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Abstract. In a complex n(≧ 2)-dimensional complex projective space CPn(c)
of constant holomorphic sectional curvature c(> 0), a type (A) hypersurface is
one of fundamental examples in the theory of real hypersurfaces isometrically
immersed into this ambient space. The purpose of this paper is to make a survey
of fundamental properties of type (A) hypersurfaces in CPn(c).

1. Introduction

We first recall the classification theorem of homogeneous real hypersurfaces
M2n−1 in CP n(c), n ≧ 2, that is they are orbits of some subgroups of the full
isometry group I(CP n(c))(= SU(n+1)). By virtue of the results in [32, 25, 12] we
obtain the following.

In CP n(c) (n ≧ 2), a homogeneous real hypersurface is locally congruent to one
of the following Hopf hypersurfaces all of whose principal curvatures are constant:

(A1) A geodesic sphere of radius r, where 0 < r < π/
√
c ;

(A2) A tube of radius r around a totally geodesic CP ℓ(c) (1 ≦ ℓ ≦ n− 2), where
0 < r < π/

√
c ;

(B) A tube of radius r around a complex hyperquadric CQn−1, where 0 < r <
π/(2

√
c );

(C) A tube of radius r around the Segre embedding of CP 1(c) × CP (n−1)/2(c),
where 0 < r < π/(2

√
c ) and n (≧ 5) is odd;

(D) A tube of radius r around the Plüker embedding of a complex Grassmannian
CG2,5, where 0 < r < π/(2

√
c ) and n = 9;

(E) A tube of radius r around a Hermitian symmetric space SO(10)/U(5), where
0 < r < π/(2

√
c ) and n = 15.
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These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E).
Unifying real hypersurfaces of types (A1) and (A2), we call them type (A) hyper-
surfaces. The numbers of distinct principal curvatures of these real hypersurfaces
are 2, 3, 3, 5, 5, 5, respectively (for details, see [33]).

We next recall the following fact (see [18]): Let M2n−1 be a real hypersurface
in CP n(c), n ≧ 2. Then the length of the derivative of the shape operator A of
M satisfies ∥∇A∥2 ≧ (c2/4)(n − 1) at its each point. In particular, ∥∇A∥2 =
(c2/4)(n − 1) holds on M if and only if M is locally congruent to a type (A)
hypersurface. So it is natural to pay attention to type (A) hypersurfaces in the
class of all real hypersurfaces in CP n(c).

On the other hand, CP n(c) does not admit totally umbilic real hypersurfaces
M2n−1. Hence, there exist no real hypersurfaces all of whose geodesics are mapped
to circles in this space. So, in some sense the geometry of real hypersurfaces in
CP n(c) is a bit complicated.

The purpose of this paper is to survey geometric properties of type (A) hyper-
surfaces M by observing the extrinsic shape of geodesics on M from the ambient
space CP n(c). In particular, we investigate hypersurfaces of type (A1) in detail.

Needless to say, there do exist similarly real hypersurfaces isometrically immersed
into a complex n(≧ 2)-dimensional complex hyperbolic space CHn(c) of constant
holomorphic sectional curvature c(< 0), which are called type (A) hypersurfaces
(for details, see [25]). There are some analogous results to our Theorem 1, Theorem
2, Theorem 3, Theorem 5, Theorem 6, Theorem 7 and Theorem 10. However we
emphasize that analogous results to our Theorem 4, Theorem 8 and Theorem 9 do
not hold.

2. Terminologies and fundamental results on real hypersurfaces

Let M2n−1 be a real hypersurface with unit normal vector field N of an n(≧ 2)-
dimensional complex projective space CP n(c) of constant holomorphic sectional

curvature c(> 0). The Riemannian connections ∇̃ of CP n(c) and ∇ of M are
related by the following:

(2.1) ∇̃XY = ∇XY + g(AX, Y )N and ∇̃XN = −AX

for all vector fields X and Y on M , where g denotes the metric induced from
the standard Riemannian metric of CP n(c) and A is the shape operator of M in
CP n(c) associated with N . On M an almost contact metric structure (ϕ, ξ, η, g)
associated with N is canonically induced from the Kähler structure (g, J) of the
ambient space CP n(c). They are defined by

g(ϕX, Y ) = g(JX, Y ), ξ = −JN and η(X) = g(ξ,X) = g(JX,N ).

Note that by changing N for −N we have two almost contact metric structures

(ϕ, ξ, η, g) and (ϕ,−ξ,−η, g) on M . It follows from (2.1) and the property ∇̃J = 0
that
(2.2)
∇Xξ = ϕAX and (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ for each X,Y ∈ TM.
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The above equations do not depend on the choice of the unit normal vector N . We
denote by R the curvature tensor of M . Then R is given by

g((R(X,Y )Z,W ) = (c/4){g(Y, Z)g(X,W )− g(X,Z)g(Y,W )(2.3)

+ g(ϕY, Z)g(ϕX,W )− g(ϕX,Z)g(ϕY,W )− 2g(ϕX, Y )g(ϕZ,W )}
+ g(AY,Z)g(AX,W )− g(AX,Z)g(AY,W ).

The following is called the equation of Codazzi.

(∇XA)Y − (∇YA)X = (c/4)(η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ).

Let K be the sectional curvature of M . That is, K is defined by K(X,Y ) =
g(R(X,Y )Y,X), where X and Y are orthonormal vectors on M . Then it follows
from (2.3) that

K(X,Y ) = (c/4)
(
1 + 3g(ϕX, Y )2

)
+ g(AX,X)g(AY, Y )− g(AX, Y )2.

We call eigenvalues and eigenvectors of the shape operator A principal curva-
tures and principal curvature vectors of M in CP n(c), respectively. Here and in
the following, we set Vλ := {X ∈ TM |AX = λX}. We usually call M a Hopf
hypersurface if the characteristic vector ξ of M is a principal curvature vector at
each point of M .

3. Circles in Riemannian geometry

The notion of circles is a key in this paper. A smooth real curve γ = γ(s)
parametrized by its arclength s on a Riemannian manifold M with Riemannian
connection ∇ is called a circle of curvature k if it satisfies ordinary equations

(3.1) ∇γ̇ γ̇ = kYs and ∇γ̇Ys = −kγ̇

along the curve γ, where k is a positive constant and Ys is the principal normal unit
vector perpendicular to γ̇(s). A geodesic is regarded as a circle of null curvature.
By virtue of the unique existence theorem on ordinary equations for given each
positive k and each pair of orthonormal vectors X and Y at an arbitrary point p of
M there exists locally the unique circle γ = γ(s) of curvature k satisfying the initial
condition that γ(0) = p, γ̇(0) = X and Y0 = Y . It is known that in a complete
Riemannian manifold every circle can be defined for −∞ < s < ∞ (see [27]).

