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A band is synonymous with an idempontent semigroup. Let S be a band.

Then there exist, up to isomorphism, a unique semilattice I', and a disjoint family of rectan-
gular subbands of S indexed by I', {Sy: r&I'}, such that

1) S=U{Sy:rerl}
and (2) SuSpc Sy foralla,fer.
(See McLean [3]).

Following Kimura [1], I' is called the strcture semilattice of S, and Sy the r-kernel.

And this decomposition is called the structure decomposition of S, and denoted by S~ {Sy:
rel}.

For each subset 4 of I", we first define the relation A on S as follows:

ab=q and both ¢ and b are contained in a common Sy, 7 €4,
a Ra b if and only if { or
- ab="> and both @ and b are contained in a common Sy, r€4.

Then, it is easily seen that J, is an equivalence relation and especially R, and Rr (where ¢ is
the empty subset of I') coincide with 5 and £ in Kimura [2] respectively.

The following two theorems have been proved by [2]:

THEOREM 1. %R ,(Rr) is a congruence on S if and only if S is left (vight) semiregular.

Further, in this case the quotient semigroup S/R, (S/Rr) is left ( vight ) regular.

THEOREM II. Both R, and Rr are congruences on S if and only if S is regular.

Further, in this case S is isomorphic to the spined product of S/R 4 and S/Rr with respect to I'.

In this paper, we shall present a necessary and sufficient condition for R, to be a congruence
on S, and make some generalizations of Theorems I and II. Further, this paper contains an ex-
ample which shows the existence of a band B={B,,: £} ® on which for some subset 4 of £ both R o
and Ro, o (Where £\4 is the complement of 4 in 2) are congruences although neither R, nor Re
is a congruence, that is, the existence of a band which is quasi-regular but neither left semiregular
nor right semiregular.

Notations and terminologies. If M and N are sets such that M DN, then M \ N will denote
the complement of N in M. The notation ¢ will denote always the empty set. Throughout the
paragraphs 1 and 2, S will denote a band unless otherwise mentioned. The structure semilattice
of S and the r-kernel, for each r of the structure semilattice, will be denoted by I' and Sy res-

1) Yamada [57] is an abstract of this paper.
2) The notation ‘a band B={B,: 2} ’stands for‘ a band B whose structure decomposition is B~}; {Be:
weR}’
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pectively. And the structure decomposition of S will be denoted naturally by S~ 3 {Sy: reI'}.
Further, an element of Sy will be denoted by a small letter with the sufflix 7 such as av, by, ey
etc. Any other notation or terminology without definition should be referred to [1].

1. Quasi-separativity.

Let 4 be a subest of the structure semilattice I" of S, and put U {Sy: re4} =S).

Then, we have immediately

LEMMA 1. For a, beS(4), akab if and only if ab=a and ba=b.

Proof. McLean [3] has proved that for elements x, y, satisfying xy=x and yx=y, of a band
B={B,,: £} there exists B,, which contains both x and y. The ‘only if’ part follows from the
definition of N4 and the fact that in any Sy xy=x implies yx=3y.

The ‘if’ part is proved as follows. Let a and b be elements of S(d). If ab=a and ba=b, then
it follows from the McLean’s result that there exists Sy which contains both a and b. Since S(4)
Sa, 7 is an element of 4. Hence a % b.

Similarly, we obtain

LEMMA 2. For a, b S(4), a Ra b if and only if ab=>b and ba=a.

LEMMA 3. If %ia ts a congruence on S, then for an element a4 the following (1) and (2) are
equivalent:

(1) asba=0aq.

cgAucpba=cpan if afecd,

(2) For any cg, .
a,,qg=b,,c,g ifaBeEA

Proof. By the definition of N, the relation (1) implies @, Na bs. Since Ra is a congruence
on S, two relations cg@sRacbe and aucsRabacp hold for any cg=S.
We have then .
{ cpAucpby=cpa, if aBed,
l Gucs=bacs if apeed
because aucs=0ubucp=aubucsbucs=aucgbacg=bycp if af 4. Thus, (1) implies (2). Conver-
sely, assume the relation (2). Putting cg=a, in (2), we have aub,=a, since aac4d. According]y,
(2) implies (1). )
Similarly, we obtain
LEMMA 4. 1If Rais a congruence on S, then for an element a4 the following (1) and (2) are
equivalent :
(1) awbu=bg.
Aucpbucg=bgcg if aBeE4,

(2) For any cg,
l cpby=cpay ifafesd.

