島根半島第三紀層の土性と 水稻発育関係について

安 川 伝 朗

(昭和31年11月30日受理)

Tada-aki YASUKAWA: Studies on the Agronomic Character of the Tertiary Period Soil in Shimane-Hanto and the Growth Expression in Oryza Sativa L.

一緒 言

島根県下の第三紀層は⁽¹⁾58,000町歩で、全面積の 8.7% に過ぎないが、総耕地12,900町歩の 15.6%が之に属し、農業利用度高く、殊に島根半島に於てはその度が高い。半島第三紀層所属の、既耕土の土性並生産力に関しては、⁽²⁾ 島根県立農事試験場によつて調査されているが、未耕土に就ては末だ文献が存しない。この両者間の相関度及び未耕地の性質を明にし、農業利用上の基礎的資料を得る目的で、首題の調査を実施した。もとより試験点数が少なく、且つ不備の点も存すと雖も、島根県に於ける之等の関係概要を知ることができるので、茲に成績を取纏め、報告する。本研究に当り便益を供せられた、島根県立農事試験場技官、山根忠昭氏に対し謝意を表す。

二実驗の材料及び方法

1. 供試原土採集地とその記号

島根半島を, 鄙上東西方向に4分し, 次の4地点の, 地下1m 深度の土壌を採集した。 () は暑号

- (1) 出雲市高浜(2) 平田市国富(3) 松江市西川津(4) 松江市本庄
 - 2. 土 性 調 査

理学性は⁽⁵⁾淘汰分析により、化学性の酸度は、⁽⁴⁾板野式 PH 測定法によつて調査した。

3. 土性と水稻発育関係及び区別

水稻品種は、島根県立農事試験場原種、水稻品種農林22号を、5月20日(3)原土畑地に播種し、6月30日に、平均発育茎数4。草丈38cm。 苗齢6.3 に達したものを用い、 1/20,000 wagner Potに、 (5)小野寺氏の方法により、各地の土壌を充塡した。但し風乾原土は各3貫宛とした。使用肥料は、硫安(20.5%) 過酸石灰(16%) 及び硫酸加里(48%)を用い、三要素一瓦当量とし、次の20区を設け各2区制とした。灌漑水源として、松江市水道水を使用した。

地区別要素別	[1] (高 浜)	(2) (国 富)	[3] (西川津)	[4] (本 庄)
a (無 肥 料)	a (1) 🗵	a (2) 区	a (3) 区	a (4) 区
b (無 窒 素)	b (1) 区	b (2) 区	b (3) 区	b (4) 区
c (無 燐 酸)	c (1) 区	c (2) 区	c (3) 区	c (4) 区
d (無 加 里)	d (1) 区	d (2) 区	d (3) 区	d (4) 区
e (完 全)	e (1) 区	e (2) 区	e (3) 区	e (4) 区

4. 水稲生育相の調査は、黄熟期に達したものより逐次収穫し、稈長・穂長・籾重・わら重を 測定した。

三実驗成績

- 1. 土 性
- (1) 化 学 性
 - a. 酸度, 次表の結果を得た。

第一表

地区另	y (1)	(2)	(3)	(4)
РН	5.04	5.10	5.14	5.79

即ち全般に酸性で概して半島東方に於て酸度が高い。

b. 組成,分折成績%第二表の如し

第二表

組成地区別	(1)	(2)	(3)	(4)
N	0.070	0.090	0.090	0.081
G	0.220	0,250	0.230	0.240
Si O ₂	35.100	32.010	30,060	25,100
Al ₂ O ₃	16.800	16.750	16.740	16.810
Fe ₂ O ₃	12.600	13.550	14.650	14.890
P ₂ O ₅	0.061	0,065	0.066	0.064
Ca O	0.800	0.810	0.820	0.830
Mg O	2.590	2.580	2.580	2.570
S O ₃	0.700	0.720	0.720	0.730
K ₂ O	0.400	0.410	0.390	0.430

全区に亘り可溶性成分が多く,活性のアルミニューム及び鉄分を多く含むが, 憐酸は微量である。地区的に一連した傾向として,石灰は東方に向つて含量少なく,鉄は之に相反する。

