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Introduction

If the ultrasonic velocity 77 in the ionic solution is measured, its adiabatic compressibility 8 can
be obtained from the formula #=1/dV?, where d is the density of the solution. It is known that &
decreases linearly with the concentration of the solution in the range of low concentration. The
reason is that imcompressible hydration spheres are formed by the concrete attachment of water
molecules to ion. By means of this fact, some researchers (1),(2) tried to draw inferences on the
state of hydration in the ionic solution.

The dielectric constant of the ionic solution has a similar character, since it decreases linearly
with the concentration, when referred to the data published by Hasted, Ritson and Collie (3). Itis
because hydration spheres formed by the attachment of water molecules to ion have the dielectric
constant reduced to the optical value. Therefore, knowledges on the state of hydration can be
deduced also by the measurement of the dielectric constant of the ionic solution.

The present author, however, has found that the volume of the hydratibn sphere determined
by the compressibility measurement, which may be called acoustic hydration sphere, does not neces-
sarily coincide with that by the dielectric measurement, that is, dielectric hydration sphere. From.
this fact, the author acquired the idea of the hydration sphere which has the double-shell struc-
ture around the ion and tried to calculate the hydration energy of ion based on this model.

The hydration energy of ion is defined as the change in free energy occurring when an ion at
rest in vacuum is introduced into the water. We will look back at the trials of calculation based

on some other models. Born derived electrostatically the formula for the hydration energy G; as:

e—1 2e?
Gs= 2e za ’ ‘

assuming that the single atomic ion of valence 2 is a charged conducting sphere of charge ze and
radius a, and the surrounding water is a continuum whose dielectric constant is ¢. This formula
gives, however, values greater than those obtained from experiments. The reason will be that the
formula would lose its applicability in the immediate neighborhood of the ion.

Then, Bernal and Fowler (4) admitted that the Born’s formula would hold good outside the
the sphere of radius R,, but inside the sphere they tried to derive a part of hydration energy by
calculating the electrostatic mutual interaction between water molecules and an ion, assuming a.

special arrangement of water molecules around an ion and a certain charge distribution in the

* published in short, ‘““A New Method to Determine Hydration Energy of Ion”, J. Phys. Soc. Japan, 15
(1960) 1707.
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water molecules. Since the arrangement of water molecules they assumed is the closest polyhedral
packing, the number of water molecules around an ion (so-called coordination number #) is deter-
mined only by the ionic radius. They adopted n = 4 for alkali metal ions and halogen ions, and
1n = 6 for alkali earth metal ions, and they gave a formula for the hydration energy as:

_e—1 2%e®
Un=—5; R,

where R, is the radius of the virtual sphere depending only on z, P(r) the potential energy of a

+ nsz (7') —Uw ’

water molecule due to a charge ze at distance » + 7, (r and 7,, being the radii of the ion and the
water molecule respectively), p, a correction factor to P(r), which is considered to be nearly con-
stant for the same value of 2, and u,, the electrostatic energy of a water molecule in the pure water.

Eley and Evans (5) have published the formula which is essentially equal to B-F formula but
better in the agreement with the experimental values. Latimer, Pitzer and Slansky (6), on the other
hand, insist that the simple Born equation gives satisfactory results, if an adequate correction is
put in regarding the ionic radius.

The present author has improved the B-F formula by use of the double-shell model for hydra-

tion of ion. The procedure will be reported here.

Consideration of the Acoustic Hydration

First, the method to derive the molal volume @ of acoustic hydration sphere is stated. Between

the compressibility and the concentration of the ionic solution, the relation:

=8, +AC+BCT 0
holds (7), where # and #; are compressibilities of the solution and the pure water respectively, C
the molal concentration of the solution, and 4 and B the constants peculiar to the ionic pair con-
stituting the solute. If we write I” (cc) for the voluime of the solution containing one mole of
solute, the molal concentration C of the solution can be represented by C=1000/V. Further in
V, if we write I7; for the volume of the water which is not affected by ion, ¥ for the volume of

the solute itself and I, for the volume of the compressed water in the hydration sphere, we get:

HV:BIV}. > (2)
V=V1+TV:+V, 3
:and q)[-g = Vg =+ Vh . (4)

Especially the relation (2) comes from the assumption that I, + 17, is imcompressible. From the
relations (1), (2), (3) and (4), the formula

1
D= — 10004 _ 1000B ~+ 5)
By 61
can be derived. If we denote the value of @4 at the infinite dilution by @p, we get
Ggo= — 10004 (6)
By

putting C — 0 in the formula (5).

