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A band rs synonymous with an idempontent semigroup . Let S be a band 

Then there exist, up to isomorphism, a unique semilattice F, and a disjoint family of rectan 

gular subbands of S indexed by F, {Sy : r e F}, such that 

(1) S= U {Sy : r~F} 

and (2) S(~SpcSo'p for all a,~EF. 
(See McLean [3,])-

Following Kimura [1], F is called the strctul'e sesnilattice of S, and Sy the r-kernel 

And this decomposition is called the structure decofnposition of S, and denoted by S-~ {Sy : 

T~F} . 

For each subset A of F, we first define the relation ~~A on S as follows 

ab=a and both a and b are contained in a common S),, reEA, 

a ~~A b if and only if or 

' a;b=b and both a and b are contained in a common Sy, r ~~ A 

Then, it is easily seen that ~tA is an equivalence relation and especially ~:c and ~tr (where c is 

the empty subset of F) coincide with ~ and ~: in Kimura r2] respectively 

The following two theorems have been proved by L2] : 

THEOREM I. ~~c(~tr) is a congruence on S if and only if S is left (right) sem.iregular. 

Further, in this case the quotient semigroup Sl~tc (S/~tr) is left (right) regular. 

THEOREM II. Both ~tc and ~tr are congruences on S if and only if S is regular 

11=ul'ther, in this case S is isonoorphic to the spined product of S/~tip a,nd S/~~r with respect to r . 

In this paper, we shall present a necessary and sufficient condition for ~tA to be a congruence 

ion S, and make some generalizations of Theorems I and I I . Further, this paper contains an ex-

ample which shows the existence of a band B {B~ : ~}2) on which for some subset A of J2 both ~tA 

and ~t~/A (where J2¥A is the complement of A in J~) are congruences although neither ~~c nor ~~~ 

is a congruence, that is, the existence of a band which is quasi-regular but neither left semiregular 

nor nght semrregular 

Notations and terminologies. If M and N are sets such that MDN, then M ¥ N will denote 

the complement of N in M. The notation c will denote always~ the empty set. Throughout the 

paragraphs I and 2, S will denote a band unless otherwise mentioned. The structure semilattice 

{if S and the r-kernel, for each r of the structure semilattice, will be denoted by F and Sy res-

1) Yamada [5] is an abstract of this paper. 

2) The notation 'a band BE;{B~ !2} stands for a band B whose structure decomposiuon rs B-' ~ {B(c. 
coeQ}' 
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pectively. And the structure decomposition of S will be denoted naturally by S-~ {Sy : r ~ F} . 

Further, an element of Sy will be denoted by a small letter with the sufflix r such as av, bY, e Y 

etc. Any other notation or terminology without definition should be referred to Ll] 

1 . Quasl-separatrvlty 

Let A be a subest of the structure semilattice F of S, and put U {Sy : r ~EA} = S(A) 

Then, we have immediately 

LEMMA 1. For a, beS(A), a~tAb if and only if ab=a and ba=b. 

Proof. McLean [3] has proved that for elements x, y, satisfying x'y = x and yx=y, of a band 

B {B~ : 12lf there exists B~ which contains both x and y. The 'only if' part follows from the 

definition of ~j:A and the fact that in any Sy xy =x implies yx =y 

The 'if' part is proved as follows. Let a and b be elements of S(A). If ab=a and ba=b, then 

it follows from the McLean's result that there exists Sy which contains both a and b. Since S(A) 

~)a, r is an element of A. Hence a ~tA b 

Similarly, we obtain 

LEMMA 2. For a, b~ES(A), a ~tA b if and only if ab=b and ba=a. 

LEMMA 3 . If ~tA is a congruence on S, then for an element a E A the following (1) and (2) are 

equivalent : 

(1) a(~,ba' = a(~' 

cFao;cpbo;=cpao~ ifaee4 
(2) For any cp, 

acecp = bcecp if a~ ~~ A 

Proof. By the definition of ~tA, the relation (1) implies a(e ~tA ba' Since ~tA is a congruence 

on S, two relations c~a(~~~Ac~b(e and a(ecp~tAb(ecp hold for any cpeS. 

