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Abstract In mathematical programming, duality theorems play a central
role. Especially, in convex and quasiconvex programming, Lagrange duality
and surrogate duality have been studied extensively. Additionally, constraint
qualifications are essential ingredients of the powerful duality theory. The best-
known constraint qualifications are the interior point conditions, also known
as the Slater-type constraint qualifications.

A typical example of mathematical programming is a minimization prob-
lem of a real-valued function on a vector space. This types of problems have
been studied widely and have been generalized in several directions. Recently,
the authors investigate set functions and Fenchel duality. However, duality the-
orems and its constraint qualifications for mathematical programming with set
functions have not been studied yet. It is expected to study set functions and
duality theorems.

In this paper, we study duality theorems for convex and quasiconvex set
functions. We show Lagrange duality theorem for convex set functions and
surrogate duality theorem for quasiconvex set functions under the Slater con-
dition. As an application, we investigate an uncertain problem with motion
uncertainty.
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1 Introduction

In mathematical programming, duality theorems play a central role. Especially,
in convex and quasiconvex programming, Lagrange duality and surrogate du-
ality have been studied extensively. Additionally, constraint qualifications are
essential ingredients of the powerful duality theory. The best-known constraint
qualifications are the interior point conditions, also known as the Slater-type
constraint qualifications. As generalizations of such interior point conditions,
research on necessary and sufficient constraint qualifications for some types of
duality theorems have been studied, see [1,4,8,14,15,23,28–37].

In [27], Morris introduces a set function, which is defined on the class of
measurable subsets of an atomless finite measure space satisfying a certain
convexity condition. Although a set-valued function f is defined on a vector
space and the value f(x) is a set, a set function F is defined on a class of
subsets and the value F (A) is a real number. For set functions, various results
in convex analysis have been generalized, for example see [5,6,12,13,20–22,25,
27,39]. However, the domain of Morris’s set functions is complicated. Hence,
in [38], the authors study convex set functions in a simple way. We introduce
Fenchel conjugate for set functions, and study Fenchel duality in terms of
convex analysis on an embedding normed space of compact convex subsets.
However, duality theorems and its constraint qualifications for mathematical
programming with set functions in [38] have not been studied yet. It is expected
to study set functions and duality theorems in simple definition and setting.

In this paper, we study duality theorems for convex and quasiconvex set
functions. Especially, we show Lagrange duality theorem for convex set func-
tions and surrogate duality theorem for quasiconvex set functions under the
Slater condition. As an application, we investigate an uncertain problem with
motion uncertainty. We regard a decision variable set as an error caused by a
motion, and investigate robust approach for the problem.

The remainder of the present paper is organized as follows. In Section 2, we
introduce some preliminaries. In Section 3, we study Lagrange duality theorem
for convex set functions. In Section 4, we show surrogate duality theorem for
quasiconvex set functions. In Section 5, we investigate an uncertain problem
as an application of our results.

2 Preliminaries

Let X be a vector space over R. Given nonempty sets A, B ⊂ X, and Γ ⊂ R,
we define A+B and ΓA as follows:

A+B = {x+ y ∈ X | x ∈ A, y ∈ B},
ΓA = {γx ∈ X | γ ∈ Γ, x ∈ A}.
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Also, we define A+ ∅ = Γ∅ = ∅A = ∅. A set A is convex if for each x, y ∈ A,
and α ∈ [0, 1], (1−α)x+αy ∈ A. Let A0 be the following family of nonempty
sets:

A0 = {A ⊂ X | A : nonempty}.
It is clear that A0 is closed under addition and multiplication by positive
scalars. A subfamily A ⊂ A0 is said to be convex if for each A, B ∈ A, and
α ∈ [0, 1], (1 − α)A + αB ∈ A. There are so many examples of a convex
subfamily as follows:

– the family of convex subsets of a vector space,
– the family of singletons of a vector space,
– the family of finite subsets of a vector space,
– the family of compact subsets of a topological vector space,
– the family of open subsets of a topological vector space.

We introduce the following elementary results.

Theorem 1 [38] Let A, B ⊂ A0. The following statements hold:

(i) A0 is convex.
(ii) If A, B are convex, then A+ B = {A+B ⊂ X | A ∈ A, B ∈ B} is convex.
(iii) If A is convex and α ∈ R, then αA = {αA | A ∈ A} is convex.
(iv) Let I be an index set, and Ai a convex subfamily of A0 for each i ∈ I.

