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Let us consider a collision between two particles in three dimensions. The problem of the non-
relativistic motion of two particles is reduced to the relative motion in the center-of-mass coordi-
nate system, when the interaction depends on their reldtive positions. We calculate the result of
a collision process in the center-of-mass system in which a particle of reduced mass m and an ini-
tial positive kinetic energy E collides with a fixed scattering center. If the potential energy is
spherically symmetric, so that the interaction I/ (r) depends only on the distance » from the origin,
the Schradinger wave equation can be separated in spherical coordinates. 3
The radial equation may be written in the form
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It will be assumed that U(r) is negligible for r greater than some distance a, provided that U(7)
falls off more rapidly than 1/r; in cases of practical interest, @ may be small enough so that / term
in (1) is not negligible. For large 7, therefore, Eq. (1) becomes
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The solutions of Eq. (2) may be written
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J:a+1, (kr) being ordinary Bessel functions of half-odd-integer order. f,;* vanishes as 7**! at r=0,
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while f;~ has a singularity as =%

From a physical point of view, we interest the solution of Eq. (1) that vanishes at 7=0. The
boundary condition at »=0 that ¥; vanishes determines the asymptotic form. The asymptotic
form of ¥; can then be written

2,(r) =sin(kr — 4 Iz +6;) )
where the phase shift d; of /th partial wave depénds on k, I, and the interaction V' (). The phase
shifts completely determine the scattering.

The phase shift §; is computed exactly by the following integral equation
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8 Toshio TAKEHARA

A proof for this expression is found according to the relation
sin 0;=sin(kr— ¥ I +0;) cos (kr — 4 In) —cos (kr — 4 Ix + 0y) sin(kr — % In)
noting that the asymptotic relation
n(r)=sin(kr— ¥z +8;), fi* () =sin(kr— %),
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and vanishing properties of ¥; and f;* at ¥=0. Thus, we obtain
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Now, by means of Egs. (2) and (3), we have
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which is integrated over 7 to give
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From (6) and (7), we get Eq. (5).
Further, ¥; and X'y are solutions of (1) ; §; and ¢’y the phase shifts for the same &, but different

interactions U and U’, respectively. Then, it is seen by analogy
sin (6’1/ —.O\l— 'L‘ (l,—l)ﬂ')
=sin (kr — %'z +0'y )cos (kr — L lr +6;) —cos(kr — £ U'n +6"y )sin(kr — Y Iz +6;)
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Hence
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If now we set I’=1[ and the difference U’'—U=0U, the corresponding change of the phase shift
o'y —8,=00; is given by
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Equation (9) provides the first order perturbation for the phase shifts.
If the whole interaction is taken as a perturbation, substitution of (9) into the scattering am-

plitude gives the Born approximation. If we put U=U’=0, Eq. (8) gives
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Eq. (10) corresponds to an integral formula in the theory of Bessel functions:
b dt 2 sin¥ (v—u)z
So Ju(at) Jv(at)T=? - T B

A singular solution f;”(7) at =0 is used also to calculate the phase shifts instead of f;* ().
Analogous to f;* (7), the following relation is easily written
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which may be integrated-to be
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The leading terms for small 7 are

Fr)=A_ k), A=/ § % (12)
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a being a constant determined for given U, and if U=0, ¥;=f;*, and it is shown that a=1 by the
properties of Bessel functions. We thus obtain for small »
dx;

fri —n dg{;f;(zlJrl)kA_chl: (—1)ka (14)

For large 7, we take into account the asymptotic form of (4) and for f;~ in the following form
Ji W =cos(kr+ % in)
so that the left side of Eq. (11) becomes
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Consequently the following formula is obtained

N (—1)¥f o
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where a=2/fi* |
r—00
Formulae (5) and (15) will be made use of in checking the phase shifts obtained by another
methods.
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