We have then 
{ cpa(ecpbce=cpaee if a~~A, 

a(tc ~ = b~cp if ap ~~ A 

because a(ecp=a(tb(ecF = a~eb(ecpbcecp = a(ecpbacp=b(ecp if ae ~EA. Thus, (1) implies (2). Conver-

sely, assume the relation (2). Putting cp = aee in (2), we have ao;b(e=a(~ since aa E A. Accordingly, 

(2) implies (1) 

Similarly, we obtain 

LEMMA 4. If ~tA is a congruence on S, then for an element a ~E A the following (1) and (2) are 

equivalent : 

(1) a~b(e = b(e' 

aoecpbctcp=beecp tf ae~EA, 
(.2) For any cp, 

cpb(e = cpa(e if ae E A. 

Using Lemmas I -4,, we have 

THEOREM I . ~tA is a congruence on S if and only if S satisfies the condition 

' cabacba = caba if ab e S(A) and abc ~ S(A), 

(C) abac=bac if abeS(A) and abc~S(A), 
caba=cab 1:f ab~ES(A) and abc~ S(A), 
- abcabac = abac if ab el~ S(A) and abc ~E S(A). 

Proof. Necessity. Suppose that ~:A is a congruence on S. We shall prove first that in the case 

ab e S(A) and abc ~ S(A) the relation cabacba = caba holds. First of all, there exist SQ; and Sp such 

that ab e; S(~ and abc ~ S~. Since ab e S(A) and abc e S(d), both a and e are elements of A. Further 
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it is clear that the elements aba and ba are contained in S(e' and the elements caba and cba are 

contained in S. Since (aba) (ba) = aba, the relation cabacba = caba follows from Lemma 3 . The 

proofs of the other cases are obtained by similar methods 

Sufficiency. Let S satisfy the condition (C). Since ~~A is an equivalence relation, we need only 

to show that a ~:A b implies both ac ~tA bc and ca ~tA cb for every element c of S. To show this, 

for an arbitrary element c and elements a, b such that a ~tA b, we divide into four cases as follows ; 

(i) a, beS(A) and ac~S(A), (ii) a, beS(A) and ac~~S(A), (iii) a, bejES(A) and ac~S(A), (iv) a, b 

elE S(A) and ac ~i~ S(A). In the case (i), both ab = a and ba = b follows from Lemma I and element~ 

bc, ca, ba, cb, ab and abc are all contained in S(A) since a, b ~ S(A) and ac eE S(A). From these and 

the condition (C), we have 

acbc = abcbc = abc = ac, 

bcac = bacac = bac = bc, 

cacb = cabacba = caba = ca 

and cbca = cbabcab = cbab = cb. 

Accordingly, we conclude ac ~tA bc and ca ~tA cb by using Lemma I . By an analogous argu-

ment we can easily prove ac ~tA bc and ca ~~:A cb also in the case (ii), (iii) or (iv). So we omit the: 

proofs in these cases. 

COROLLARY. Both ~tA and ~~r ¥ A are congruences on S if and only if S satisfies the conditiou 

cabacba = cabal -(C*) abcabac = abac-f if abe S(A) and abceES(d), or if abES(F¥A) and abceES(F¥A), 

caba = cab~ if ab E S(A) and abc~ S(F¥A), or if ab ~ S(r¥A) and abc ~~ S(A). 

abac = bac. 