In this paper, we consider circles in CP n(c), n ≧ 2. Given a circle γ = γ(s)
satisfying (3.1) we call τ(s) := g(γ̇(s), JYs) the holomorphic torsion of γ, where J
is the standard complex structure of CP n(c). The function −1 ≦ τ ≦ 1 is constant
along every circle γ in CP n(c). In fact,

∇γ̇(g(γ̇, JYs)) = g(∇γ̇ γ̇, JYs) + g(γ̇, J∇γ̇Ys)

= k · g(Ys, JYs)− k · g(γ̇, Jγ̇) = 0.

It is well-known that all geodesics on CP n(c) are congruent to each other by some
φ ∈ I(CP n(c)). The congruence theorem on circles of positive curvature in CP n(c)
is expressed as:
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Lemma 1 ([6]). Let γi = γi(s) (i = 1, 2) be circles of positive curvature ki and
holomorphic torsion τi in CP n(c), n ≧ 2. Then these two circles γ1 and γ2 are
congruent to each other if and only if k1 = k2 and |τ1| = |τ2|. Precisely, when
τ1 = τ2 (resp. τ1 = −τ2), they are congruent to each other by some holomorphic
isometry (resp. anti-holomorphic isometry) in this space.

A circle γ of the holomorphic torsion τ with τ = 1 or τ = −1 (resp. τ = 0)
is called a Kähler circle (resp. totally real circle). Note in CP n(c) that a circle γ
is totally real if and only if γ lies locally on a totally real totally geodesic surface
RP 2(c/4) of constant sectional curvature c/4 and a circle γ is Kähler if and only if
γ lies locally on a totally geodesic holomorphic line CP 1(c). They are closed curves.
But, in general a circle with holomorphic torsion τ ̸= 0,±1 is not necessarily closed
(see [6, 3]).

4. Frenet curves

In general, Mn denotes a real n-dimensional Riemannian manifold. In this paper,
Mn denotes a complex n-dimensional Kähler manifold.

A smooth curve γ = γ(s) parametrized by its arclength s on a complex n-
dimensional Kähler manifold Mn furnished with Riemannian metric g and Rie-
mannian connection ∇ is said to be a Frenet curve of proper order d (2 ≦ d ≦ 2n)
if there exist an orthonormal system {V1 = γ̇, V2, V3, . . . , Vd} of vector fields along
γ and positive smooth functions κ1(s), . . . , κd−1(s) satisfying the following system
of ordinary differential equations:

∇γ̇Vj(s) = −κj−1(s)Vj−1(s) + κj(s)Vj+1(s), 1 ≦ j ≦ d.

Here, κ0V0 and κdVd+1 are null vector fields along γ. The functions κ1, . . . , κd−1

and the orthonormal frames {V1, V2, . . . , Vd} are called the curvatures and the
Frenet frame of the curve γ, respectively. Roughly speaking, a Frenet curve is
a smooth curve having no inflection points of higher order. For the Frenet frame
{V1, V2, . . . , Vd} of γ, we set τij(s) := g(Vi(s), JVj(s)) with 1 ≦ i < j ≦ d and call
them the holomorphic torsions along γ.
A Frenet curve is said to be a helix when all of its curvatures κ1, . . . , κd−1 are

constant functions. A helix of proper order 2 is a circle of curvature k(= κ1 > 0).
A real curve γ = γ(s) in Mn is said to be homogeneous if it is an orbit of

one-parameter subgroup of I(Mn).
In the following, we adopt CP n(c), n ≧ 2 as a Kähler manifold Mn. In the study

of Frenet curves in CP n(c), the notion of holomorphic torsions plays an important
role. We can give the necessary and sufficient condition for a Frenet curve to
be homogeneous in CP n(c) by using the notion of curvatures and holomorphic
torsions. In fact, the following is known.

Proposition 1 ([21]). A real curve γ = γ(s) is a homogeneous curve in CP n(c), n ≧
2 if and only if it is a helix and all of its holomorphic torsions are constant func-
tions.

For a circle γ of positive curvature k in CP n(c), we have just one holomorphic
torsion τ(s) := τ12(s) = g(V1(s), JV2(s)). By easy computation in the previous
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section we find that the holomorphic torsion τ of a circle γ of positive curvature
is automatically a constant function. Hence, by Proposition 1 we see that every
circle of positive curvature is homogeneous in CP n(c). This, together with a fact
that all geodesics are homogeneous curves in CP n(c), implies that all circles are
homogeneous in this space. Hence every circle in CP n(c) is an integral curve of
some (Killing) vector field, which implies that it is a simple curve in this space.

5. Congruence theorem on geodesics of type (A) hypersurfaces

We first review the following:

Lemma 2 ([29, 18]). Let M be a real hypersurface isometrically immersed into
CP n(c), n ≧ 2. Then the following four conditions are mutually equivalent:
(1) M is locally congruent to a type (A) hypersurface;
(2) The shape operator A of M satisfies

(∇XA)Y = −(c/4)(g(ϕX, Y )ξ + η(Y )ϕX) for X,Y ∈ TM ;

(3) The shape operator A′ of a hypersurface π−1(M) in a Euclidean sphere S2n+1(c/4)
of constant sectional curvature c/4 is parallel, where π : S2n+1(c/4) → CP n(c) is
the Hopf fibration;
(4) The structure tensor ϕ and the shape operator A of M satisfy ϕA = Aϕ on M .

Remark 1. We explain principal curvatures of type (A) hypersurfaces M in CP n(c)
with n ≧ 2. It is well-known that if M is of type (A1), M has two distinct constant
principal curvatures δ =

√
c cot(

√
c r) with multiplicity 1 and λ = (

√
c /2)·

cot(
√
c r/2) with multiplicity 2n − 2, and that if M is of type (A2), M has three

distinct constant principal curvatures δ =
√
c cot(

√
c r) with multiplicity 1, λ1 =

(
√
c /2) cot(

√
c r/2) with multiplicity 2n− 2ℓ− 2 and λ2 = −(

√
c /2) tan(

√
c r/2)

with multiplicity 2ℓ, where Aξ =
√
c cot(

√
c r)ξ and δ can be expressed as: δ =

λ1 + λ2 (cf. [25]).