Next, the method to obtain the coordination number 5, for the ionic pair, that is, the number
of water molecules contained in the hydration sphere of the solute is stated. The coordination
number #, is expressed by the relations:

-V VA (7)
M, / On M, / P1 ’

‘where M, is the molecular weight of the water, p;, and p; are densities of the compressed and the

np
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ordinary water respectively, and V', the relaxational volume of hydration water, that is, the volume
which the compressed hydration water would show under the ordinary pressure, released from
the ionic attraction. In order to calculate n,, it is easier to seek V', than I/ and p,. From the
relation between masses, we have:

pV=p1Vit+oaVa+M; , 8)
where p is the density of the solution and M, the molecular weight of the solute. From the for-
mula (1), the relations (7) and (8), the formula:
1000 p—p1 M, 10004 10008 CTIZ ©)

C o1 o1 61 61
can be obtained. If we denote the relaxational volume of hydration water at infinite dilution

Vip=

with 175,, we get:

1000 lim 2—PL _ M, 10004 ’
£1 c—o C 1 81

putting C—0 in (9). Then, the coordination number 7, can be obtained by using /"5, instead of
V's in (7). Values of several quantities of the acoustic hydration for some ionic pairs are tabulated

in the Table I. l

Ve = (10)

Table I. Several Values of acoustic hydration.

solute t°C [Acxcl;oé; E‘;‘i‘i I/E;Z‘j ny Experimenter
HCI [ 30 — 185 | 44 | 226 12 Present author (8)
Lici | 25 — 4480 1000 820 45 Szalay (9)

NaCl 30 — 6,076 1373 ‘ 119 6.6 Yasunaga (2)
Nal 20 — 5497 1208 ‘ 86 . 47 Freyer (10)

KCl 30 — 5314 1201 \ 99 54 | Yasunaga

K I 20 — 5463 1200 74 | 41 | Freyer

MgCl, 30 —10.70 2426 | 221 ! 12 Present author
BaCl, | 25 | —1262 2823 I 255 T " Buchem (13)

Consideration of the Dielectric Hydration

Hasted et al measured the dielectric constant of the ionic solution at various concentrations by
use of microwaves whose wavelengths are 10cm and 3cm. The results show that the dielectric
constant decreases linearly with the concentration. They expressed this relation by the formula
€= ¢,+26C and discussed on the hydration depending upon §. The present author treated the
data by another expression. When there exist many spheres of dielectric constant ¢; and of the
same radius @ in the medium of dielectric constant ¢;, the dielectric constant of the synthetic
medium is expressed by

4rad 142¢
— _ 1
3 &3+ 2¢e; ’ (1 )

where n is the number of spheres per unit volume (12). As to the dielectric hydration sphere, its.

dielectric constant ¢, is considered to be equal to the optical dielectric constant of the water, since

e=¢é1+n (e2—¢1)

the water molecules in such a sphere do not respond to the change of the electric field on acccunt

of the ionic attraction. If we express the molal volume of the sphere at infinite dilution as ¢ o and

3 o
the molal concentration of the solution as C, we get ¢E°:M’ where N is the Loschmidt’s
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number and C=1000n/N. Therefore, the formula (11) can be reduced to:
. C ooy 1424
E=¢1 W beo (51 M ) m N (12)
where « is the refractive index of the water. We treated the data of Hasted et al by using the
expression (12) and got the values of ¢ for some ionic pairs. They are put in the Table II, to-

gether with the values of ¢¢ in the Table I for comparison. From the Table II we can say that:

Table II. Molal volumes of hydration sphere.

solute i| t°C Dey [cc] } t°C Dgy [ec] | Deg—Dsy
HCl1 25 258 30 41 217
LiCl 25 182 25 100 82
NaCl 21 134 30 137 =3
KCi1 25 130 30 120 10
MgCl,, 25 393 25 243 150
BaCl, 25 363 25 282 | 81

1) .o is approximately equal to ¢g, for NaCl anc K,

2) ¢eo is greater than ¢g, for the others.
From the above facts, the author got the idea of the double-shell model for the hydration of ion.
That is, in the first shell which is conceived referring to ¢z, the water molecules respond to neither
the change of the pressure nor the change of the electric field, while those in the second shell which

is conceived referring to (¢so—¢go) do respond to the change of the pressure but not of the electric
field.

