
14 

REGULAl~LY TOTA LLY OIRDEIRED SEMIGROUPS I 

by. ~~iyuki ~(ANrADA 

(Received Nov. 30,1956) 

~LI FEf ~1~ ~~=.-._E~ : _IE ~~~ ~~ J[~: ;~ ~~ ~~i~ 1 

By an ordered senaigroup we t,nean a semrgroup S in which a binary relation < is 

defined as follows ; 

(1) a</_a for every aES, 

(2) a<b, b'<a imply a-b, 

(3) a'~-~b, b-<c irnply a<c, 

(4) a<b Implles both ac <rbc and ca<cb for every cES. 

We write usually a<b if a<b but a~b. Especially, we say S to be a totally ordered 

sernigroup if the binary relation -~~- is a totally ordering. Ordered semigroups have been 

studied by A. H. Clifford, O. H~rder , F. Klein-Barmen, O. Nakada and many other 

n, Iatheinaticians. The present paper takes a snlall portion of this study in parall.el with 

Clifford [1] and Klein-Barmen [2] , [3] , [4]. Let S be a commutative semigroup. Then 

we shall call S to be a regedarly totally ordered se/nigro~rp (r. t. o. se.migroup) if S 

satisfies the following two conditions; 

(1) for any different a,beES, either aSL~bS or bSCaS holds, 

(2) if aS(--,,__bS, th_en there exists a positive inte_"er n such that a"Eb~S, where the 

symbol C means 'is of a proper subset of'. 

In fact , S becomes a totally order ed semigroup if a binary relation ~~ in S is defined as 

follows; a-<b nlleans aS=~~~)bS. A naturally totally ordered commutative semigroup (see 

ClifL0rd [1]) is not necessarily a r. t. o. semigroup, and vice-versa. A Iinear holoid 

defined by Klein-Barm.en [3] is, however , the same thing as a r. t. o. semigroup with 

identity element. Moreover , both a dense-in-itself segrnent in sense of Clifford [1] and an 

archimedean naturally totally ordered commutative semigroup satisfying the cancellation law 

are interest exam_~ples of r. t. o. semigroups. A r. t. o. semigroup is said to be locally 

nilpotent if S satisfies the following condition; for any element a cf S, 

f- c if S has no zero element , 
n a""S 

}
 

"' {o} if S has zero element o, ~~ 

whel e c and {o} denote the empty set and the set consisting of only one element zero o 
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respectively. Moreover S is said to be discl'ete or leon-disct'ete _according to whether S 

contains the least element ( i. e. the ekment e such that x > e for any x E S) or not , 

respect ively. 

In S I we define, for every positive real nunrber c~ and for every non-negative real 

nurnber ~ , a closed half line L [ot] and an open 'half line L (p), and define their 

index:ed setbgro~rps. In S 2 we discuss, in preperation for S 3 and ~*. 4 , on gen.eral 

properties of locally nilpotent r. t. o. semlgroups wlthout zero We devote S 3 to show 

that a discrete, Iocally nilpotent r. t. o. semigroup without zero is characterized as an 

iudexed subgroup of the closed half line L [1], and S 4 to show that a non-discrete, 

locally nilpotent r. t. o. semigroup without zero is characterized as ' a p-dense , indexed 

subgroup of an open half line L( p). In the concluding section we show that if a locally 

nilpotent r. t. o. semigroup S contains zero elernent o and if S satiefies the cancellation law 

(i. e. the law; ax bx+0 implies a-b), then the problem of determing the stru*-ture 0L 

S is reduced to the probkxn of determir.g the structure of eil her locally nilpotent r. t. o. 

semigroups wrthout zero or dense-in-itself segments. 

Notations. {x j ･ ･ ･ ･ ･ ･(prciposition about x)} denotes the set of all elexnents x such that the 

proposition about x is correct. If A ~B, B-A denotes the complernent of A in B. If 

{AT I TEI} is a set of classes , o~ AT denotes their class surn. If A and B are subsets 
~re 1 

of a sernigroup, AB denotes the set {xy I xEA, yEB} . 