(2) 理 学 件

組成 25gr 乾土測定したが、合計量は若干の誤差を生じた。

第三表

組	地区別	(1)	(2)	(3)	(4)
粗	砂	2.0495	1.4748	0.9481	0.2011
細	砂	4.4497	3.2486	2.2746	0.9746
微	砂	5.7249	6.0748	6.6247	7.4248
粘	土	12.7748	14.1746	15.1002	16.3126
合	計	24.9989	24.9728	24.9476	24.9131

第三表実数を%に表はすと次の如し

第四表

組 成		(1)	(2)	(3)	(4)
粗	砂	8.2	5.9	3.8	0.8
細	砂	17.8	13.1	9.[3.9
微	砂	22.9	24.3	26.5	29.7
粘	土	51.1	56.7	60.0	65.6
合	計	100	100	100	100

全区共埴土に属するが、半島を東するに從い、土壌が微細である。

2. 地区別の水稻発育相

測定実数及び(3)eを標準とする、比較値は第五表の如し

第五表

	地区別	要素区別	茎 数 本	稈 長 cm	穂 長 cm	籾 重 gr	わら重 gr
		a	4.1	39.8	10.5	6.01	5.09
		b	4.8	40.1	12.5	8.90	9.85
測	(1)	c	5 .4	57.6	16.6	12.40	17.68
侧		đ	7.5	68.3	16.9	20.10	26.33
		e	8.1	70.0	19.8	23.60	30.96
		a	4.2	40.1	10.7	6.37	5.66
		b	4.9	40.3	12.5	9.81	10.08
	(2)	c	5.4	57.6	16.2	13.60	17.90
定		đ	7.5	69.1	17.1	21.00	26.88
		e	8.2	70.5	20.1	23.91	31.56

	i	a	4.3	41.4	16.8	6,50	6.40
		b	4,9	41.0	12.6	10.20	10.19
	(3)	c	5.5	57.5	16.7	13.29	18.50
庙		d	7.7	70.6	17.4	21.20	27.46
値		e	8.7	71.0	20.5	24.80	34.90
		a	4.4	42.0	10.8	6.30	6,41
		b	4.9	42.3	12.9	10.11	10.20
	(4)	°c	5.6	55.8	16.5	13.32	18.01
		d	7.9	73.5	18.1	21.70	28. 38
		e	9.1	71.2	20.4	24.71	35,09
		a	47	56	51	24	14
		ь	55	56	61	36	28
	(1)	c	62	81	81	50	51
		đ	86	96	82	81	75
		e	93	99	97	95	89
소		a	48	57	52	25	16
		ь	56	57	61	39	29
上	(2)	c	62	81	79	55	51
		đ	86	97	83	84	77
		e	94	99	98	96	90
比一		a	50	58	53	26	18
		ь	56	58	61	41	29
較	(3)	c	63	81	81	53	53
		đ	89	99	84	85	79
		е	100	100	100	100	100
値 -		a	50	59	53	25	18
		b	56	60	63	41	29
	(4)	c	64	79	80	54	51
		đ	91	104	88	89	81
		e	104	100	99	100	101

全地区を概観すると、無肥区の種子生産値は、24~26 で、最も低く、且つ地区差が狭い。無空素区では、36~41 で、前者に比し、稍、高く地区差が稍、広い。無燐酸の場合は、50~55で、無窒素に比し、生産力が若干大きいが、地区による相違が少ない。無加里区にあつては、81~89で、生産力が以上各区の中で最高である。猶一般的に、西部の地力が低く、水稲発育が倭性であつた。

四老窯

以上島根半島第三紀層分布代表地の、未排土に就いて、その土性並に水稲品種農林22号の生育相に関する調査を施行した。その成績によると、土壌酸度は、5.04~5.79で、明な酸性反応を呈し、東方に至るに従ひ酸度が高まる。されど水稻発育に対しては、寧ろ⁽⁶⁾最適濃度の限界内にある。