Remark 2. We review another expression of type (A) hypersurfaces M in CP n(c)
with n ≧ 2. We set M ′ = π−1M . By Lemma 2(3) we know that M ′ is a Clif-
ford hypersurface M2p+1,2ℓ+1(c1, c2) := S2p+1(c1)× S2ℓ+1(c2) in the ambient sphere
S2n+1(c/4), where p, ℓ are integers with p + ℓ = n − 1 and p ≧ ℓ ≧ 0 except
p = ℓ = 0, and c1, c2 are positive constants with 1/c1 + 1/c2 = 4/c. As a matter of
course c1, c2 and c/4 are sectional curvatures of these spheres. This hypersurface
M2p+1,2ℓ+1(c1, c2) has two distinct constant principal curvatures c1/

√
c1 + c2 with

multiplicity 2p + 1 and −c2/
√
c1 + c2 with multiplicity 2ℓ + 1. Then the real hy-

persurface MC
p,ℓ := π(M2p+1,2ℓ+1(c1, c2)) with pℓ ̸= 0 in CP n(c) has three constant

principal curvatures (c1 − c2)/
√
c1 + c2 with multiplicity 1 which is the principal

curvature of the characteristic vector ξ on MC
p,ℓ, c1/

√
c1 + c2 with multiplicity 2p

and −c2/
√
c1 + c2 with multiplicity 2ℓ (for details, see [18]). Note that the hy-

persurface MC
p,ℓ = π(M2p+1,2ℓ+1(c1, c2)) is either a hypersurface of type (A1) or a

hypersurface of type (A2) in the introduction when ℓ = 0 or ℓ > 0, respectively.

Hence, the radius r of a type (A) hypersurface must satisfy cot(
√
c r/2) =

√
c1/c2 .
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Next, let γ = γ(s) be a geodesic parametrized by its arclength s on a type
(A) hypersurface M2n−1 in CP n(c), n ≧ 2. We consider two functions ργ = ργ(s)
and κγ = κγ(s) along the curve γ defined by ργ(s) := g(γ̇(s), ξγ(s)) and κγ(s) :=
g(Aγ̇(s), γ̇(s)). Then by the first equality in (2.2) and the skew-symmetry of ϕ :
g(ϕX, Y ) = −g(X,ϕY ) and Lemma 2 we see that these functions ργ and κγ are
constant along each geodesic γ on every type (A) hypersurface. We call ργ and κγ

of a geodesic γ on a type (A) hypersurface M the strcture torsion and the normal
curvature of the curve γ, respectively.

Using these two invariants ργ and κγ of a geodesic γ, we can describe the following
congruence theorem on geodesics:

Lemma 3 ([4]). Let γi (i = 1, 2) be geodesics on a type (A) hypersurface M in
CP n(c), n ≧ 2. Then the following hold:
(A1) When M is of type (A1), the structure torsions of these curves satisfy |ργ1| =
|ργ2| if and only if they are congruent to each other, i.e., there exists an isometry
on M with γ2(s+ s0) = (φ ◦ γ1)(s) for each s and some s0.
(A2) When M is of type (A2), the structure torsions and normal curvatures of these
curves satisfy |ργ1| = |ργ2| and κγ1 = κγ2 if and only if they are congruent to each
other.

Given a submanifold Mn isometrically immersed through f into a Riemannian

manifold M̃n+p we call a smooth curve γ = γ(s) an extrinsic geodesic on Mn if the

curve f ◦ γ is a geodesic in M̃n+p. Needless to say, every extrinsic geodesic is also
a geodesic on the submanifold.

Here, using Lemma 3, we count the number of congruent classes of extrinsic
geodesics on every type (A) hypersurface M with respect to the full isometry group
I(M) of M .

Proposition 2. Let M be a type (A) hypersurface of radius r (0 < r < π/
√
c ) of

CP n(c), n ≧ 2. Then the following hold:
(1) When M is of type (A1) of radius r (0 < r < π/(2

√
c )), M has no extrinsic

geodesics.
(2) When M is of type (A1) of radius r (π/(2

√
c ) ≦ r < π/

√
c ), M has just one

congruent class of extrinsic geodesics.
(3) When M is of type (A2) of radius r (0 < r < π/

√
c ), M has uncountably

infinite congruent classes of extrinsic geodesics.

Proof. The proofs of Statements (1) and (2) are given in the proof of Theorem 1
in [30]. It remains to show Statement (3). For an extrinsic geodesic γ = γ(s) on
M of type (A2) we set γ̇(0) = ργξγ(0) + aX + bY , where ργ, a, b are nonnegative
with ρ2γ + a2 + b2 = 1 and X,Y are unit vectors with X ∈ V(

√
c /2) cot(

√
c r/2) and

Y ∈ V−(
√
c /2) tan(

√
c r/2). By the constancy of the normal curvature κγ of the geodesic

γ we see that γ is an extrinsic geodesic if and only if g(Aγ̇(0), γ̇(0)) = 0. Then by
simple computation we have ρ2γ = tan2(

√
c r/2) − a2 sec2(

√
c r/2). This, together

with ρ2γ ≦ 1, yields inequalities sin2(
√
c r/2)− cos2(

√
c r/2) ≦ a2 ≦ sin2(

√
c r/2).

So we get a one-parameter family γa = γa(s) of extrinsic geodesics on our type (A)
hypersurface. Hence we obtain the desirable conclusion (see Lemma 3((A2))). □
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As an immediate consequence of the proof in Proposition 2(3) we have

Remark 3 ([30]). When M is of type (A2) of radius π/(2
√
c ), M has a one-

parameter family of extrinsic geodesics γa = γa(s) with 0 ≦ a ≦ 1/
√
2 . The initial

vector γ̇(0) is written as: γ̇(0) =
√
1− 2a2 ξγ(0) + aX + aY , where X and Y are

unit vectors with X ∈ V√
c /2 and Y ∈ V−

√
c /2. Note that two curves γa and γb are

congruent to each other with respect to I(M) if and only if a = b ∈ [0, 1/
√
2 ]. On

the contrary these curves are congruent to each other with respect to the isometry
group SU(n+ 1) of the ambient space CP n(c) for any a, b ∈ [0, 1/

√
2 ].

6. Extrinsic shape of geodesics on type A hypersurfaces

It is known that every geodesic γ = γ(s) on a type (A) hypersurface M is a
homogeneous curve (see [24]). This, together with a fact that our real hypersurface
M is homogeneous in CP n(c), the curve γ is also mapped to a homogeneous curve
in this ambient space. Hence the curve γ is a helix in CP n(c), so that it has
all constant curvatures k1, . . . , kd−1. Motivated by this fact, we give the following
characterization of type (A) hypersurfaces.

