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REGULARLY TOTALLY ORDERED SEMIGROUPS II 

By Miyuki YAMADA 

(Received Nov. 9, 1957) 

ULI ~EI ~'~~~'*"' ~ IE~IJ~JI~F~~~~1~ 2 

l. A semigroup S(1) is said to be (partially) ordered if for some pairs of elements 

x, _v an orde7~'ing 7lelation x =y exists (also denoted by y~=x) which satisfies 

(1) a~a for every a~S, 

(2) a=b b=a unply a b, 

(3) a~b, b=c rmply a=c 

and (4) a=b unplies both ac~bc and ca~cb for every c~LS. 

We write usually a<b if a~b but a~b. Especially, we shall call S totally (or ' simply ') 

07~dered if all pairs x, y are ordered. In a totally ordered semigroup S (with an ordering 

relation ~~), we can consider the A1-chl:med,ean prope7~ty : S is archi7nedean if it satisfies 

the following 

(A) For any non-zero elements a, b of S, there exist positive integers n, m such 

that a">b, b">a. 

Now, Iet S be a commutative semigroup. Then we shall call S regula7~ly totally ordered 

(r. t. o.) if S satisfies the following conditions ; 

(1) for any different a, b~S, either aSc:bS(2) or bSc:aS holds, 

(2) if aScbS, then there exists a positive integer n such that a"~b~S, 

where the symbol c:: means ' is a proper subset of.' 

It is easy to see that if S is a r. t. o. semigroup then S becomes a totally ordered 

semigrQup if an ordering relation in S is deflned as follows ; a~b means aS~~bS(3) 

Next, we define the locally nilpotency of semigroups : A commutative semigroup S is 

said to be locally nilpotent if it satisfies the following conditions ; for any element a of S, 

n a" S(4) c if S has no zero element, 

* {o} if S has a zero element o, 

(1) 

(2) 

(3) 

(4 ) 

By the term semi*aroup we shall mean a system consisting of a class ~!LJ Of elements, a, b, c, 

in which there is defined an associative binary operation : a(bc) = (ab)c 

Let A, B be subsets 0L a semigroup S. Then, AB denotes the subset {ab I aeA, b~B} of S. 

Especially, if A consists 0L only one eleinent a then we use aB as a substitute for {a} B 

The symbol ~ means ' is a subset of '. 

n a'2S will denote the intersection of all a??S (n=1, 2, 3,...). 
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where c and {o} denote the empty set and the set consisting of o alone, respectively. 

In a r. t. o. semigroup, however, it is easily seen that the_ Iocally nilpotency is equivalent 

to the Archimedean property. In fact : Let S be a . r. t. o. semigroup. Suppose that S is 

10cally nilpotent. Take up any non-zero elements a, b from S. If there exists no integer 

n such that a">b, then we have a"~b L0r every integer n, whence bSCI n a"S c or {o}. 

Since bS~c we have b-o, contrary to b~0 

Conversely, suppose S to be archimedean. Let x, y be any non-zero elements of S 

Then there exist integers n, m such that x">y, ym>x. Hence we obtain n xiS n (x")'S 

(~ ~ y'S n". (y"')iS(~: n xiS, i. e., n xiS n yiS. Assume now that there exists an element 

a such that n aiS contains at least one non-zero element, say, an element z. Since a~0, 

n a S n z S~z This Implies z S:1)zS whence -* =z.. Since S is archimedean, from 

z2 -- we conclude z o (otherwrse there exrsts a posrtrve mteger J such that J>z) 

contrary to z~0. 

In a previous paper [2] the author gave some results concernmg the structure of 

archimedean r. t. o. semigroups 

(S. l) A semigroup is a discrete, archimedean r. t. o. semigroup ' without zero 

a non-discrete, archimedean r. t. o. semigroup 

an I-subgroup 
if and only if it is isomorphic with 

a p-dense, I-subgroup 

a closed half line L[1] 
of 

an open half line L (p) 

(S. 2) If an archimedean r. t. o. semigroup S contains a zero element and if S satisfies 

the cancellation law (in the sense mentioned below(5)), then the problem of 

determining the structure of S is reduced to the problem of determining the 

structure of either an archimedean r. t, o. semigroup without zero or a dense-in-

itself (or simply ' dense ') segment 

The author was, however, not able to know whether any archimedean r. t. o. semigroup 

satisfies necessarily the cancellation law or not. In the present paper he will give a 

solution for this problem, and show that we may as well eliminate the ' if S satisfles the 

cancellation law ' metioned in (S. 2) . 

