & Oy holds if and only if any one of the following
conditions is fulfilled:
(@) Y g (x)*<o for some ae X.
xeX

(b) There exists ve SHP(N) such that 0< 3 v(x)?><oo.
xeX

Proor. The condition N Oy implies (@) and (b) by (2.5) with x=a. Assume
that there exists v e SHP(N) such that 0< Y v(x)’<oo. Then v H(N) by Theo-

xeX
rem 1.1, so that there exists a € X such that 4v(a)= —t<0. By Lemma 1.2, we have
g,<vft on X, and hence condition (a) holds. Next we assume that condition (a)
holds. Then

0(0)= T 0/29.0)= gy <0

by (2.5), i.e., g,# . Thus N&Oy.
Let us put

QP(N)={ue L*(X); du(x)=—1 on X}

and denote by Oyp the set of all infinite networks for which QP(N) is the empty set.
We have

THEOREM 2.4. Or<=Ogp.

Proor. We proved in [4; Theorem 3.1] that N € Ogyp if and only if Z g.(x)
=00 forallae X. Suppose that N¢£Opp. Then there exists a € X such that Z ga(x)
<o0. It follows that ¥ g,(x)?>< o0, so that N& O by Theorem 2.3.

The relation Ogp# Oy is shown by the following

ExaMpLE 2.2. Let X, Y and K be the same as in Example 2.1 and let us take
r(y,)=n"t—m+1)"t. Then ¢,=k™!, and hence NO,. We have
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so that N € Oyp.

§3. Some properties of q,
For u € L(X), the Dirichlet integral D(u) of u is defined by

D)= 3, ) Z K G ()P

Denote by D(N) the set of all u € L(X) such that D(u)< oo and by Ly(X) the set of all
u € L(X) with finite support Su={xe X; u(x)#0}. Note that D(N) is a Hilbert space
with respect to the norm |ju| =[D(u)+u(xy)?]1/? (xo€ X). Denote by IDy(N) the
closure of Lo(X) in D(N) with respect to the norm.

For pe L*(X), the harmonic Green potential Gy and the harmonic Green po-
tential energy G(u, p) are defined by

Gu(a)= x‘é{ga(x)u(x),

Glu, W)= 2, [Gu(a)]u(a).
Let us put
M(G)={pe L*(X); Gue L(X)},
E(G)={pe L*(X); G(u, p)<oo}.

Note that pe L*(X) belongs to M(G) if and only if there exists x; € X such that
Gu(x;)< .
We prepare

LemMA 3.1. Let peL¥*(X). If GueD(N), then peE(G), GueDyN) and
D(Gp)=G(p, p)-
ProoF. Consider an exhaustion {N,} (N,=<X,, Y,») of N and define u, e L*(X)
by p(x)=p(x)on X, and u, (x)=00n X —X,. Putu=Gpand u,=Gu, Since (u, g\")
= ZXM(Z)gk"’ z) and [|g§” — g,/ -0 as n—c0, we have (u, g,)=u(a) and
ZE€

D(u,) =Gty 1) < Gpy pt) =(u, ) <[D)]/2[D(u1,)]'/?

by [3; Lemma 5.3], so that G(u,, u,) <D(u)<oo. It follows that G(u, p) <D(u)< co,
i.e., p € E(G). The rest of our assertion follows from [3; Lemma 5.4].
We have

THEOREM 3.1. Assume that N&Oyp. Then q, € D(N) if and only if q,€ Dy(N).
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Proor. Since Dy(N)<ID(N), we have only to prove the ‘‘only if” part. Assume
that D(g,)<oo. Then we have by (2.5)

qu(x)= ZX 92)g(2)= Gu(x)

with u=g,. Thus q,eDy,(N) by Lemma 3.1.

THEOREM 3.2. Assume that N&Or. Then the following three conditions are
equivalent:
(1) g, Do(N).
(il)) ¢q,e M(G).
(iii) g,€ E(G).

If any one of conditions (1), (ii) and (iii) is fulfilled, then

3.1 D(q,)= JEX 44xX)9,()=G(g4 9,)-

ProOF. Assume that g,eDg(N). Since g, is superharmonic, we have by [3;
Corollary of Theorem 5.2]

D(ga)=— % [44/0)]9:(x) = 2 4(x)94(x)=Gu(a)< 0,
so that g,& M(G). Thus (i) implies (ii). Assume that g, M(G). Then
Gl9a 9= 2 [ 2 9:(0)94(x)194(2)
= X 22)9/2)=Gq,(a)< o,

so that g,€ E(G). Thus (ii) implies (iii). Now we assume that g,e E(G). Then we
have q,=Gg,e Dy(N) and D(q,)=G(g,, g,) by [3; Lemma 5.4]. Thus (iii) implies (i).
By this theorem and Lemma 1.3, we have

COROLLARY. If q,e Dy(N) for some ac X, then q,€ Dy(N) for all be X.
We show by the following example that g, e D,(N) does not hold in general.

ExampLE 3.1. Let X, Y and K be the same as in Example 2.1 and consider an
infinite network N={X, Y, K, r}. Put ¢,= i‘, r(y,). Then we have by Example 2.1
and (3.1) "

0 m @D
G(g <o gxo)= 2 [ 2 Gerrt e 2 CRaql.
m=0 k=0 k=m+1

If Z ¢, <00, then Z ct<oo and G(g,,, g,) is finite, and hence g, eDy(N) by
Theorem 32, If ck—k A+0/2 (0<t<1/3), then we have N& O by Example 2.1 and
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G(gx0s x0) = i m~(+0/2 [ % k-(1+0]
m=1 k=m+1
= f: (m+1)~ D2 (1)1t
m=1

=(1/) 3 (m+1)~ar302=oo,
m=1

so that g, ,&Dy(N).
As for the biharmonic Green potential and the biharmonic Green potential
energy of u, we can easily verify

THEOREM 3.3. Let ue L*(X) and v=Gu. Then

(3.2 2 4= 3, M) =G6r(a).
(3.3) 3 T aueua)= 3 [Gu)P.
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