' . Indexed subgroups. S 1. Closed half lines. Open half Imes 

Let ll ~ ll and C~) be , for any non-negative real number ~ , the ir,tegral part and the 

decimal part of ~ respectively; i. e. , if ~ is expressed in the forrn g~--oilc~2"""oiqa' plp2 

by the decimal system, then 11 ~ Il - oiloi2"""ai,, and (~) =-o. plR2"""' Take up a real 

nunlber a>0 and set I[oi]={x I a<x<0i+1,x is a real number}. Then I[a] becomes a 

group if we define a binary relation o in. I[a] as follows; xoy Cx+y-oi) + oc. We shall 

denote by G[ci] the above-mentioned group. Next , we set P[a] {(x,n) I xEG[cli] ' n is 

a r}.on-negative in:teger} and defin.e a bin_.ary relation_. X in P[oi] as follows; (x, n)x(y , Ifl) 

(xoy, Ie+n'z+ 11 x+y a l] ). P[a] becomes then a semigrOup, which we shall call a clo-

sed half lin.e L[oi]. Let G*[oi] be a subgroup 0L G[oi] , a:nd set L*[oi] {(x, Ie) I xF_ 

G*[a] , n is a non-negatve integer}. Then it is obvious that L*[oi] is a suh_semigroup 

of L[oi]. We sball call such L*[a] an indexed subgroup (1-subgroup) of L[a]. 

Similarl y , we deLine open halL Iines and their l-subgroups as follows. Take up a real 

number p>0, and set I(p) {x [ ~<(x<p+1, x is a real number}. Then I(p) becomes 

a group if we define a binar y relation @ in I(p) as follows; 
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xOy Cx+y p)+p+q)(x+y R), 
where ~p is a real function such that 

(p(z) o rf C-;t)~0, 

1 if Cz) o. 

We shall denote by G(p) the a:.bove-mentioned group. Next , we set P(p) {(x, n) I XE 

G(R),1e is a non-negative integer} and define a binary relation ~ in P(p) as follows ; 

(x,n)~~~:(y,111) (x~_y, n+1rl+1lx+y p ll ~o(x-~y p)). 

P(p) beconles then a sern_igroup , whic_h we shall call an open half line L(~). 

Let G*(p) be a sub*aroup of G(~), and set L*(p) {(x,n) I xEG*(R), n in a non-nega-

tive integer}. Then it is easy to see tha.t L*(p) is a subsemi*aroup of L(p). 

We shall call such L*(p) an indexed subgroup (1-subgroup) of L(p). 

Especially an indexed subgroup L*(~) of L (~) is said to be ~-delese if it sat'isEies the 

following condition ; 

for any (x,o)~~,___L(P), there exists (y,o)EL*(~) such that y<.x 

The reason for the tetm "a closed half line L[ci]" ["an open half line L(~)"] is that 

L[a] [L ( ~ )] is isomorphic with the additive sernigroup consisting of all real numbers 

x>a [x>~]. 

By a halL Iine we shall mean a semigroup which is either a closed halL Iine or an open 

half I ine. In conclusion of this section we present the next theoren) , onaitting its proof. 

~j:.._::Theorein ,)f~ Every I s~tb_"drolrp of any half llne es a locally mlpotelet r! t. o. se/m~r-1
.
 

,olrp witholit zero. Espd::.'~,b"'~llly , eve/'y I-subgroztp of L[1] is discl'ete, Iocally nilpotent 

r. t. o. senei*dro~tp without zero, while every ~-dense, I-sttbg7'o~rp of L(~) is a non-

discrete , Iocall_V nilpotent se]nigrolrp witl70zlt zero. 

.~~- 2. Locally nilpotent r.t. o. semigroups without zero. 

Throughout this section S will denote a locally nilpotent r. t. o. sernigroup without zero. 