Now, we 8hall define here (F,A)-semiregularity, F(A)-regularity, quasi-separativity and quasi-

regularity. S is called (F, A)-semiregu.lar (or (F, A)-separattve) if it satisfies the condition (C) irL 

Theorem I . Further, S is called quasi-separative if it is (F,A)-semiregular for some subset A of F 

Moreover, S is is called r(A)-regular (or F(A)-separatlve) if it satisfies the condition (C*) in th~ 

foregoing corollary. And S is called quasi-regular (or separative) if it is F(d)-regular for some sub-

set of F. Of course, it is obvious from the definition that F(A)-regularity rs equrvalent to F(F¥A)-

regularity 

Under these definitions, Theorem I and its corollary can be paraphrased as follows 

THEOREM 1/. ~tA is a congruence on S if and only if S is (F,A)-semiregular 

COROLLARY. Both ~tA and ~~r ¥ A are congruences on S if and only if S Is F(d)-regular 

REMARK. (F, c)-semiregularity ( (F, F)-semiregularity, F(c)-( F(F) -) regularity) coincides. 

with left semiregularity (right semiregularity, regularity) . Accordingly, it is particularly noted 

from Theorem I ! and its corollary that 

~~c rs a congruence left semrregular 
~?r is a congruence on S if and only if S is right semiregular 

both ~~c and ~tr are congruences regular 
Therefore, Theorem 1/ or its corollary can be considered as a generalization of the first half of 

Theorem I or 11 re'Spectively. 

The next theorem gives a necessary and sufficient condition for S to be quasi- separative 

THEOREM 2. S is quasi-separative if and only if it is the class sum of mutually disjoint subset~ 

A, B having the properties 

(1-) A 3a, axa=a and xax=x imply xEA, 
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(_2) BE)b, byb =b and yby=y imply yH.-~B, 

(3) A 3ab and B~}abc imply abac = bac, 

(4) A EE~abc and B~)ab imply caba = cab, 

(5) B~)ab and B~- abc imply abcabac = abac, 

(6) A ~}ab and A E~abc imply cabacba = caba. 

Proof. Necessity. By the definition of quasi-separativity, for some A c F, ~tA is a congruence 

on S. Let A = S(A) and B = S(F¥A). Then, it is easily seen from Theorem I that A and B have 

the properties (1)-(6). Since S=A U B, the proof of the 'only if' part is complete. 

Suf~iciency. Suppose that S is partitioned into disjoint subsets A, B having the properties (1)-

(6). Let A= {a : A n S(e~c, aEF} . We shall first prove the relation A=S(A). Take up an arbi-

trary element x from S(A). Then, there exists Sp such that x~_ SpcS(A). Since the set A n Sp is 

non-empty, there exrsts bp such that b~ F~_A n Sp 

By the rectangularity of Sp, we have bt3xbp=bp and xbBx=x, which implies XEA by the pro-

perty (1). Thus we have S(A)cA. Since the converse relation A c S(A) is clear, the relation A = 

S(A) holds. Now, it follows from the relation A =S(A), Theorem I and the properties (3)-(6) that 

',~:'A is a congruence on S. Therefore, the ' if ' part is valid. 

COROLLARY. S is quasi-regu.lar if and only if it is the class suln of m'utu.ally disjoint subsets A, 

B having the properties 

(1) 

(,2) 

(3) 

(4) 

2
.
 

A_=-'Ha, axa =a and xax=x zlnply XEA 

BE)b, byb=b and yby=y imply yeEB, 

( A=:;-ab alid A;)-abc 

or imply cabacba = caba and abcabac = abac, 
BEE~ab andB3}abc ) 

A E)ab and B~}abc 

Imply abac bac and caba = cab. 

A E)abc and B E)ab 

The structure of quasi-regular bands. 

A band is called bi-regul~~ar if for any given elements a, b it satisfies at least one of the relations 

~lba = ba and aba = ab. 

LEMMA 5 . S is left singular or right singular if and only if it is rectangular and bi-regular. 

Proof. Let S be rectangular and bi-regular. Then S may be considered as the direct product 

L X R of a left singular band L and a right singular band R, since S is rectangular 

(See Kimura Ll]) 

Pick up al and a2 from L, and bl and b2 from R. 