Construction of the Double-Shell Model

In order to develop the idea, it is necessary to seek the volume of the hydration sphere refer-
ring to an individual ion, instead of that referring to an ionic pair. Since NaCl and KCl are con-
sidered not to have the second shells, it is convenient to take them as standards. In order to
divide their values of ¢z, into the values concerning cation and anion respectively, they are usual-
ly divided according to the mobility of each ion. If we denote the volumes of hydration sphere
concerning cation and anion by ¢, and ¢_, we get by the Stokes’ law:

Y, =u_Yb_ R ] ) . (13)
and b +d_=dpo , {
where #, and u_ are the mobilities of respective ions. Because the mobility of each ion is propor-
tional to its equivalent conductance which is given in some chemical tables, we car get the values

of ¢, and ¢_. Further, if we write V7, and 7;,_ for the volumes of the compressed water in ¢,
and ¢_, we obtain:

Vie= 0. — N%”7’3:+ l
and Vie=¢_ — N?nr%_ ,

where 7, and 7. are the radii of cation and anion respectively, which have been given by Paul-
ing. If the relaxational volumes corresponding to V. and V- are denoted by V'sy and Vs
Ttespectively, the relations:

Ve / Viae=Vhns [Va- }

and Vineg+V9io=V'no 13
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should hold. Since the values of the right-hand side of the relations (15) are already known, we
can get the values of V", and V’,_. Dividing the values by the molal volume of water, we can
calculate the number of water molecules attaching to cation and anion, that is, the coordination
number #; for each ion of the first shell.

Now, we divide practically the values of ¢g, for NaCl, Nal, KCI and KI given in the Table I
by the relation (13) and get

Ona+ =97, Pk+=63, ¢u-=40, and ¢-=44,

by averaging two values got for an ion. We calculate 7n; from these values by the relations (14)
and (15) and get n=3 for K* , n=4 for Na*, n=2 for Cl- and n=1 for I-. The coordination
numbers 7; for the remaining cations can be got by substracting 2, that is, #; of Cl- from the
value of 1, in the Table I. The coordination number 7, of the second shell for cation can also
be obtained through dividing (#:0—®go) by the molal volume of the water. The reason is that the
value of (¢eo—dpgo) for metallic chloride consists of only the contribution from the cation, since
C1- has not the second shell. We have summarized #; and #, thus obtained in the Table III.

Table III. Coordination numbers of ion and effective radii of the shell.

ion ' 7 79 ‘ Rerr [A]
H" 0 { 12 442
Li 3 5 3.86
Na* J 4 } 0 338
K* 3 ! 0 229
Mg2* l 8 | 8 4,99
Ba2* 10 | 4 482
cl- ! 2 f 0 251

Further, R.s;’s in the table are the effective radii of ihe second shells, outside which the Born’s

formula holds. The value for cation coming from the metallic chloride can be calculated by:
N —g—n Raeffzqieo“qscl— 5 (16)

where the value of ¢.- is 40 as given before.

Now, we will describe the geometrical picture of water molecules attaching to an ion on the
basis of the data given in the Table III. Since the first shell is imcompressible, the disposition of
water molecules around an ion should be the closest polyhedral packing, that is, water molecules
are situated at vertices of the regular polyhedron whose centre coincides with the centre of the ion.
Therefore, five kinds of the packing are possible according to the types of regular polyhedron.
We deduce polyhedrons the first shell of each ion may take, on the basis of n; of each ion, and

Table IV. Possible polyhedral packing of the first shell.