化学的組成分は可溶性成分に富み、活性のアルミニューム及び鉄を多含するが、燐酸が極めて少ない。分布傾向として、東するに從ひ鉄含量は増加するが、石灰分は漸減する。この傾向は、酸性反応地区差の,根底をなす主因であらう。

土壌は理学的分類上、全区、埴土に属することになつたが、東方に至るに伴い微粒子化する。次に水稻発育相の中、子実生産度を、⁽⁷⁾ 全国農事試験場所属圃場成績、並に⁽⁸⁾ 島根県立農事試験場調査・市町村別地力調査平均値と比較すると、第六表のようになる

A-Fe		===
ᆵ.	7	

	無	肥	無窒素	無燐酸	無加里	完	全
本学試験値	24~	-26	36~41	50 ~ 55	81~89	1	00
全国平均			81.8	92	95	1	00
島根県平均	50	.1	54.7	87.8	83.6	1	00

本表の全国及び島根県平均値は、各種地質所属既耕地で、本試験の内容と異なるが、無加里の場合の差異が極めて少く、その他の場合に著しい差が認められる。

全一第三紀地質所属の,既・未耕土に於ける生産度を観ると,第七表の如し。表中本実験と あるは,〔3〕地区成績で,本成績は昭和28年大学所在地西川津水田調査,県立農事試験場成績 は⁽²⁾ 全場調査・市町村別地力調査数値である。

第七表

記号	試 験 別	無肥	無窒素	無燐酸	無加里	完 全
A	本試験値	26.0	41.0	53.0	85.0	100
В	本学成績	52.2	54.1	75.8	86.0	100
C	県農試成績		53.0	89.1	81	100

上表 A は未耕第三紀層土、 $B \cdot C$ は既耕第三紀層土に就ての成績である。無肥区が最低であるが、心土に属する未耕土が著しく少ないのは、土壌所含有機質の、量等に由因するのであらう。このため、無窒素区に於ても全様傾向が明である。C 成績では、燐酸の欠如は生産性に関係が、加里の場合より影響が少なくなつているが、本試験並に本学成績では之に反する結果になつた。この理由は、C 成績供用土壌が永年水田化され、且つ燐酸性の肥料が投下累積していたものと思考される。之に対し、A の場合は斯る条件に欠如し、B のそれは、乏しく掠奪的経営の水田であつた関係上、A に近似した成績が顕れている。この点より、既未耕土間には燐酸・加量・の可給態存在量に差異があることが察知され、半島第三紀層の未耕土に対しては、加里の肥効は僅少で、燐酸施用が、子実生産に与える影響が顕著である。

五 摘 要

島根半島に於ける,第三紀層土と,該地の水稲発育相関係に就いて調査した。その成績によれば,

- (-) 土壤 PH は $5.04 \sim 5.79$ で、東するに從い酸度が強い。されど水稻発育最適濃度限界内にある。
- (二) 化学的組成分は、可溶性成分が多く、活性のアルミニウム・鉄に富み、燐酸は微量である。分布的傾向として、石灰は東方に少なく、鉄は之に相反し、土壌反応の主因をなすもの かいし。
 - (三) 土壌の理学的組成より埴土に属し、東方に進むに従い粒子微細となる。
- 四 水稻生育相の中、子実生産度は、東部に於て高い。無機養分中、加里の含量は多いが、 燐酸は少ない。
- 田 既耕土にあつては、可給態燐酸量は多しと認められているが、未耕土に於ては之に反する結果となった。

引用文献

(1) 島根県立農事試験場:耕地調査資料第一号 昭和23年4月

(2) 島根県立農事試験場:島根県市町村別地力調査並分析表 昭和10年4月

(3) 青峰 垂 範:新撰土壤実験法 昭和25年6月

(4) 東大農学部農芸化学教室: 実験農芸化学

(5) 小野寺伊勢之助:肥料学綱要 昭和16年4月

(6) 麻 生 慶 次 郎:土壤の反応と水稲の収量(松木五楼作物の肥培 昭和25年1月)

(7) 永 井 威 三 郎: 実験作物栽培各論第一巻 昭和24年8月