T""'7 ~ . ･ . . . .. . ' ~._Lem:ma 1;~ S Is archlm,edeao't, l' e. f'or ale_v a ,bES there exlst posetlve Integers m, n 

s~cch that a"'>b and b"+>a. 

(.~l_)oof.:i Tak-e up any two elements a ,b frc(n S. We m_ay show that there exist positive 

integers n , 1le such that a"S~bS and b""S~aS. Were biSl)aS for every positive integer 

i, we would have f~biSI)aS, hence aS c , contrary to aS~c. Hence, there 

exists an integer m Such that b""SCaS. Sim_ilarlV_ , there exists an integer n such that 

a"'SCbS. 

Len~t~a 1)d!' If a/+.b, t/7e/e there exists ale ie'etteger n se.tch t/'rat a"+1<(b"". 

Proof. a<:b implies aS]bS, hence bih.__'-a'iS for "orne integer i. 
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We have thel efol e b a'i't for sorr~e element t of S. On the other hand, there exlsts an 

integer k such that t/"'_~¥a. Hence we have bih aiA'th>a'iA+1 , and hence bi/'>aik+1. 

Lenxma 3. S contailis no idempotents 

Proof. Obviousness. 

Len~D:)a 4. S is a positively ordered se;nigrozrp i e. for any a , bES, a<ab holds. 
~ ' 

Proof. a-/_.ab is obvious by the definition of the ordering ~;. Were a ab , we would 

have a abi for every positive integer i. Froln Len~rn.a I we obtain bj>a for some integer 

j. Consequently, we have a abj>a2 , hence a a2 , contrary to Lemma 3. 

Lertxn)a 5. For any a<:b and for any CES there exlst Integers n m such that a <c"" 

<: bn. 

Proof. By Len, n:ma 2 , ai+1 <bi holds for some integer i. Since a/'~.__.¥~:c2 is also satisf.ied 

for sorne integer k , we have ah(i+1)/_b/'ri , therefore akic2-~--b~"i. From Len):ma I , we are able 

to show that cj/__aki' <cj+1 holds L0r sorne integer j>2. Accrdingly we have aki<:c,i+1<:oj+2 

'/__alic2./__b/"i. putting n ki and In j+1, we obtain the desirable relation a"'<c""<r.b". 

Lemma ~~j'! S satisfies the cancellation law , i. e. ax bx ilnplies a b. 

'
;
)
.
:
'
.
'
=
 

~･ -,PI oof. ) Assume that ax bx but a+b. Since a<b or b<a we may assume a<(b. By 

Lemina 2 , we have a"'+1<b"' for some integer m. Hence a""+1x""<b x a 'x ' Puttir)g ", .,,. .,,, .,,' 

a"~x"* ~, we obtain a~¥~~~, contrary to Lemn)a 4. 

* ~_Lemm:a]7), Let a be a7'1y elelne/'It of S. Then S's fon"netlarized as follou's; . ~ "'~~ 

"'=0 

where S(a) denotes the set S-aS and a"S(a) 111'eans the set S(a). 

.!i oof. It is obvious that S is partitioned such as o S ~ ( anS - a~+1S) . Accordingly 

we may show only that anS( a ) a'"S-a"'+1S holds for each non-negative integer n. Take up 

any a"y~~_a'"S(a), where y is an element of S(a). Were ale_v~.__.~a?a+1S, we would have any 

a""+1z for some zES. Hen_ce, by Leroma 6 , we obtain y az, which contradicts to our 

assumption yciS( a). Accordin_.gly we have a'"..v~~a'"+1S, which induces the relation a"S(a) 

~!a'"S-a""+1S. Conversely,let y be any elexnent of a"S-a""+1S. Then y a"t for sorne elen)ent 

t~I_S. If tC~S(a) we have tEaS, which implies at/ t for some t/ E S. Accordingly we 

have y a""+1t[ , which is coritrary to our assumption y~IEa'"+1S. We obtain therefore t~iE 

S(a), henc,e yEa'"S(a), which induces the relat'on a""S-a"+1SL~a"S(a) 