Using Lemmas 1-4,, we have
THEOREM 1. Ra is a congruence on S if and only if S satisfies the condition
cabacba=caba if abeS(d) and abce S(4),
abac=bac if abeS(d) and abceE S(4),
caba=cab if abee S(4) and abce S(4),
abcabac=abac if abee S(4) and abece S(4).
Proof. Necessity. Suppose that Ha is a congruence on S. We shall prove first that in the case
abe S(4) and abc= S(4) the relation cabacba=caba holds. First of all, there exist Sy and Sg such
that abe Sy and abc=.Sg. Since abe S(d) and abce S(4), both a and 8 are elements of 4. Further,

©)
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it is clear that the elements aba and ba are contained in Sy, and the elements caba and cba are
contained in S. Since (aba) (ba) =aba, the relation cabacba= caba follows from Lemma 3. The
proofs of the other cases are obtained by similar methods.

Sufficiency. Let S satisfy the condition (C). Since R, is an equivalence relation, we need only
to show that a R, b implies both ac R4 bc and ca Ra ¢b for every element ¢ of S. To show this,
for an arbitrary element ¢ and elements a, b such that a R4 b, we divide into four cases as follows;
(i) a, b= S) and aceS(4), (ii) a, beS(4) and ac& S(4), (iii) a, b S(d) and ace S4), (iv) a, b
& .S(4) and acg.S(d). In the case (i), both ab=a and ba=>b follows from Lemma 1 and elements
be, ca, ba. cb, ab and abc are all contained in S(4) since a, b&.S(4) and ace S(4). From these and
the condition (C), we have

acbc=abcbc=abc=ac,

bcac=bacac=bac=bc,

cach=cabacba=caba=ca
and cbca=cbabcab= cbab=cb.

Accordingly, we conclude ac R4 bc and ca R4 cb by using Lemma 1. By an analogous argu-
ment we can easily prove ac Ra bc and ca Ra ¢b also in the case (ii), (iii) or (iv). So we omit the
proofs in these cases.

COROLLARY. Both Ra and Rr\a are congruences on S if and only if S satisfies the condition

cabacba = caba

abeabac — abac} if abe S(d) and abc= S(d), or if abeS(I'\4) and abc=S(I'\4),
(€ B

caba = mb} if abe S(4) and abee S(I\4), or if abe S(I'\4) and abe= S(4).
abac = bac

Now, we shall define here (I',4)-semiregularity, I'(4)-regularity, quasi-separativity and quasi-
regularity. .S is called (I", 4)-semiregular (or (I', 4)-separative) if it satisfies the condition (C) in
Theorem 1. Further, S is called quasi-separative if it is (I',d)-semiregular for some subset 4 of I.
Moreover, S is is called I'(d)-regular (or I'(d)-separative) if it satisfies the condition (C¥) in the
foregoing corollary. And S is called quasi-regular (or separative) if it is I'(d)-regular for some sub-
set of I'.  Of course, it is obvious from the definition that I'(d)-regularity is equivalent to I'(I"\4)-
regularity.

Under these definitions, Theorem 1 and its corollary can be paraphrased as follows.

THEOREM 1'. Ra s a congruence on S if and only if S is (I',4)-semivegular.

COROLLARY. Both Ra and Rr. s are congruences on S if and only if S ts I'(d)-regular.

REMARK. (T, ¢)-semiregularity ( (I, I')-semiregularity, I'(¢) —(=I"(I') —) regularity) coincides
with left semiregularity (right semiregularity, regularity). Accordingly, it is particularly noted

from Theorem 1’ and its corollary that

RN, is a congruence left semiregular
Nr is a congruence on S if and only if S is { right semiregular
both R, and R are congruences regular

Therefore, Theorem 1’ or its corollary can be considered as a generalization of the first half of
Theorem I or II respectively.

The next theorem gives a necessary and sufficient condition for S to be quasi- separative:

THEOREM 2. S is quasi-separative if and only if it is the class sum of mutually disjoint subsets
A, B having the properties

(1) A>a, axa=a and xax=x tmply x=4,
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(2) B>=b, byb=b and yby=y imply y=B,

(3) A>ab and B=abc imply abac =bac,

(4) A>abc and B>ab imply caba= cab,

(5) B=ab and B=abc imply abcabac=abac,

(6) A=ab and A>abc imply cabacba= caba.

Proof. Necessity. By the definition of quasi-separativity, for some 4C I, R4 is a congruence
on S. Let A=S(4) and B=S(I'"\d). Then, it is easily seen from Theorem 1 that 4 and B have
the properties (1)-(6). Since S=A4 U B, the proof of the ‘only if’ part is complete.