Theorem 1 ([17]). Let M2n−1 be a connected real hypersurface isometrically im-
mersed into CP n(c), n ≧ 2. Then M is locally congruent to a type (A) hypersurface
if and only if every geodesic γ of M , considered as a curve in the ambient space

CP n(c), has constant first curvature k1(:= ∥∇̃γ̇ γ̇∥) along γ, where ∇̃ is the Rie-
mannian connection on CP n(c).

The following is fundamental.

Lemma 4. Let Mn be a connected hypersurface isometrically immersed into a

Riemannian manifold M̃n+1. Then the following are equivalent:

(1) The shape operator A of Mn in M̃n+1 is expressed as A = λIn, where λ is a
constant function on Mn and In is a unit matrix;

(2) Every geodesic γ on Mn, considered as a curve in the ambient space M̃n+1, is
a circle;

(3) Every geodesic γ on Mn, considered as a curve in the ambient space M̃n+1, is
a circle of the same curvature |λ|, where λ is given in Condition (1).

By virtue of Lemma 4 and a fact that there exist no totally umbilic real hyper-
surfaces in CP n(c) we find that CP n(c) admits no real hypersurfaces M2n−1 all
of whose geodesics are mapped to circles in this ambient space. We now pose the
following problem:

Problem 1. Does there exist real hypersurfaces M2n−1 some of whose geodesics
are mapped to circles of the same curvature in CP n(c), n ≧ 2 through an isometric
immersion?

The following is a partial answer to Problem 1.

Fact 1 ([20]). (1) Every geodesic γ = γ(s) on M2n−1 of type (A1) of radius r (0 <
r < π/

√
c ) with initial vector γ̇(0) perpendicular to the characteristic vector ξγ(0)
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is mapped to a circle of the same positive curvature (
√
c /2) cot(

√
c r/2) in CP n(c).

(2) For a geodesic γ = γ(s) on M2n−1 of type (A2) the following hold:
(2i) When the initial vector γ̇(0) is a principal curvature vector of M2n−1 in CP n(c)
with principal curvature (

√
c /2) cot(

√
c r/2), the curve γ is mapped to a circle of

the same positive curvature (
√
c /2) cot(

√
c r/2) in the ambient space;

(2ii) When the initial vector γ̇(0) is a principal curvature vector of M2n−1 in CP n(c)
with principal curvature −(

√
c /2) tan(

√
c r/2), the curve γ is mapped to a circle

of the same positive curvature (
√
c /2) tan(

√
c r/2) in the ambient space.

Considering the converse of Fact 1, we obtain the following (see Proposition 2):

Theorem 2 ([20, 30]). Let M2n−1 be a connected real hypersurface isometrically im-
mersed into CP n(c), n ≧ 2. Suppose that there exist orthonormal vectors v1, v2, . . . ,
v2n−2 orthogonal to the characteristic vector ξp at each fixed point p of M such that
all geodesics γi = γi(s) on M with γi(0) = p and γ̇i(0) = vi (1 ≦ i ≦ 2n − 2) are
mapped to circles of the same positive curvature k(p) in CP n(c). Then the function
k = k(p) is locally constant on M and M is locally congruent to either a geodesic
sphere G(r) of radius r (0 < r < π/

√
c ) or a hypersurface of type (A2) of radius

π/(2
√
c ). Moreover, the following hold:

(1) When M has no extrinsic geodesics, M is locally congruent to a geodesic
sphere G(r) of radius r = (2/

√
c ) cot−1(2k/

√
c ) (0 < r < π/(2

√
c )) in

CP n(c) with k >
√
c /2;

(2) When M has just one congruent class of extrinsic geodesics with respect to
isometry group I(M) of M , M is locally congruent to a geodesic sphere G(r)
of radius r = (2/

√
c ) cot−1(2k/

√
c ) (π/(2

√
c ) ≦ r < π/

√
c ) in CP n(c)

with k ≦ √
c /2;

(3) When M has at least two congruent classes of extrinsic geodesics with re-
spect to I(M) of M , M is locally congruent to a hypersurface of type (A2)
of radius π/(2

√
c ) in CP n(c) with k =

√
c /2.

In the following, we shall characterize all homogeneous real hypersurfaces M2n−1

in CP n(c), n ≧ 2 by observing the extrinsic shape of geodesics from this ambient
space. For this purpose we prepare the following two lemmas:

Lemma 5. Let Mn be a connected hypersurface isometrically immersed into a

Riemannian manifold M̃n+1. If a geodesic γ = γ(s) (s ∈ I ⊂ R) on M is mapped

to a circle of positive curvature k, then the shape operator A of Mn in M̃n+1 satisfies
either Aγ̇(s) = kγ̇(s) for all s ∈ I or Aγ̇(s) = −kγ̇(s) for all s ∈ I.

Lemma 6 ([2]). Let γ = γ(s) be a geodesic on each homogeneous real hypersurface
M2n−1 in CP n(c), n ≧ 2. If the initial vector γ̇(0) is a principal curvature unit
vector with principal curvature (, say) λ, then the curve γ is mapped to a circle of
curvature |λ| in CP n(c). In particular, when the initial vector γ̇(0) is perpendicular
to ξγ(0), the curvature |λ| is positive.

In view of Lemmas 5, 6 and the classification theorem of all homogeneous real
hypersurfaces in CP n(c) we obtain the following:
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Theorem 3 ([2]). Let M2n−1 be a connected real hypersurface isometrically im-
mersed into CP n(c), n ≧ 2. Then M is locally congruent to a homogeneous real
hypersurface if and only if there exist orthonormal vectors v1, . . . , v2n−2 orthogo-
nal to the characteristic vector ξp at each point p of M such that all geodesics
γi = γi(s) (1 ≦ i ≦ 2n − 2) on M with γi(0) = p and γ̇i(0) = vi are mapped to
circles of positive curvature in CP n(c).

Note that all circles in Theorem 3 are totally real circles in the ambient space
CP n(c).

7. Real hypersurfaces having ϕ-invariant shape operator

We first recall the following:

Proposition 3 ([11]). Let (Mn, g, J) be a complex n-dimensional Kähler manifold
immersed into a (2n+ p)-dimensional sphere S2n+p(c) of constant sectional curva-
ture c through an isometric immersion f . Then f has parallel second fundamental
form σ if and only if σ is J-invariant, namely σ(JX, JY ) = σ(X,Y ) holds for all
vectors X,Y on Mn.