Lemma 8. Let a be any ele37eent of S. Then every element y of S is ~eniquely expres-

sed in: the form y a'"x , where n is a non-negative integer, x is an e,'1ement of S and 

aox 7neans x itself 

Proof. From Lemma 7 , .it is easy to see that y is expressed in the form y a"x , xH~_ 

S ( a ). Therefore we may show onl y the uniqueness of such a decomposition. Assun~e that 
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y is expressed in two ways such that y- ~.' a x and y a~r'z, where x,zES(a). Wel e n>1u 

by Len)ma 5 we wou]d have a" "'x z ', and n-m>0, contrary to our assumption zES(a). 

Hence we have e7>n'l ' and slrrLllally ,n)~n Consequently n m Is satlsfred Smce S satls 

fies the cancellation law , we conclude x z fron~ the relatlon aqa,c at"z 

Lemma 9. If b is an elelnent of S(a), tlle7z ~'Caz holds for any ele;1eent z of S. 

Proof. b~-__S-aS is obvious by the definition of S(a). J¥ssum;e that there exists an 

elen)ent z satisfying azL/___b. Then bS!azS, hen_ce bz asy for some yES. By Lemma 5 , 

vve obtain b ay , contrary to b~EaS. 

Let e be any element of S. Then, there exists, for every xh._=~S, an integer j satisfying 

e<x'i. From the above-mentioned lemmas it is easy to see that an integer x(n) satisfying 

ex("')<x'"<ex(n)+1 is uniquely determined f_or every integer n>j. Since we can easily prove 

the existence of lim x(n) x(1z) x(n) [A:] , ¥I~re set liln as fol]ows; lijn 

'~ ->" 'n'-' * 
We shall call [cv] "the coordinate of x w/'1iclz is indtcced by the base polnt e" 

Lernn~a 10. [e] 1. 

Proof. Obviousness. 

Lern~rrta 11. a<1..b implies [a]<[b]. 

Proof By Lernxna 4 arb< ej<:b~~ is satisfied for some integers ll ,j ~-/2. Morover , by Lem-

nla 2 e3('+1)<rb" rs satrsfred for some mteger i. Accordingly a'"i(e'7"~./' eji+1/__.ej(';+1)L._.___/,__b~"i. 

Puttin~o ni k , ¥~re have a/'¥~~ej'i (cj('i+1) ~~b/". T, ake up two integers a.(h) and b(h) such 

that ea(/")¥-~a/'/¥ea(/")+1 and e7,(/')Cb/"<( el'(k)+1. a(k) and b(k) mus.t then satisLy the relations 

a(h)_~¥_ji and b(k)>j(i+1). 

Hence [a] < a(hh'~~)+1 < jl~1 and [b] > b(¥hh) > jl~j 

These irnply the desired relation [a]'C[b] 

Lernma 12. [ab] [a] + [b] , for any elelplents a , b of S, 

Proof. By Lemma I , e<a/" and e<bj hold for some integers k,j. 

Let a(n) and b(1z) be , for every integer lc>1ee.a,x(k,j), two inte~o'ers such that e"('")<a"a< 

eac?')+1 and er,('n)<b?"¥/ er,cn)+1 Then e"(~")+r,("') <(ab ) C ea(n)+h('")+2 . Accordingly 

, * ' . . ',. liln a(n)+b(n) a(1e)+b(11)+2 . <_[ab]< Iim Hence we have [a] + [b] [ab]. 

".-_ * Il n "*->* 

Let R[a] , R(ce) be two additive ~--ern{groups consisting 0L all real nutnbers x such that 

x>,~f' and x)a respectively. If we set ct ~i~7~uf [x] , then it is obvious by Lemmas 1 1 , 12 

that S is embedded in R[oi] or R(ci) according to whether S is discrete or not. In ~~. 3 and 

S 4 , we shall yet discuss on the structure of S more_precisely. 
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S 3. Discrete, Iocally i'-iipotent r.t. o. semigroups without zero. 