Then, ∩i∈IAi is convex.

Let f be a real-valued function on A0. f is said to be convex if for each A,
B ∈ A0, and α ∈ [0, 1], f((1−α)A+αB) ≤ (1−α)f(A)+αf(B). Additionally,
f is said to be quasiconvex if for each A, B ∈ A0, and α ∈ [0, 1], f((1−α)A+
αB) ≤ max{f(A), f(B)}. The epigraph of f is defined as epif = {(A,α) ∈
A0×R | f(x) ≤ α}. Define the level sets of f with respect to a binary relation
⋄ on R as

L(f, ⋄, α) = {A ∈ A0 | f(A) ⋄ α}
for any α ∈ R. The following theorem is easy to prove and the proof will be
omitted.

Theorem 2 Let f be a real-valued function on A0. Then, the following state-
ments hold:

(i) f is convex if and only if epif is convex.
(ii) f is quasiconvex if and only if L(f,≤, α) is convex for any α ∈ R, if and

only if L(f,<, α) is convex for any α ∈ R.

A real-valued function f on A0 is said to be interval upper semicontinuous
(interval-usc) on a convex subfamily A ⊂ A0, if for each A, B ∈ A satisfying
A ̸= B, the following function h is upper semicontinuous on [0, 1]:

h(t) = f((1− t)A+ tB).

Let ⟨v, z⟩ denote the inner product of two vectors v and z in the n-
dimensional Euclidean space Rn. Given a set S ⊂ Rn, we denote the closure
and the interior of S, by clS and intS, respectively. We denote by B(z, r) the
open ball centered at z ∈ Rn with radius r > 0.
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3 Lagrange duality

We consider the following minimization problem involving convex set func-
tions: {

minimize f(A),
subject to A ∈ C, gi(A) ≤ 0,∀i ∈ I,

where I = {1, . . . ,m}, f is a real-valued convex function on A0, gi is a real-
valued convex function on A0 for each i ∈ I, and C is a convex subfamily of
A0. Let A = {A ∈ C | gi(A) ≤ 0,∀i ∈ I}, and assume that A is nonempty.
In this section, we study Lagrange duality for the above problem. Lagrange
duality is one of the most well-known duality in convex programming and
plays a central role. The best-known constraint qualifications are the interior
point conditions, also known as the Slater-type constraint qualifications.

We show the following Lagrange duality theorem under the Slater-type
condition.

Theorem 3 Let I = {1, . . . ,m}, f a real-valued convex function on A0, gi a
real-valued convex function on A0 for each i ∈ I, C a convex subfamily of A0,
and A = {A ∈ C | gi(A) ≤ 0,∀i ∈ I}. Assume that there exists A1 ∈ C such
that gi(A1) < 0 for each i ∈ I.

Then,

inf
A∈A

f(A) = max
λ∈Rm

+

inf
A∈C

{
f(A) +

m∑
i=1

λigi(A)

}
.

Proof Let µ = infA∈A f(A). At first, we show Lagrange weak duality. Let
λ ∈ Rm

+ . For each A ∈ A,
∑m

i=1 λigi(A) ≤ 0 since gi(A) ≤ 0 for all i ∈ I.
Hence

µ = inf
A∈A

f(A)

≥ inf
A∈A

{
f(A) +

m∑
i=1

λigi(A)

}

≥ inf
A∈C

{
f(A) +

m∑
i=1

λigi(A)

}
,

that is, Lagrange weak duality holds.
If µ = −∞, then putting λ = 0, the equation holds.
Assume that µ > −∞. Since A1 ∈ A and f is real-valued,

−∞ < µ ≤ f(A1) < ∞,

that is, µ ∈ R. Then, without loss of generality, we can assume that µ = 0.
Let

S =

{
z = (z0, z1, . . . , zm) ∈ Rm+1

∣∣∣∣∃A ∈ C s.t.
gi(A) ≤ zi,∀i ∈ I,
f(A) ≤ z0

}
,

T =
{
z = (z0, z1, . . . , zm) ∈ Rm+1 |zi < 0,∀i ∈ {0, 1, . . . ,m}

}
.
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It is clear that T is open convex, and cl T is a closed convex cone. S is similar
to the set in the proof of Lemma 6.2.3 in [2], and we can prove easily that S is
convex. Additionally, we can prove that S ∩T = ∅ since µ = infA∈A f(A) = 0.