Remark 4. The “if” part in Proposition 3 is obtained by tensor calculus. The
“only if” part in this proposition is based on a fact that under the only if part
our Kähler manifold Mn is locally congruent to a compact Hermitian symmetric
space and moreover this isometric parallel immersion f of the compact Hermitian
symmetric space into the ambient sphere S2n+p(c) is locally realized as a part of
the embedding as the symmetric R-space (cf. [11, 15, 26]).

Inspired by Proposition 3, for each real hypersurface M2n−1 furnished with al-
most contact metric structure (ϕ, ξ, η, g) isometrically immersed into CP n(c), n ≧ 2
we introduce the following conditions concerning ϕ-invariances of the shape oper-
ator A of M in the ambient space CP n(c).

The shape operator A of M is called strongly ϕ-invariant if A satisfies

(7.1) g(AϕX, ϕY ) = g(AX, Y ), i.e., σ(ϕX, ϕY) = σ(X,Y)

for all vectors X and Y on M . Also, it is called weakly ϕ-invariant if A satisfies

(7.2) g(AϕX, ϕY ) = g(AX, Y ), i.e., σ(ϕX, ϕY) = σ(X,Y)

for all vectors X and Y orthogonal to the characteristic vector ξ on M .
The following is a classification theorem of real hypersurfaces in CP n(c) having

strongly ϕ-invariant shape operator.

Theorem 4 ([19]). Let M2n−1 be a connected real hypersurface isometrically im-
mersed into CP n(c), n ≧ 2. Then the following conditions (1), (2) and (3) are
mutually equivalent.
(1) M is locally congruent to a type (A) hypersurface with radius π/(2

√
c ).

(2) The shape operator A of M in CP n(c) is strongly ϕ-invariant.
(3) M satisfies the following two conditions:
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(3i) At each fixed point p ∈ M , there exist orthonormal vectors v1, v2, . . . , v2n−2

orthogonal to the characteristic vector ξp of M such that all geodesics γi =
γi(s) on M with γi(0) = p and γ̇i(0) = vi (1 ≦ i ≦ 2n − 2) are mapped to
circles of the same positive curvature in CP n(c);

(3ii) There exists at least one integral curve of the characteristic vector field ξ of
M which is an extrinsic geodesic on M .

Remark 5. Theorem 4(3) gives a geometric meaning of a condition that M has
strongly ϕ-invariant shape operator in the ambient space CP n(c).

Next, we classify Hopf hypersurfaces having weakly ϕ-invariant shape operator
in CP n(c).

Proposition 4 ([19]). For a real hypersurface M2n−1 isometrically immersed into
CP n(c), n ≧ 2 the following two conditions are mutually equivalent.
(1) M is a Hopf hypersurface having weakly ϕ-invariant shape operator.
(2) M is locally congruent to a type (A) hypersurface.

Remark 6. There exist many non-Hopf hypersurfaces M2n−1 having weakly ϕ-
invariant shape operator in CP n(c) (for details, see [19]).

8. Length spectrum of hypersurfaces of type (A1) in CP n(c)

Having respect for [8], we call a compact simply connected Riemannian manifold
a Berger sphere if its sectional curvatures lie in the interval [δK,K] with some
positive constants K and δ ∈ (0, 1/9) and has a closed geodesic of length shorter

than 2π/
√
K. When M is even dimensional, Klingenberg ([13]) showed that on

a compact simply connected Riemannian manifold whose sectional curvatures lie
in (0, K] with some constant K every geodesic on M has length not shorter than

2π/
√
K. Thus, we have only odd dimensional Berger spheres. Weinstein ([36])

gave examples of Berger spheres by observing geodesic spheres G(r) of the radius
r (0 < r < π/

√
c ) with tan2(

√
c r/2) > 2 in CP n(c). We find easily the following:

Lemma 7. Let G(r) be a geodesic sphere of radius r (0 < r < π/
√
c ) in CP n(c), n ≧

2. Then the following three conditions are mutually equivalent:
(1) The radius r satisfies an inequality tan2(

√
c r/2) > 2.

(2) The sectional curvature K of G(r) satisfies sharp inequalities δL ≦ K ≦ L for
some δ ∈ (0, 1/9) at its each point, where L = c+ (c/4) cot2(

√
c r/2).

(3) The length of every integral curve of the characteristic vector field ξ on G(r) is

shorter than 2π/
√
L , where L is the maximal sectional curvature of G(r) which is

given by Condition (2).

Remark 7. For every geodesic sphereG(r) (0 < r < π/
√
c ) in CP n(c) every integral

curve of the characteristic vector field ξ on G(r) is a geodesic.

In the following, we call a geodesic sphere G(r) (0 < r < π/
√
c ) with

tan2(
√
c r/2) > 2 in CP n(c) a Berger sphere. Motivated by their works, we shall

investigate the distribution of lengths of closed geodesics on every hypersurface of
type (A1) in CP n(c), n ≧ 2. We first review fundamental notion on geodesics.
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A smooth curve γ : R → M on a Riemannian manifold M parameterized by its
arclength s is said to be closed if there is a positive sc satisfying γ(s + sc) = γ(s)
for all s. When γ is closed, the minimum positive such sc is called its length and is
denoted by length(γ). When γ is open, that is, it is not closed, we set length(γ) =
∞. We here review the congruency for smooth real curves. We say two smooth
curves γ1, γ2 on M parameterized by its arclength s to be congruent to each other
if there exist an isometry φ of M and a constant s0 satisfying γ2(s) = φ◦γ1(s+s0)
for all s. When we can take s0 = 0, we say that they are congruent to each other
in strong sense. We denote by G(M) the moduli space of geodesics of unit speed
on M , which is the set of all congruent classes of geodesics. We can then define a
map L : G(M) → (0,∞] by L([γ]) = length(γ), where [γ] denotes the congruent
class containing a geodesic γ. This map or sometimes its image L(G) ∩ (0,∞) on
the real line is called the length spectrum of M .
The aim of this section is to study how lengths of closed geodesics on geodesic

spheres G(r) (0 < r < π/
√
c ) of CP n(c) are distributed on the real line. To do this

we define functions mG(r), nG(r) : (0,∞) → N∪ {∞}, where N is the set of positive
integers, as follows: For a positive number λ, we denote by mG(r)(λ) the number
of congruent classes of geodesics of length λ, and denote by nG(r)(λ) the number
of congruent classes of geodesics of length not longer than λ. We call mG(r)(λ) the
multiplicity of lengths at λ. We first have

Theorem 5 ([7]). Given a geodesic γ on a geodesic sphere G(r) of radius r (0 <
r < π/