Sufficiency. Suppose that S is partitioned into disjoint subsets 4, B having the properties (1)-
6). Letd={a: ANSy#¢, a=I"}. We shall first prove the relation A=.S(d). Take up an arbi-
trary element x from S(4). Then, there exists Sg such that ¥=S;C S(d). Since the set ANSg is
non-empty, there exists bg such that be= 4N Sp.

By the rectangularity of Sg, we have bgxbg=0bg and xbgx=x, which implies x= A4 by the pro-
perty (1). Thus we have S(4)C 4. Since the converse relation 4 .S(d) is clear, the relation 4=
S(4) holds. Now, it follows from the relation 4=.S(4), Theorem 1 and the propertles (3)-(6) that
R4 is a congruence on S. Therefore, the ‘if’ partis valid.

COROLLARY. S is quasi-regular if and only if it is the class sum of mutually disjoint subsets A,
B having the properties

(1) A>a, axa=a and xax=x imply x A4,

(2) B>=b, byb=»b and yby=1y imply y= B,

( A=ab and A>abc
(3) or k imply cabacba=caba and abcabac = abac,
B=ab and B=abc |
A=ab and B=abc
“4) or imply abac=bac and caba=cab.
A>abc and B=ab

2. The structure of quasi-regular bands.
A band is called bi-regular if for any given elements a, b it satisfies at least one of the relations
.aba=ba and aba=ab.
LEMMA 5. S is left singular or vight singular if and only if it is vectangular and bi-regular.
Proof. Let S be rectangular and bi-regular. Then S may be considered as the direct product
L X R of a left singular band L and a right singular band R, since S is rectangular.
(See Kimura [17).
Pick up a: and as from L, and b; and bs from R.
Then,
(@1,b1) (az,b2)=(a1,b:) and (az,b2) (a1,61)=(az,b1).
On the other hand, ’
(a1,b1) (a2,b2)
(ay,b1) = (@1,b1) (as,bs) (a1,b1)= 4 or
(@z2,b2) (@1,b1)
by bi-regularity. .
Hence we have either (a1,b1) =(a1,b:) or (a1,b1)=(a2,b:), whence b;=b, or a1=a..
Accordingly, at least one of L and R consists of a single element. This means that S is left

singular or right singular. Thus, the proof of the ‘if’ partis complete. The ‘only if’ partis clear.
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The global structure of bi-regular bands is given by

THEOREM 3. S is bi-vegular if and only if each r-kernel Sy is left singular or right singular.

Proof. Necessity. Let .S be bi-regular. It is easily seen that any subband of a bi-regular band
is bi-regular. Hence, each r-kernel Sy is rectangular and bi-regular. According to Lemma 5, .Sy
is then left singular or right singular.

Sufficiency. Assume that each r-kernel Sy of S is left singular or right_ singular. Let a, and
bg be arbitrary elements of S. Then, both asbg and bgay are contained in Syg.

Now, we have

j agzbg if Sqp is left singular,

awbﬁaa = (aabﬂ) (b;;a,,) =
l bgays if Sugs is right singular.

Thus, S is bi-regular.

Let B={B,: £} be a bi-regular band. From Theorem 3, each w-kernel B, is then left singular
or right singular. Let 4 be a subset of £.

B is said to be (2,4)-regular if it satisfies the following (P):

For we 4, B, is left singular.
@ { For wg 4, B, is right singular.

It should be noted that (2,2)-regularity and (£2,4)-regularity coincide with left regularity and
right regularity respectively. Further, it is sometimes possible that a band B={B,,: £} is both
(2,41)-and (2,4;)-regular for some different subsets 4; and 4, of 2.

For example, take up a commutative band (i.e. semilattice) T. Then, the structure decomposi-
tion of T'is T~ X { {t} :t=T}. Since every t-kernel consists of the single element ¢, it is left and
right singular. Hence, T is (T,T1)-regular for an arbitrary subet Ty of T.

THEOREM 4. Let S be (I',d)-semiregular. Then the quotient semigroup S/Ra is a (I',['\d)- -
regular band, and its structure decomposition is S/Ra~ Y {Sy/Ra: rel}.

Proof. We shall first prove that S/R, is bi-regular. Denote by x the congruence class con-
thining x mod Ra. Pick up two congruence classes aq, bs from S/Ra. If af 4 then asbpasbpas

=aqbpay, whence azbpay=bpay. If conversely afecd then agbpasasbs=asbs, whence anbpas=

audp.
Therefore
asbp
agbsas=1 or
bpagy.