ion ’ ny ( polyhedron ‘ s | a [A] 75 [A]
Li* 3 - tetrahedron 4 0311 0.60
Na* 4 ” 4 0311 0.95
K- 3 ” 4 0.311" : 133
Mgz 8 hexahedron 8 101 0.65
Ba2* 10 icosahedron 12 134 135 |
ar 2 — ' — — .18t
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show them together with the fictitious saturated coordination number #; in the Table IV. It can be
said that the first shells of Na* and Mg+ are saturated, those of Li*, K+ and Ba’*, however, lack

" one or two water molecules and that of Cl- is greatly unsaturated. In the table, the value denoted

by a has the following meaning. When water molecules which are assumed as spheres of radii 7y,
are arranged one by one on vertices of the regular polyhedron whose edge length is 27y, the length
a is the radius of the spherical void enclosed by such a group of water molecules. If we take 7,,=
1.38 A, we can calculate the values of a for respective regular polyhedrons. The value of ionic
radius 7, is shown also in comparison with a in the table. In the case when a<(#,, an ion and
molecules can contact, but water molecules cannot contact between themselves. On the contrary,
in the case when a>>7,—for Mg®*+ only at present—water molecules can contact between themselves
but an ion and water molecules cannot contact. Therefore, Mg?* exists in the void, leaving some
room.

Next, as to the way of attachment of a water molecule to an ion, some assumptions should be
made concerning the charge distribution in the water molecule. The author has adopted the model
presented by Bernal-Fowler and simplified it as follows. The water molecule is a sphere whose
radius is 1.38 A, and an oxygen atom O is situated at the centre of the sphere. The distance p be-
tween oxygen atom O and hydrogen atom H is 0.96 A and the angle / HOH is 105°. Further,
there exist the effective charges +e’ on H and —2¢’ on O. We should take ¢’ as } e, in order to
conform to the experimental value of dipole moment of water molecule. The ways of the attach-

ment of water molecule to an ion are shown in Fig. 1.

H(+e) (b)
N~
/O(-Ze’)
Ht+en
2nd Shell 1st Shell

-2e"

Cation Small Anion

(e

Fig. 1. Ways of attaching of water
molecule to an ion.

Large Anion

Fig. 1 (2) shows the way of two water molecules in the first and the second shells attaching to
a cation. Two types of attachment as shown in Fig. 1 (b) and (c) are considered about an anion.
However, Cl- possibly takes the type (b) on account of the fact that it is greatly unsaturated.
Regarding the water molecule in the second shell, it is natural to consider the second-shell mole-
cule being on a straight line connecting the first-shell molecule and the ion as shown in Fig.1 (a).
If it is true, the relation n,.“n; should hold. It is possible to sketch the whole view in this way of

thinking for the cases of Mg®* and Ba?*. However, in the case of Li* in which #;>>n;, it becomes
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difficult to do so. Therefore, it might be better to think that the second-shell molecules are free

within a special zone than that they are fixed at certain positions.

Calculation of the Hydration Energy of Ion

Now, the hydration energy of ion will be calculated here on the basis of the double-shell model.
The Born’s formula holds outside the sphere of radius R,sy, but a special consideration should be
given to the inside of the sphere. Then, regarding the whole hydration energy U,, the author
has given the formula:

a—1 2%
Up= 2

261 R,,A.

33

+n1P1+noPy— (1 +n5)1t, (17)

instead of the B-F. formula. In the expression, the first term means the Born’s formula, P; is the’
mutual potential energy between a water molecule in the first shell and an ion, P, that between a
water molecule in the second shell and an ion, and u, the energy which a water molecule should
have in the pure water. Since the water at room temperature has a quasi-crystalline structure by
hydrogen-bond, u,, is, in another meaning, the energy liberated by break of hydrogen-bond when
a water molecule enters the shell. v

We assume that the forces acting between an ion and a water molecule are the Coulomb’s force
and the quantum mechanical repulsive force, neglecting the force between the water molecules in
the shell. From Fig. 1 (a), we get the expression for P; concerning a univalent cation as:

P = 2e'e 2e'e b ’ 8)
R 1/ R*+p>+2Rp cos 0 Rn

where R=7,+7#,, p is the O-H distance. The first and second terms are Coulomb’s potentials,

and the last term is the quantum mechanical repulsive potential with » a constant for each ion.
‘We take 9 for the value of n from the analogy to the ionic crystal. Since the potential energy of
the system becomes minimum at the position of the figure, we can get the value of b from the

Py

expression = 0 and calculate the value of P;. From Fig. 1 (b), we get the expression for

P; concerning a univalent anion as:
4 !