2. In this section, to complete our previous paper [2] we shall prove that any archi-

medean r. t. o. semigroup satisfles the cancellation law. Let G be an archimedean r. t. o 

semigroup with zero o. By a zero divisor we shall mean a non-zero element x such that 

xy o for some non-zero element y of G. Moreover, by a ~il-element we shall meah an 

(5) Cancellation law in a semigroup with zero o : If ab=ac~0, then b=c 
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element x which satisfies x"=0 for some positive integer n. It was already shown by 

[2] that if an archimedean r. t. o. semigroup S has no zero divisor (accoringly, as a matter 

of course, if S has no zero element) then S satisfies the cancellation law. Therefore, 

we shall restrict our attention to an archimedean r. t. o. semigroup which has at least 

one zero divisor. Henceforth, S will denote an archimedean r. t. o. semigroup which has 

at least one zero divisor, and o will denote the zero element of S 

Lemma 1. xS-{o} implies x~o. 

The pro0L of this lemma is apparent. 

Lemma 2. Every element of S is a nil-element. 

Proof. Let a be a zero divisor of S. Then there exists a non-zero element b such 

that ab-o. Take up any element x of S. Were x"~b for every positive integer n, we 

would have bSC: n xiS {o}, contrary to b~0. Thus, there exists an integer i such that 

xi>b. Similarly there exists an integer j such that xj>a. From ab o we have o ab~xi+J 

whence xi+j-o. (It is obvious that o is the greatest element of S) 

Lemma 3. yx~x implies x-o. 

Proof. Since y"x~x for every positive integer n, we have x e n y"S {o}. This 

implies x=0. 

Lerm7ra 4. For any element x of S, there exist elememts y, z such that yz<x. 

Proof. A.ssume that there exists an element x which satisfies yz~x for any elements 

y, z of S. Then, for any positive integer n and for any 2n elements xl' x2, """ , x2" of 

S, we have 

xlx2 " " " x2" ~ x". 

Since every element of S is a nil-element, xm_o for some positive integer In. Thus we have 

xlx._ ..... x,9n~o 

for any 2m elements xl' x2, " " " x,m of S This rmplies xlx2 " " " x2m-1S-{o}, that is, 

xlx2" " "x2m-1~o. Repeating such a process successively 2m-1 times, we have consequently 

xl~o. Since xl is any element of S this implies S={o}, contrary to S~ {o} 

Lemma 5. If x<y, then the7~e exists z such that xz <y. 

Proof. Assume that for every element t of S, xt :='y is satisfied. Then xtSC:yS for 

every element t of S, and this implies xS2c~:yS. From x <y we have xw ~EyS for some 

w ~S. By Lemma 4, there exist elements wl' w.~ of S such that wlw2<w, i. e., wlw2S:~wS. 

Therefore wlw2v~wx for some v~S. From wlw2v-~'x and wlw2<w, we have wlw2x 

=wx-wlw2v. This is hol~vever impossible by the reasons as follows. Were wlw2x wx, 

we would have wx e xS2c~yS, contrary to tvx ~E yS. Were wlw2x<wx wlw2v, since 

w2x<w2v we would have w2wlv-w2xu for some u eS, whence wx ~'lw2v=xw2u ~ 
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xS2c:yS, contrary to wx ~EyS. Hence, there exists an element z of S such that xz<y 

Lenlma 6. S satisfies the cancellation law. That is : If a, x, y are elements of S such 

that ax ay~0, then x y. 

Pro0L. To prove this lemma, we assume that a~=ay. If, say, x<(y, then xt<y for 

some teS.. From ax-ay~~axt ax=axt and Lemma 3 we conclude ax o 

Using this lemma, we obtain immediately a complete form of Theorem 5 of our previous 

paper [2] : 

Theorem. If an a7~chilnedean r. t. o. semigroup has a zero divisor, then it is a dense-

in-itself segment (in the sense of Cllfford [1]) . 
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