Then, 
(al bl) (a2,b ) (al'b2) and (a2,b2) (al'bl)=(a2,bl)' 

On the other hand, 
(al'bl) (a2,b2) 

(al'bl) = (al'bl) (a2,b2) (al'bl)= or 

(a2,b2) (al,bl) 

~ry bi-regularity. 

Hence we have either (al'bl) = (al'b2) or (al'bl)= (a2,bl)' whence -bl = b2 or al=a2 

Accordingly, at least one of L and R consists of a singie element. This means that S is left 

singular or right singular. Thus, the proof of the ' if ' part is complete. The 'only if' part is clear 
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The global structure of bi-regular bands is given by 

THEOREM 3 . S Is bl-regular if and only if each T-kernel Sv is left singular or right singular 

Proof. Necessity. Let S be bi-regular. It is easily seen that any subband of a bi-regular band 

is bi-regular. Hence, each r-kernel Sy is rectangular and bi-regular. According to Lemma 5, Sy 

is then left singular or nght smgular 

Sufficiency. Assume that each r-kernel Sy of S is left singular or right singul.ar. Let a(1; and 

b~ be arbitrary elements of S. Then, both aseb~ and bpao~ are contained in S(ep 

Now, we have 
a(ebp if So'p is left singular, 

aa;bpao; = (a(~bp) (bpao') 

bt;a(v if SQ;e is right singular 

Thus, S is bi-regular. 

Let B {B~ : J~} be a bi-regular band. From Theorem 3, each a)-kernel B~ is then left singular 

or right singular. Let A be a subset of J~ 

B is said to be (J2,A)-regular if it satisfies the followirig (P) 

For a)~A, B~ is left singular. 
( P) 

For a)ei~A, B~ is right singular 

It should be noted that (~2,~2)-regularity and (~~,c)-regularity coincide with left regularity and 

right regularity respectively. Further, it is sometimes possible that a band B {B~ : 12} is both 

(J2,A1)-and (J2,A2)-regular fol~ some different subsets A1 and A2 of J2 

For example, take up a commutative band (i.e. semilattice) T. Then, the structure decomposi-

tion of T is T-~ { {t} :tET} ･ Since every t-kernel consists of the single element t, it is left and 

right singular. Hence, T is (T, T1)-regular for an arbitrary subet Tl of T 

THEOREM 4. Let S be (F,A)-semiregular. Then the quotient semlgroup S/~tA is a (r,r¥d)-

regular band, and its structure decomposition is S/~tl¥~ ~: {Sy/~~A : r~F} . 

Proof. We shall first prove that S/~~A is bi-regular. Denote by x the congruence class con-

thining x mod ~tA. Pick up two congruence classes aot, b~ from S/~tA. If ae ~ d then ao;b~aabpa~ 

=a(tbpaee, whence ao'bpa(e =bpa(e' If conversely ae ~~A then aQsb~aceao'bp=a(~'bp, whence actbp(ect= 

a(tb p . 

Theref ore 

a(eb p 

actb~8ace = or 

b~paa;' 

This shows S/~~A to be bi-regular. Further, it is easily seen that the structure decompositiorL 

of S/~tA is S/~tA-~ {SY/~tA : r~F} . Thus, to comp]ete the proof it is sufiicient to prove that 

SY/RA is left singular if r eIEA and Sv/~tA is right singular if r ~A 

(i) The case rF-A. Pick up two different elements a,lb (aESy, bF_Sy) from Sy/~~A 

Then, a = aba = d ~ a = 'b~or = ~a~by the bi-regularity of S. If a = a b, then we have a = b which 

is contrary to a ~~'b. Hence, a = b a. Thus, Sy/~~A is right singular 

(ii) The case r ~E A. The left singularity of S y/~~A is proved by an analogous argument to that 

in (i). 