Hence, by the separation theorem between S and T on Rm+1, there exist
λ = (λ0, λ1, . . . , λm) ∈ Rm+1 \ {0} and β ∈ R such that for each v ∈ S and
w ∈ T ,

⟨λ, v⟩ ≥ β ≥ ⟨λ,w⟩ .

Since cl T is a cone, we can show that β = 0. In addition, by the definition
of T , we can prove that λ ∈ Rm+1

+ \ {0}. Actually, if λi < 0 for some i, then
there exists w ∈ T such that ⟨λ,w⟩ > 0 = β. This is a contradiction.

Next, we show that λ0 > 0. Assume that λ0 = 0. Since A1 ∈ A, f(A1) ≥
µ = 0. Put

v = (f(A1), g1(A1), . . . , gm(A1)),

and

w = (−1, g1(A1), . . . , gm(A1)).

Then, we can check that v ∈ S and w ∈ T . Hence,

m∑
i=1

λigi(A1) =

m∑
i=0

λivi = ⟨λ, v⟩ ≥ 0 ≥ ⟨λ,w⟩ =
m∑
i=0

λiwi =

m∑
i=1

λigi(A1).

Since gi(A1) < 0 for each i ∈ I, λi = 0 for each i ∈ I. This means that λ = 0.
This is a contradiction. Hence λ0 > 0.

Put λ̄ ∈ Rm
+ as follows:

λ̄ =

(
λ1

λ0
,
λ2

λ0
, . . . ,

λm

λ0

)
.

For each A ∈ C, let vA = (f(A), g1(A), . . . , gm(A)) ∈ S. Then, ⟨λ, vA⟩ ≥ 0,
that is,

µ = 0 ≤ 1

λ0
⟨λ, vA⟩ = f(A) +

m∑
i=1

λ̄igi(A).

Hence,

µ ≤ inf
A∈C

{
f(A) +

m∑
i=1

λ̄igi(A)

}

≤ sup
λ∈Rm

+

inf
A∈C

{
f(A) +

m∑
i=1

λigi(A)

}
≤ µ.

This completes the proof.
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4 Surrogate duality

We consider the following minimization problem involving quasiconvex and
convex set functions:{

minimize f(A),
subject to A ∈ C, gi(A) ≤ 0,∀i ∈ I,

where I = {1, . . . ,m}, f is a real-valued, interval-usc, quasiconvex function on
A0, gi a real-valued convex function on A0 for each i ∈ I, and C is a convex
subfamily of A0. Let A = {A ∈ C | gi(A) ≤ 0,∀i ∈ I}, and assume that A
is nonempty. In this section, we study surrogate duality for the minimization
problem involving quasiconvex and convex set functions. Surrogate duality
have been studied for various types of mathematical programming problems,
for example, zero-one integer programming problem, quasiconvex program-
ming, robust optimization, and so on. It is worth noting that the Slater-type
condition is one of the constraint qualification for surrogate duality. For more
details, see [7,9–11,26,32,34] and references therein.

We show the following surrogate duality theorem for the above problem
involving quasiconvex and convex set functions under the Slater-type condi-
tion.

Theorem 4 Let I = {1, . . . ,m}, f a real-valued quasiconvex function on A0,
gi a real-valued convex function on A0 for each i ∈ I, C is a convex subfamily
of A0, and A = {A ∈ C | gi(A) ≤ 0,∀i ∈ I}. Assume that f is interval-usc on
C, and there exists A1 ∈ C such that gi(A1) < 0 for each i ∈ I.

Then,

inf
A∈A

f(A) = max
λ∈Rm

+

inf

{
f(A)

∣∣∣∣∣A ∈ C,
m∑
i=1

λigi(A) ≤ 0

}
.