√
c ) in CP n(c), n ≧ 2 through a natural isometric embedding ι we find the

following:
(1) The curve ι ◦ γ is either a geodesic, a Kähler circle, a totally real circle or a
homogeneous curve of proper order 4 in the ambient space CP n(c);
(2) If the structure torsion of γ is ±1, then γ is closed and its length is
(2π/

√
c ) sin(

√
c r);

(3) If γ has null structure torsion, then γ is also closed and its length is
(4π/

√
c ) sin(

√
c r/2);

(4) When the structure torsion of γ is of the form sin θ (0 < |θ| < π/2), it is closed
if and only if

sin θ =
±q

sin(
√
c r/2)

√
p2 tan2(

√
c r/2) + q2

with some relatively prime positive integers p and q with q < p tan2(
√
c r/2). In

this case, its length is

length(γ) =


(4π/

√
c )

√
p2 sin2(

√
c r/2) + q2 cos2(

√
c r/2)

if pq is even,

(2π/
√
c )

√
p2 sin2(

√
c r/2) + q2 cos2(

√
c r/2)

if pq is odd.
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As a direct consequence of Theorem 5, for a geodesic sphere G(r) of radius r in
CP n(4), we can see that

Lspec(G(r)) = {π sin 2r} ∪ {2π sin r}

∪

{
2π

√
p2 sin2 r + q2 cos2 r

∣∣∣∣∣ p and q are relatively prime
positive integers which satisfy
pq is even and q < p tan2 r

}

∪

{
π

√
p2 sin2 r + q2 cos2 r

∣∣∣∣∣ p and q are relatively prime
positive integers which satisfy
pq is odd and q < p tan2 r

}
.

Therefore we obtain the following

Theorem 6 ([7]). On a geodesic sphere G(r) (0 < r < π/
√
c ) in CP n(c), there

exist countably infinite congruent classes of closed geodesics. Moreover the length
spectrum Lspec(G(r)) of G(r) is a discrete unbounded subset in the real line R.

Moreover, we establish the following

Theorem 7 ([7]). Geodesics on a geodesic sphere G(r) of radius r (0 < r < π/
√
c )

in CP n(c) with n ≧ 2 satisfy the following properties.
(1) When tan2(

√
c r/2) is irrational, two closed geodesics on G(r) are congruent

to each other in strong sense if and only if they have a common length.
(2) When tan2(

√
c r/2) is rational, the multiplicity mG(r)(λ) at λ is finite at each

positive λ, but is not uniformly bounded. It satisfies lim supλ→∞ m(λ) = ∞ and
limλ→∞ λ−δm(λ) = 0 for each δ > 0.
(3) We have

lim
λ→∞

nG(r)(λ)

λ2
=

3c
√
c r

8π4 sin(
√
c r)

.

In particular, we have countably infinitely many congruent classes of closed geodesics.

In the rest of this section we have the following characterizations of Berger
spheres from the viewpoint of submanifold theory.

Theorem 8 ([14]). Let M2n−1 be a connected real hypersurface of CP n(c), n ≧ 2
through an isometric immersion. Then M is locally congruent to a Berger sphere,
namely a geodesic sphere G(r) of radius r with tan2(

√
c r/2) > 2, with respect

to the full isometry group SU(n + 1) of the ambient space CP n(c) if and only if
at each point p of M there exists an orthonormal basis v1, . . . , v2n−2, ξp of TpM
such that all geodesics γi = γi(s) (1 ≦ i ≦ 2n − 2) with initial condition that
γi(0) = p and γ̇i(0) = vi are mapped to circles of the same positive curvature k(p)
with k(p) <

√
c /(2

√
2 ) in the ambient space CP n(c), where ξp is the characteristic

vector of M at p ∈ M . In this case, the function k = k(p) on M is automatically
constant with k = (

√
c /2) cot(

√
c r/2).

Theorem 9 ([14]). Let M2n−1 be a connected real hypersurface of CP n(c), n ≧ 2
through an isometric immersion. Then M is locally congruent to a Berger sphere
if and only if M satisfies the following two conditions.
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(1) There exists a positive constant k with k <
√
c /(2

√
2 ) such that the exterior

derivative dη of the contact form η on M satisfies either dη(X,Y ) = kg(ϕX, Y )
for all X,Y ∈ TM or dη(X,Y ) = −kg(ϕX, Y ) for all X,Y ∈ TM , where g and ϕ
are the Riemannian metric and the structure tensor on M , respectively.
(2) There exists a point x of M satisfying that every sectional curvature of M at x
is positive.

The definition of dη on a real hypersurface M is given by dη(X,Y ) = (1/2)·
{X(η(Y ))− Y (η(X))− η([X,Y ])} for all X,Y ∈ TM .

We note for comparison the recent paper of Li, Vrancken and Wang ([16]), which
gives a characterization of 3-dimensional Bereger spheres as Lagrangian submani-
folds of CP 3. They showed the following (for details, see Theorem 1.2 in [16]): Let
ϕ be a Lagrangian isometric immersion of a homogeneous 3-manifold M3 into a
complex space form M3(c)(= CP 3(c),CH3(c) or C3). Then c > 0 and ϕ is minimal
and M3 is locally congruent to the Berger sphere.

At the end of this section we give some comments:

Remark 8. (1) Except geodesics with structure torsion ±1, every geodesic γ on

G(r) (0 < r < π/
√
c ) in CP n(c) satisfies length(γ) > 4π/

√
c
(
4 + cot2(

√
c r/2)

)
,

i.e., it satisfies an inequality of Klingenberg’s type.
(2) In the class of all homogeneous real hypersurfaces M2n−1 in CP n(c), M is of
type (A1) if and only if every sectional curvature of M is positive, and M is of type
(A) if and only if every sectional curvature of M is nonnegative (see [22]).
(3) In the statement of Theorem 9, if we remove Condition (2), this theorem does
not hold. The Berger sphere and a certain homogeneous real hypersurface of type
(B) satisfy Theorem 9(1). We here review a fact that CP n(c) admits no real
hypersurfaces with dη = 0 (see [25]). On the other hand, a complex Euclidean
space Cn has real hypersurfaces M2n−1 with dη = 0 (for example, the totally
geodesic real hypersurface R2n−1 satisfies this condition). So, in some sense the
geometry of real hypersurfaces of CP n(c) is more complicated than that of Cn.
Motivated by them, we establish Theorem 9.