THEOREM 5. If both ~tA and ~~r~A are congruences on S, then S is isomorphic to the spined 

poduct of S/~tA and S/~tr ¥ A ~vith respect to F. 
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Proof. Define the relation ~) on S as follows 

a ~) b if and only if a and b are contained in a common Sy 

Then, 

(i) ~tA, ~tr¥A<~) 

(ii) ~~An~tr¥A=0 

and (iii) ~tA U~~:r¥A=~) 

are obvious. 

Next, we shall prove 

(iv) ~~A, ~~:r A are permutable 

Let a ~tA x and x~tr¥Ab. Then, there exists Sv containing a, x, b. If rEA, then b~l"Aab and 

ba~tr¥A a follow from bab=b and aab=ab. Conversely if r~A, then b ~tA ba and ba ~tr¥A a follow 

from bba = ba and aba = a. Thus, it was proved that there ' exists an element y such that b ~j:Ay 

and y ~~r¥A a. Therefore, ~~A, ~tr. ¥ A are permutable. 

Since ~tA, ~tr ¥ A Satisfy (i)-(iv), S is isomorphic to the spined product of S/~tA and S/~~:r ¥ A with 

respect to F. (See Yamada L5]) 

Combining Theorems 4 and 5, we have 

COROLLARY. If S is F(A)-regular, then S is isomorphic to the spin.ed product of a (F,F/A)-

regular band and a (F,A)-regular band with respect to r. 

REMARK. It is noted that Theorem 4 (5) is a generalization of the latter half of Theorem I 

(II). 

Let Bl JtB~(1) : ~~} and B2 {B~(2) : J~} be bi-regular bands with the same structure semilatttce 

J2 Then, B1 and B2 are called mutually associated bands if the following (A) is satisfied 

B~(1) is left singular and B~(2) is right singular 

(A) For any given (~)~~J:2, or 

B~(1) is right singular and B*(2) is left singular 

From the deflnition of quasi-regularity and the foregoing corollary, we have immediately 

THEOREM 6. A quasi-regular band B JtB~ : J2} is isomorphic to the spined product of mutuat-

ly associated bi-regular bands with respect to ~.). 

COROLLARY. S is isolnorphic to the sp'ined product of mutually associated bi-regu[ar bands 

with respect to F if it is the class sum of mutually disjoint subsets A, B having the properties (1)-(4) 

in Corollary to Theorem -2. 

3 . Example 

Let ~2 be the semilattice consisting of O and I with respect to the ordinary multiplication 

And let 

Bl=fL(ai, aj*): i, j= 1, 2}, 

B0= {(b?7h' bn*): m, n=1, 2, 3} 

and B= B1 U Bo' 

Then, B becomes a band with respect to the multiplication defined by 

- (1) (ai,aj*) (ak,as*) = (ah,aj*) for all i, j, k, s, 

(II) (bm'b7'*) (bt,bu*) = (b7n'bu*) for all m, n, t, u, 

(b,7v'bn*) for m=2,3 and for all l, J, n 

(III) (ai,,aj*) (b,7a'b73*)= (b3,b7~*) for i=1, m=1 and for all j, n, 

(b2,b,8*) for i = 2, m=1 and for all j, n, 
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(b?7v'bra*) for n=2,3 and for all i, j, m, 

- (IV) (b77b'bl8*) (ai,aj*) = (be7h'b3*) for n=1, j=1 and for all i, m, 

(b9n'b2*) for n= 1, j = 2 and for all i, m 

The structure decomposition of B is B-~ {B~ : (o~E~2} . Further, it is easily seen from simple 

consideration that both ~~-{o} and ~:-{1} are congruences on B although neither ~~c nor ~t~ is a con-

gruence. That is, B is a J2({O})-regular band and isomorphic to the spined product of the mu-

tually associated bands B/~~{ol and B/~t{1J with respect to J2, but B is neither left semiregular nor 

right semiregular. Consequently, it has been proved that there exists a quasi-regular band which 

is neither left semiregular nor right semiregular 
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