Proof Let µ = infA∈A f(A). At first, we show surrogate weak duality. Let
λ ∈ Rm

+ and A ∈ A, then gi(A) ≤ 0 for all i ∈ I. Hence, A ⊂ {A ∈ C |∑m
i=1 λigi(A) ≤ 0}. This shows that

µ ≥ sup
λ∈Rm

+

inf

{
f(A)

∣∣∣∣∣A ∈ C,
m∑
i=1

λigi(A) ≤ 0

}
,

that is, surrogate weak duality holds.
If µ = −∞, then putting λ = 0, the equation holds.
Assume that µ > −∞. Let

S =

{
z ∈ Rm

∣∣∣∣∃A ∈ C s.t.
gi(A) ≤ zi,∀i ∈ I,
f(A) < µ

}
,

N = {z ∈ Rm | zi ≤ 0,∀i ∈ I} .

It is clear that N is a closed convex cone. S is similar to the set in the proof
of Theorem 1 in [26], and we can prove easily that S is convex. In addition,
we can check that S ∩N = ∅ since µ = infA∈A f(A).
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Hence, by the separation theorem between S and N , there exist λ̄ ∈ Rm \
{0} and β ∈ R such that for each z ∈ S and w ∈ N ,〈

λ̄, z
〉
≥ β ≥

〈
λ̄, w

〉
.

By the definition of the cone N , we can show that β = 0 and λ̄ ∈ Rm
+ \ {0}.

Next, we show that for each z ∈ S,
〈
λ̄, z

〉
> 0. Assume that there exists

z ∈ S such that
〈
λ̄, z

〉
= 0. Then, there exists A ∈ C such that gi(A) ≤ zi for

each i ∈ I, and f(A) < µ. Let

z̄ = (g1(A1), g2(A1), . . . , gm(A1)) ∈ Rm,

then z̄ ∈ N ∩ Sc since µ = infA∈A f(A) and the Slater condition. For each
α ∈ (0, 1],〈

λ̄, (1− α)z + αz̄
〉
= (1− α)

〈
λ̄, z

〉
+ α

〈
λ̄, z̄

〉
= α

〈
λ̄, z̄

〉
< 0

since α > 0, z̄i = gi(A1) < 0 for each i ∈ I, and λ̄ ∈ Rm
+ \ {0}. By the above

separation inequality, (1− α)z + αz̄ /∈ S. On the other hand, for each i ∈ I,

gi((1− α)A+ αA1) ≤ (1− α)gi(A) + αgi(A1) ≤ (1− α)zi + αz̄i.

This shows that
f((1− α)A+ αA1) ≥ µ

because (1− α)z + αz̄ /∈ S. Since f is interval-usc,

f(A) ≥ lim sup
α→0

f((1− α)A+ αA1) ≥ µ.

This is a contradiction.
Hence, we can see that

z ∈ S =⇒
〈
λ̄, z

〉
> 0,

that is, 〈
λ̄, z

〉
≤ 0 =⇒ z /∈ S.

For each A ∈ C with
∑m

i=1 λ̄igi(A) ≤ 0, let

z = (g1(A), . . . , gm(A)) ∈ Rm.

Since
〈
λ̄, z

〉
=

∑m
i=1 λ̄igi(A) ≤ 0, z /∈ S, that is, f(A) ≥ µ. Hence,

inf
A∈A

f(A) = µ

≤ inf

{
f(A)

∣∣∣∣∣A ∈ C,
m∑
i=1

λ̄igi(A) ≤ 0

}

≤ sup
λ∈Rm

+

inf

{
f(A)

∣∣∣∣∣A ∈ C,
m∑
i=1

λigi(A) ≤ 0

}
≤ µ.

This completes the proof.
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5 Applications to uncertain problems

In this section, we study applications of our results to uncertain problems with
motion uncertainty.

In [38], we study uncertain problems with motion uncertainty in terms of
set functions. We regard a decision variable set as an error caused by a motion,
and investigate robust approach for the problem.

Let X = Rn, I = {1, . . . ,m}, f a real-valued convex or quasiconvex func-
tion on Rn, gi a real-valued convex function on Rn for each i ∈ I. The following
problem (P ) is a convex or quasiconvex programming problem on Rn without
uncertainty:

(P )

{
minimize f(x),
subject to gi(x) ≤ 0,∀i ∈ I.

For such a problem, we may not be able to choose an exact vector because
of an error by a motion. Hence, in [38], we study the following a worst case
approach with motion uncertainty.