9. Almost contact structures on real hypersurfaces in CP n(c)

We first clarify the meaning of the condition that a real hypersurface M in
CP n(c), n ≧ 2 is a Sasakian manifold with respect to almost contact metric struc-
tures (ϕ, ξ, η, g) and (ϕ,−ξ,−η, g). We call a real hypersurface M Sasakian if M
satisfies either (∇Xϕ)Y = g(X,Y )ξ − η(Y )X for all tangent vectors X,Y ∈ TpM
at an arbitrary point p ∈ M or (∇Xϕ)Y = −g(X,Y )ξ + η(Y )X for all vectors
X,Y ∈ TpM at an arbitrary point p ∈ M , where ∇ denotes the Riemannian
connection of M (see Theorem 6.3 in [9]). For a tangent vector X of a Sasakian
manifold M which is orthogonal to ξ, the sectional curvature of the plane spanned
by X and ϕX is called ϕ-sectional curvature of the ϕ-section determined by X.
We say a Sasakian manifold to be a Sasakian space form of constant ϕ-sectional
curvature k if ϕ-sectional curvatures of all tangent vectors orthogonal to ξ are k.

By easy computation we find the following



14 S. MAEDA

Lemma 8 ([1]). For a connected real hypersurface M2n−1 isometrically immersed
into CP n(c), n ≧ 2 the following four conditions are mutually equivalent.
(1) M is locally congruent to a geodesic sphere G(r) of radius r (0 < r < π/

√
c )

with (
√
c /2) cot(

√
c r/2) = 1.

(2) The shape operator A of M in the ambient space CP n(c) is expressed as either
AX = −X + (c/4)η(X)ξ for each X ∈ TM or AX = X − (c/4)η(X)ξ for each
X ∈ TM . That is, M is a member of totally η-umbilic real hypersurfaces in CP n(c).
(3) M is a Sasakian manifold with respect to the almost contact metric structure
(ϕ, ξ, η, g) induced from the standard Kähler structure (g, J) on CP n(c).
(4) M is a Sasakian space form with respect to the almost contact metric structure
(ϕ, ξ, η, g) induced from the standard Kähler structure (g, J) on CP n(c). In this
case, M has constant ϕ-sectional curvature c+1.

Remark 9. (1) It follows from a fact that every geodesic sphere G(r) (0 < r <
π/

√
c ) in CP n(c) is diffeomorphic to a Euclidean sphere and Lemma 8 that our

geodesic sphere G(r) (0 < r < π/
√
c ) of radius r with (

√
c /2) cot(

√
c r/2) = 1 is a

complete simply connected Sasakian space form N(k)(:= N2n−1(k)) of constant ϕ-
sectional curvature k = c+1(> 1). Hence by virtue of the unique existence theorem
on complete simply connected Sasakian space forms in [35] our geodesic sphere G(r)
with (

√
c /2) cot(

√
c r/2) = 1 is congruent to a standard example of Sasakian space

forms having constant ϕ-sectional curvature greater than 1 constructed in page 114
of [9].
(2) In view of (2.3) and Lemma 8(2) we can write the curvature tensor R of a
Sasakian space form N(k) of constant ϕ-sectional curvature k(> 1) (cf. [28]).

Using the results in [7] and an equality (
√
c /2) cot(

√
c r/2) = 1, we give the

following list of the length spectrum LSpec(N(k)) = L
(
G(N(k))

)
∩R of a complete

simply connected Sasakian space form N(k) with k > 1

LSpec(N(k)) =
{ 8π

k + 3
,

4π√
k + 3

}
⋃ {

4π

√
(k−1)p2 + 4q2

(k−1)(k+3)

∣∣∣∣∣ p and q are relatively prime
positive integers which satisfy
pq is even and 4p < (k−1)q

}
⋃ {

2π

√
(k−1)p2 + 4q2

(k−1)(k+3)

∣∣∣∣∣ p and q are relatively prime
positive integers which satisfy
pq is odd and 4p < (k−1)q

}
.

Geodesics on a complete simply connected Sasakian space form N(k) with k > 1
have the following properties.

Proposition 5. Every geodesic on N(k) (k > 1) is homogeneous, that is, it is an
orbit of some one-parameter subgroup of the isometry group I(N(k)). Hence it is
a simple curve, i.e., it does not have self-intersections.

Proposition 6 ([5]). We have countably infinite congruent classes of closed geodesics
on N(k) (k > 1). Moreover, we have the following.
(1) Every N(k) (k > 9) is a Berger sphere.
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(2) When k is irrational, two closed geodesics on N(k) are congruent to each other
if and only if they have a common length.
(3) When k is rational, we have mN(k)(λ) is finite for each positive λ, but is not uni-
formly bounded; lim supλ→∞mN(k)(λ) = ∞. The growth order of the function mN(k)

is less than polynomial order. More precisely, we have limλ→∞ λ−δmN(k)(λ) = 0
for each positive δ.

Though the feature of the function mN(k) of multiplicities depends whether k is
rational or irrational, the functions nN(k) of numbers of congruent classes of closed
geodesics have a common property.

Theorem 10 ([5]). The function nN(k) with k > 1 satisfies

lim
λ→∞

nN(k)(λ)

λ2
=

3(k+3)
√
k−1

16π4
tan−1(

√
k−1/2).

For the definitions of functions mN(k) and nN(k) see Section 8.

10. A certain homogeneous submanifold in a sphere

In this section we show that every sufficiently high dimensional Euclidean sphere
admits an odd dimensional Riemannian submanifold M having the following prop-
erties:
(1) M is diffeomorphic but not isometric to a Euclidean sphere.
(2) M is a homogeneous submanifold with nonzero parallel mean curvature vector
in the ambient sphere.
(3) M is a Berger sphere.
(4) M is a Sasakian space form of constant ϕ-sectional curvature.

For this purpose we establish the following theorem.

Theorem 11 ([23]). (I) For each of c > 0, n ≧ 2, N > n(n + 2) − 1 and c̃ ≦
(n+1)c/(2n), there exists a (2n−1)-dimensional submanifold M2n−1 isometrically
immersed into an N-dimensional sphere SN(c̃) of constant sectional curvature c̃,
which has the following properties:
(1) M is diffeomorphic but not isometric to a Euclidean sphere.
(2) M is a homogeneous submanifold which has nonzero parallel mean curvature
vector with respect to the normal connection in SN(c̃).
(3) M is a Berger sphere.
(4) When c = 8n+4, M is a Sasakian space form of constant ϕ-sectional curvature
8n+ 5.
(II) For each of c > 0 and n ≧ 2, when N = n(n + 2) − 1, there exists also
a (2n − 1)-dimensional submanifold M2n−1 in an N-dimensional sphere SN(c̃) of
constant sectional curvature c̃ = (n + 1)c/(2n), which has the above properties
(1), (2), (3), (4).