/
p—_c ee _ 2ee B b ) 19
" R—p VR*+p>+2Rp cos 0 R R» 19)

For the case of divalent cation—Ba?* at present—, the value of P can be calculated by the ex-

pression (18), taking the radius of ion to be 7,+27,. For the case of Mg?*, where the relation a
=7, holds as stated before, the calculation should be performed by use of the expression (18), as-
suming the radius of ion to be a+27,. A question arises in the case of the second shell of Li*.
Though it is not considered that all of the water molecules of the second shell of Li* have the
positions as shown in Fig. 1 (a), the calculation has been done, assuming it for convenience’ sake.

The evaluation of u,, will be considered lastly. It has been clarified by the X-ray study that a
water molecule has four nearest neighbors forming the tetrahedral connection as shown in Fig. 2
by the hydrogen-bond whose energy is measured as 4.5 (kcal/mol). Thus a water molecule should
have its share of bond energy as large as 9.0 (kcal/mol), as it is true in the case when the tetra-
hedral connections continue infinitely, as in the ice. It is known from the data on the ultrasonic
absorption (13) that the water at the room temperature consists of groups of 8000 water molecules.
Now it comes into question, how many molecules of 8000 water molecules are unsaturated, not

having four nearest neighbors.
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Fig. 2 shows a group of 17 molecules which are picked up
far to the second nearest neighbors centring the molecule de-
noted by C. The number of unsaturated molecules in this
case is 12, making the ratio to the whole 0.705. Since the ratio
is equal to that of the surface area to the volume, when the
group of molecules are assumed to form a sphere, it decreases
inversely proportionally to the radius of the sphere. The radius
of the small group shown in Fig. 2 has been given as 4.51 A
by the X-ray study of the water (14). On the other hand, the
radius of the group of 8000 molecules can be calculated as 3.95
»%10~7cm from the density of ice, 0.92 (g/cm?). Therefore,

the ratio of the latter group is evaluated as 0.081. Since it can  Fig- 2. Agroup-of water molecules.

be said that 91.9 9§ molecules in the group have each their four nearest neighbors, the value of
u, can be evaluated as 8.3 (kcal/mol). At last, we reached the stage to calculate the hydration
energy of ion by the formula (17) and the calculated values are summarized in the Table V together
with related values.

Table V. Calculated hydration energies of ion [kcal/g-ion].

ion Born’s term Py ‘ Py 1 Un

H* 371 0 —_ —
Li* 425 338 102 1285
Na* 485 26.6 0 121
K+ 56.2 193 0 811
Mg2* 131 475 9.65 455
Ba2* 136 37.0 9.79 429
C1- 653 9.36 0 674

Comparison with Experiments

The values of the hydration energy calculated above will be compared with experimental values.
Between the lattice energy of the ionic crystal (MX,] and the hydration energy of ion, there exists
the relation:

U M*)+vUp(X)=W+L , (20)
where U, (M*) and U, (X~) are the hydration energies related to cation and anion produced
when the ionic crystal (MX,) is dissolved into the water, W is the lattice energy of the crystal
and L the integral heat of solution of the crystal. The lattice energy W can be calculated by the
relation:

W=0+Sy+Iy+v/2 ¢ Dpy—vE, |, 1)
which was got from the Born-Harber’s cycle. In the expression, Q is the heat of formation, Sz,
the heat of sublimation, I, the heat of ionization, E, the electron affinity and D, the heat of dis-
sociation. Since the values of the terms in the right-hand side of the relation (21) are all given by
experiments, we can get the experimental value of the lattice energy. In the Table VI, the value
of left-hand side of (20) obtained by the calculation is compared with the value of right-hand side
obtained by the experiments.
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Table VI. Comparison of hydration energy with the lattice energy.
solute Un (M*)+vUn (X") w L W + L
LiCl 196 203.6 — 86 195.0
NaCl 188 1831 + 10 1841
KCl 1485 1655 + 42 169.7
MgCl» 590 6235 —36.3 587.2
BaCl, 564 5235 —26 520.9