Let C = {A ⊂ Rn | A : compact convex, intA ̸= ∅}, and F be the following
function on A0 = {A ⊂ Rn | A : nonempty}: for each A ∈ A0,

F (A) = sup
x∈A

f(x).

For constraint functions, we define Gi similarly, that is, Gi(A) = supx∈A gi(x).
Then, we consider the following robust optimization problem (RP ) with mo-
tion uncertainty:

(RP )

{
minimize F (A),
subject to A ∈ C, Gi(A) ≤ 0,∀i ∈ I.

In (RP ), F and Gi are set functions, and Ameans an error caused by a motion.
Since F (A) is the supremum of the value of f at x ∈ A, (RP ) is one of the
worst-case approach.

We show some results for set functions defined by the supremum of real-
valued functions.

Theorem 5 Let f be a real-valued function on Rn, and F the following func-
tion F on A0: for each A ∈ A0,

F (A) = sup
x∈A

f(x).

Then, the following statements hold:

(i) if A is compact and f is usc on Rn, then F (A) ∈ R,
(ii) if f is convex on Rn, then F is convex on A0,
(iii) if f is quasiconvex on Rn, then F is quasiconvex on A0,
(iv) if f is usc on Rn, then F is interval-usc on C.
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Proof It is clear that (i) holds.
We show the statement (ii). The proof of the statement (iii) is similar and

will be omitted. Let A, B ∈ A0 and α ∈ (0, 1). For each x ∈ (1 − α)A + αB,
there exist a ∈ A and b ∈ B such that x = (1− α)a+ αb. Then,

f(x) = f((1− α)a+ αb)

≤ (1− α)f(a) + αf(b)

≤ (1− α)F (A) + αF (B).

This show that

F ((1− α)A+ αB) ≤ (1− α)F (A) + αF (B).

(iv) Let A, B ∈ C with A ̸= B. We show that h(t) = F ((1 − t)A + tB) is
usc at any t ∈ [0, 1], that is, for each sequence {αk} ⊂ [0, 1] satisfying αk → t,

F ((1− t)A+ tB) ≥ lim sup
k→∞

F ((1− αk)A+ αkB)).

Since A and B are compact, (1− αk)A+ αkB is compact for each k ∈ N. By
the upper semicontinuity of f , there exists xk ∈ (1 − αk)A + αkB such that
F ((1− αk)A+ αkB) = f(xk). Additionally, xk = (1− αk)ak + αkbk for some
ak ∈ A and bk ∈ B. Without loss of generality, we can assume that

lim sup
k→∞

F ((1− αk)A+ αkB)) = lim
k→∞

F ((1− αk)A+ αkB)) = lim
k→∞

f(xk).

Since A and B are compact, there exist subsequences {akj
} and {bkj

} such
that akj

converges to some a0 ∈ A and bkj
converges to some b0 ∈ B. Then,

xkj = (1− αkj )akj + αkj bkj → (1− t)a0 + tb0 ∈ (1− t)A+ tB.

Hence

F ((1− t)A+ tB) = sup
x∈(1−t)A+tB

f(x)

≥ f((1− t)a0 + tb0)

≥ lim
j→∞

f(xkj )

= lim
j→∞

F ((1− αkj
)A+ αkj

B)

= lim
k→∞

F ((1− αk)A+ αkB).

This completes the proof.

For constraint functions, we show the following theorem.

Theorem 6 Let I = {1, . . . ,m}, gi a real-valued convex function on Rn for
each i ∈ I, C a closed convex subset of Rn, Gi(A) = supx∈A gi(x), and C =
{A ⊂ C | A : compact convex, int A ̸= ∅}.

Then the following statements holds:
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(i) C is convex,
(ii) A = {A ∈ C | ∀i ∈ I,Gi(A) ≤ 0} is convex,
(iii) if there exists x0 ∈ int C such that gi(x0) < 0 for each i ∈ I, then there

exists A ∈ C such that Gi(A) < 0 for each i ∈ I.

Proof It is clear that (i) and (ii) holds.
(iii) By the assumption, there exists x0 ∈ int C such that gi(x0) < 0 for

each i ∈ I. Since gi is a real-valued convex function on Rn, gi is continuous.
Hence, there exists ri > 0 such that g(x) < 0 for each x ∈ Ai = clB(x0, ri) ⊂
C. Since Ai is compact and gi is continuous, G(Ai) < 0. Let A =

⋂
i∈I Ai,

then A is a compact convex subset of C and int A is nonempty. In addition,
we can check that G(A) < 0.