We explain an idea in the proof of Theorem 11. We denote by (M, ιM) a real
hypersurface M2n−1 of CP n(c) through an isometric immersion ιM : M → CP n(c).
In the following, we regard a real hypersurface M in CP n(c) as a submanifold of
the sphere Sn(n+2)−1((n + 1)c/(2n)) of constant sectional curvature (n + 1)c/(2n)
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through an isometric immersion f1◦ιM , where f1 is the parallel equivariant minimal
embedding of CP n(c) into Sn(n+2)−1((n+ 1)c/(2n)).

We here recall the definition and fundamental properties of f1. The embedding
f1 is defined by eigenfunctions of the first eigenvalue of the Laplacian ∆ on CP n(c)
(for details, see [10, 34]). In submanifold theory, this embedding f1 is well-known as
the only example of a full minimal parallel immersion, i.e., the second fundamental
form σ1 of f1 is parallel, of a complex projective space endowed with Fubini-Study
metric into a Euclidean sphere. The inner product of the first normal space of f1
is given by

⟨σ1(X,Y ), σ1(Z,W )⟩ = −(c/(2n))⟨X,Y ⟩⟨Z,W ⟩+ (c/4)(⟨X,W ⟩⟨Y, Z⟩(10.1)

+ ⟨X,Z⟩⟨Y,W ⟩+ ⟨JX,W ⟩⟨JY, Z⟩+ ⟨JX,Z⟩⟨JY,W ⟩)
for all vectors X,Y, Z,W on CP n(c), where J is the complex structure on CP n(c).
Equation (10.1) shows the following properties of f1:
(i) The embedding f1 is minimal.
(ii) It holds that σ1(JX, JY ) = σ1(X,Y ) for all vectors X,Y on CP n(c), i.e., σ1 is
J-invariant. Hence the second fundamental form σ1 of CP n(c) in Sn(n+2)−1((n +
1)c/(2n)) is parallel (see Proposition 3).
(iii) The length of a normal vector σ1(X,X) is written as ∥σ1(X,X)∥ =√

(n− 1)c/(2n) for each unit vector X on CP n(c), namely our embedding f1 is√
(n− 1)c/(2n) -isotropic (cf. [31]).
We next explain the embeddings f1 ◦ ιM : M → Sn(n+2)−1((n + 1)c/(2n)). This

class contains some homogeneous submanifolds of Sn(n+2)−1((n+1)c/(2n)), that is
they are expressed as orbits of some subgroups of the isometry group SO(n(n+2))
of the ambient sphere. In fact, if we take a homogeneous real hypersurface M
of CP n(c), the immersion f1 ◦ ιM gives a homogeneous submanifold M of the
sphere. As a matter of course these homogeneous submanifolds have constant
mean curvature in the sphere. On the other hand, the second fundamental form of
the immersion f1 ◦ ιM : M → Sn(n+2)−1((n+ 1)c/(2n)) is not parallel for each real
hypersurface M of CP n(c) because CP n(c) admits no real hypersurfaces which are
locally symmetric (for example, see [25]). Hence it is natural to pose the following
problem:

Problem 2. Classify submanifolds (M2n−1, f1 ◦ ιM) of Sn(n+2)−1((n + 1)c/(2n))
satisfying that the isometric immersion f1 ◦ ιM has parallel mean curvature vector
with respect to the normal connection.

The following answer to Problem 2 is a key lemma.

Lemma 9 ([23]). Let M2n−1 be a connected real hypersurface of CP n(c), n ≧ 2
through an isometric immersion ιM and f1 : CP n(c) → Sn(n+2)−1((n + 1)c/(2n))
the first standard minimal embedding. Then M is locally congruent to the geodesic
sphere G(r) (0 < r < π/

√
c ) with tan2(

√
c r/2) = 2n+ 1 in CP n(c) if and only if

the isometric immersion f1 ◦ ιM : M → Sn(n+2)−1((n+1)c/(2n)) has parallel mean
curature vector with respect to the normal connection. Moreover, this submanifold
(M, f1 ◦ ιM) is homogeneous in the ambient sphere.
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We find easily the following lemma.

Lemma 10 ([23]). The geodesic sphere G(r) of radius r (0 < r < π/
√
c ) with

tan2(
√
c r/2) = 2n+1 in CP n(c) is a Sasakian manifold with respect to the almost

contact metric structure (ϕ, ξ, η, g) induced from the Kähler structure (g, J) on
CP n(c), n ≧ 2 if and only if c = 8n + 4. Furthermore, this geodesic sphere is a
Sasakian space form of constant ϕ-sectional curvature 8n+ 5.

Moreover, we need the following lemma in order to show Statement (2) in The-
orem 11.

Lemma 11 ([23]). We consider the following isometric embedding f̃ of the geodesic
sphere G(r) of radius r (0 < r < π/

√
c ) with tan2(

√
c r/2) = 2n + 1 in CP n(c)

into an N(≧ n(n+2)−1)-dimensional sphere SN(c̃) of constant sectional curature
c̃(≦ (n+ 1)c/(2n)).

(1) When N > n(n+ 2)− 1, f̃ is given by

f̃ = ι ◦ (f1 ◦ ιG(r)) : G(r)
f1◦ιG(r)−→ Sn(n+2)−1((n+ 1)c/(2n))

ι−→ SN(c̃),

where ι is a totally umbilic embedding, so that (n+ 1)c/(2n) ≧ c̃.

(2) When N = n(n+ 2)− 1, f̃ is nothing but f1 ◦ ιG(r), so that (n+ 1)c/(2n) = c̃.
Then our geodesic sphere is homogeneous in SN(c̃) and it has nonzero parallel mean
curvature vector with respect to the normal connection in this sphere.

Thus, in view of Lemmas 9, 10 and 11 we establish Theorem 11. At the end of
this paper we pose the following open problem.

Problem 3. Let f1 be a minimal parallel full immersion of a complex n-dimensional

compact Hermitian symmetric space M̃n into a Euclidean sphere S2n+p(c̃). If there

exists a real hypersurface (M2n−1, ιM) of M̃n satisfying that the corresponding
submanifold (M2n−1, f1 ◦ ιM) has parallel mean curvature vector with respect to
the normal connection in the ambient sphere S2n+p(c̃), is our Hermitian symmet-

ric space M̃n holomorphically isometric to a complex projective space CP n(c) of
constant holomorphic sectional curvature c = 2nc̃/(n+ 1) and p = n2 − 1?
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