There is another comparison with the experiments. Benjamin and Gold 15) published a table

of heats, entropies and Gibbs free energies of hydration at 25° C of simple ions, relative to hydro-
gen ion, which was compiled from the recent thermodynamic data. Randles 16) also, has measured
the outer or Volta potential differences between the mercury and the aqueous solutions. From the
results the real hydration energies of alkali metal ions and halide ions have been calculated. In the
Table VII, the calculated values of the present author and Bernal-Fowler were compared with
their values. In the column of Benjamin-Gold in the table, the absolute values of Gibbs free

energy of hydration are given, taking the value of hydrogen ion as 260 (kcal/g-ion].

Table VII. Hydration energies of ion [kcal/g-ion] by several researchers.

ion present author ‘I Benjamin-Gold Randles Bernal-Fowler
Liv 1285 1216 1221 131
Na* 121 977 98.2 114
K 811 80.1 80.6 94
Mg2* 455 4545 — 495
Ba2* 429 — — 350
Cl- 674 740 70.7 67
Discussion

The present theory may be divided into two parts, one is the method to determine the coordi-
nation number and the other the method to calculate the hydration energy.

In the first place, concerning the coordination number, the present theory is featured by the
double-shell model. Bockris (17) has shown in his review article of ionic hydration that there is
large discrepancy between the results of various experimental methods, illustrating the data on so-
dium ion, and suggested that different experimental methods give measures of different types of
hydration. As the methods are roughly divisible into two classes, one giving lower values of co-
ordination number (<C10) and the other giving higher values (>=10) for sodium ion, it is probable,.
he said, that the former give a measure of primary hydration and the latter a measure of total hy-
dration which is the sum of the primary and the secondary hydrations. The way of thinking in
the present theory is very similar to his. The secondary hydration, however, which corresponds
to anomalously high value of coordination number (>>10) for sodium ion is quite different from
our second shell which vanishes for sodium ion. Both the acoustic hydration and the dielectric hy-
dration in this paper are in the category of the primary hydration. It may be said that the author
made clear the fine structure of the primary hydration.

Secondly, regarding the formula to determine the hydration energy, the present theory has ad-
vantages over the B-F theory with respect to the following points.
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1) Limit of application of Born’s term
The radius R, in the B-F theory was determined as to agree with the experimental value and has
not a physical origin. Moreover, since R, has the same value referring to ions of the same z, the
individuality of ion is neglected. On the other hand, R.;; in the present theory has a clear deriva-

tion and shows the individuality of ion of the same z.

2) Interaction between ion and water molecule
In the B-F theory, P(r) has been got considering only the Coulomb’s force and the influence of
other forces was included in the correction factor p, which was so determined as to conform to the
experimental value. In the present theory, P; and P, were calculated considering both the
Coulomb’s force and the quantum mechanical repulsive force. Of course, the latter force which
appears in the theory of ionic crystal is the force acting between ions. Therefore, it is assumed in

the present theory that the force of the same type acts also between an ion and a water molecule.

3) Ewvaluation of uy
In the B-F theory, u, was calculated as the Coulomb’s potential between two water molecules
which are tetrahedrally connected and given as 31.0 (kcal/g-ion)), whose value differs considerably
from the one got in the present theory. The reason will be that the concept of hydrogen-bond was
not yet established and there were no experimental values of it in the year of 1933.

In conclusion, since the radius of hydrogen ion is not given, the hydration energy of H* cannot
be calculated by the present theory or by the B-F theory. We can say, however, according to the
present theory, that 12 water molecules around a hydrogen ion form a shell whose radius is 4.42
A. And the shell responds to the change of pressure but not of the electric field. It is said in
chemistry that H* in water makes an ion (H;0)*, combining with a water molecule. It does not
necessarily mean that H* combines eternally with a specified water molecule. It is probable to
consider that H* can be combined with any one of 12 water molecules for a short time and the
shell presents some amount of cohesion energy as a result. It will be a future problem to derive

a formula for cohesion energy on the basis of such thought.
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