For the robust problem (RP ), we show the following duality theorem as
an application of our results for convex and quasiconvex set functions.

Corollary 1 Let I = {1, . . . ,m}, gi a real-valued convex function on Rn for
each i ∈ I, C a closed convex subset of Rn, Gi(A) = supx∈A gi(x) for each
A ⊂ Rn, C = {A ⊂ C | A : compact convex, int A ̸= ∅}, A = {A ∈ C | ∀i ∈
I,Gi(A) ≤ 0}, f a real-valued function on Rn, and F (A) = supx∈A f(x) for
each A ⊂ Rn. Assume that there exists x0 ∈ int C such that gi(x0) < 0 for
each i ∈ I.

Then the following statements hold:

(i) if f is convex, then,

inf
A∈A

F (A) = max
λ∈Rm

+

inf
A∈C

{
F (A) +

m∑
i=1

λiGi(A)

}
,

(ii) if f is usc quasiconvex, then,

inf
A∈A

F (A) = max
λ∈Rm

+

inf

{
F (A)

∣∣∣∣∣A ∈ C,
m∑
i=1

λiGi(A) ≤ 0

}
.

Proof By Theorem 6, there exists A ∈ C such that Gi(A) < 0 for each i ∈ I.
In addition, if f is usc, then F is interval-usc on C by Theorem 5. Hence by
Theorem 3 and Theorem 4, we can prove the theorem.

Remark 1 In Corollary 1, we assume that gi are real-valued convex. This im-
plies that g = maxi∈I gi is convex and g(x0) < 0. Hence g is locally Lipschitz,
and there exist ρ, L > 0 such that for each x ∈ Rn with ∥x− x0∥ ≤ ρ,

g(x) ≤ g(x0) + L∥x− x0∥.

Let r = min{ρ,− g(x0)
2L }, then for each x ∈ Rn with ∥x− x0∥ ≤ r,

gi(x) ≤ g(x) ≤ g(x0) + L
−g(x0)

2L
=

g(x0)

2
< 0.
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Remark 2 Mathematical programming problems with data uncertainty are be-
coming important in optimization due to the reality of uncertainty in many
real-world optimization problems. Various researchers study duality theory
for mathematical programming problems under uncertainty with the worst-
case approach, see [3,16–19,24,34]. In these literatures, the following uncertain
problem is studied:

Minimize f(x, u),
subject to x ∈ A, gi(x, v) ≤ 0,

where A is a closed convex subset of Rn, U is a compact set, f is a continuous
function from Rn × U to R, V is a set, and gi is a function from Rn × V to R
for each i ∈ I. Because of the complexity of real-world optimization problems,
measurement errors, and the other uncertainty, it is difficult to determine
functions in the problem clearly. In the above problem, we cannot determine u
and v clearly, however, we know that u and v are elements of the uncertainty
sets U and V. In order to solve such a problem robustly, robust optimization
have been investigated. An error caused by a motion is not in consideration
in previous works in robust optimization. In this paper, we can determine
objective and constraint functions clearly. However, by an error caused by a
motion, we may not be able to choose an exact decision vector. We regard
a decision variable set as an error caused by a motion, and introduce robust
approach for the uncertain problem. In future research, we try to consider the
following uncertain problem with motion and data uncertainty:

Minimize F (A, u),
subject to A ∈ C, Gi(A, v) ≤ 0.

Furthermore, it is expected to study necessary and sufficient constraint quali-
fication for Lagrange and surrogate duality for the problem in terms of recent
advances in constraint qualifications.
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4. Boţ RI (2010) Conjugate duality in convex optimization. Springer, Berlin
5. Chou JH, Hsia WS, Lee TY (1986) Epigraphs of convex set functions. Journal of Math-

ematical Analysis and Applications. 118:247-54
6. Chou JH, Hsia WS, Lee TY (1987) Convex programming with set functions. Rocky

Mountain Journal of Mathematics. 17:535-543
7. Glover F (1965) A Multiphase-Dual Algorithm for the Zero-One Integer Programming

Problem. Operations Research. 13:879-919
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