This shows S/Ra to be bi-regular. Further, it is easily seen that the structure decomposition
of S/Rais S/Ra~3{Sv/Ra: rl't. Thus, to complete the proof it is sufficient to prove that
Sv/Ra is left singular if r &4 and Sy/Ra is right singular if r&4.

(i) The case r=4. Pick up two different elements a, b (a=Sy, b=Sy) from Sy/Ra.

Then, a=aba=aba=a b or =b a by the bi-regularity of S. If a=a b, then we have a=b which
is contrary to a#b. Hence, a=ba. Thus, Sy/Ra is right singular.

(ii) 'The case reed. The left singularity of Sy/R4 is proved by an analogous argument to that
in (i).

THEOREM 5. If both R and Rr, s are congruences on S, then S is isomovphic to the spined
poduct of S/Ra and S/Rr.a with respect to I'.
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Proof. Define the relation ® on S as follows:

a Db if and 6nly if a and b are contained in a common S'y.

Then,

@) Ra, AraZD
(1) RaNRra=0
and (iii)) RaURr\a=D
are obvious.
Next, we shall prove
(iv) Ra, Rr.a are permutable.

Let a Ra x and xRr\ab. Then, there exists Sy containing a, x, b. If y&4, then bhaab and
bair, a a follow from bab=b and aab=ab. Conversely if r& 4, then b Ra ba and ba Ry 4 a follow
from bba=ba and aba=a. Thus, it was proved that there exists an element y such that b Ry
and ¥ fr\a a. Therefore, Ra, Rr\a are permutable.

Since R4, Rr,a satisfy (i)-(iv), S is isomorphic to the spined product of S/Ra and S/fr\a with
respect to I'. (See Yamada [57). )

Combining Theorems 4 and 5, we have

COROLLARY. If S is I'(4d)-regular, then S is isomorphic to the spined product of a (I',['/4)-
regular band and a (I' ,A)-1’e§ula1f band with vespect to I'.

REMARK. It is noted that Theorem 4 (5) is a generalization of the latter half of Theorem I
{an.

Let Bi={B,®: £} and By={B,®: £} be bi-regular bands with the same structure semilattice
£. Then, B, and B; are called mutually assoctated bands if the following (A) is satisfied:

B,® is left singular and B, is right singular.
(A) For any given o= 8, { or
B, is right singular and B,® is left singular.

From the definition of quasi-regularity and the foregoing corollary, we have immediately.

THEOREM 6. A guasi-regular band B={B.: 2} is isomorphic to the spined product of mutual-
ly associated bi-regular bands with vespect to 2.

COROLLARY. S is isomorphic to the spined product of mutually associated bi-regular bands
with vespect to I' if it is the class sum of mutually disjoint subsets A, B having the properties (1)-(4)
in Covollary to Theorem 2.

3. Example. '
_ Let £ be the semilattice consisting of 0 and 1 with respect to the ordinary multiplication.
And let
Bi={(ai, a;%): 4,j=1, 2},
By= {(bw, bx*): m, n=1, 2, 3}
and B=B;U B,.
Then, B becomes a band with respect to the multlphcatlon defined by
— (1) (ai,a;%) (ar,as*)=(ap,a;*) for all 4, 7, k, s,
(A1) (bmybis™) (be,bo™) = (bin,bo*) for all m, n, t, u,
[ (bm,br*) for m=2,3 and for all 7, j, n,
(I11) (as,a5*) (bm,br*)= (b3,b,*) fori=1, m=1 and for all j, n,
(b3,b,*) fori=2, m=1 and for all j, n,
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(bm,by*) for n=2,3 and for all 7, 7, m,
— (IV) (bm,bn*) (as,a;%) = 5 (bm,bs*) for n=1, j=1 and for all 7, m,
(bim,b2*) for n=1, j=2 and for all 7, m.

The structure decomposition of B is B~} {B,: o=#}. Further, it is easily seen from simple
consideration that both R0} and Ny1) are congruences on B although neither Ry nor Ro is a con-
gruence. That is, Bis a 2({0})-regular band and isomorphic to the spined product of the mu-
tually associated bands B/R (o) and B/Nf 1} with respect to £, but B is neither left semiregular nor
right semiregular. Consequently, it has been proved that there exists a quasi-regular band which

is neither left semiregular nor right semiregular.
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