Throughout this section S will a discrete , Iocally nilpotent r. t. o. sc~nigroup without zero, i
~
 

and e the least element of S. S(e) will denote the set S-eS. As was seen in S 2 , every 

element x of S has a coordinate [x] which is induced by the base point e. Set 

G-~ {[x] [ xES(e)}. Then we have the following 

/iemma 13."'1..~~ G* is a s~tbgrovtp of G[1]. 

Lt _ l)roof. [e] I is obviously by Lenlma 10. Take up any e]emer_t [x]EG*. x<:e2 is 

then satisLied by Lenxrna 9. Hence [x]<C2, which implies [x]F~ G[1~. This implies the 

relation G*~~G[1]. Let [x],[y] be any elements of G*. Since e?<.xy, xy~~S(e) holds. 

Accordin,gly xy is expressed as follows; xy eiz, where i>1 and zES(e). [z] is clearly 

contained in G*. On the other hand, we have [x]o[y] C[x] +[y]-1)+1 Ci+[z]-1) 

-1- I __C[z]-1)-~ 1-.- [z]. 

Consequently [x] o [y] F G* , which implies G* to be closed under the binary relation o. 

It is easy to see tha'L- [e] is an ider,tity element in G*. Finally we prove, for each elem-

ent [x] of G* , the existence of an inverse element of [x]. In ca.se x~-e the existence of 

an inverse element of [x] is trivial. We n)ay, therefore , consider it in case x~e. Let 

x~e. Since xSl)e2S is satisfied by LerrLma 9 , there exists an element y of S such that 

xy-=es. xy es implies [x]+[y] -3, k_ence [y]<2, and hence ycES(e). Hence [y] EG*. 

On the other hand, we have [x]o[y]-C[x] -h[y]-1)+1 1-=[e]. 

Set L*[1] -{(x, n) I xEG* , n is a non-negative ir!_teger}. Since G* is a subgroup of 

G[1], the set L*[1] is clearly an l-subgroup of L[1]. Let x be any element of S. Then x 

is uniquely expressed in the form .xi--ely , where n is an inte>aer and y is an element 

of S(e). We define a mapping IP of S into L*[1] as follows; 

IP ; x->([y],n), if x~'eny, yES(e). 

Then It rs easy to see that IP Is an Isornorphlsm of S onto L*[1]. 

Thus we have 

l ~7 '~:L~:' Theorem 2) Let S be a discrete locally mlpotel~t r t o se,mgro~tp wlthoett zero 

Then S is iSolnorphic with an I-subgrobrp of the closed half line L [1]. 

Froxn Theorem I and Theorem 2, we conclude that a discrete, Iocally nilpotent r. t. o. 

sen)igroup without zero is essentiauy the sanle thing as an indexed subgroup of L [1]. 

Q 4. ~!'Ton-discrete , Iocally nilpotent r. t. o. senl_1groups wrthout zelo '. 

' 

' S will denote a non-discrete , Iocall y nilpotent r.t. o. semigroup Throu,ghout this sectlon 

without zero. Take up an elen)ent e of S. S(e) will denote the set S-eS. As was seen 
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in ~_. '_ , every, element x has a coordinate [x] ¥;~rhich is induced by the base point e. Set 

G*-={[x] I xES(e)}. Since S does not contain the least element , there exists n.o element 

z such that [z]=-inf[x]. Set p-inf[x]. Then 1>p>0 is obvious. 

,q ~_* ,~ 9* 
Lelnnla 14. G* is a sllbgroup of G(p). 

Psoof. Let ~ be an element of S. Then z'(e~ for eve}y elernent zES(e). We obtain 

thereL0re [z] < I + [~] L0r every element zES(e) and for every element ~~l_S. Hence wo 

have [z]<inj (1 +L~i])-1 +~. 
**6. ,s 

Consequently we have G*~G(~). [e]--1 is obviously by Lemma 'lO. Let [x] , [y] be any 

elements of G*. xy is then uniquely expressed in the form xy - eiz , where i > o and 

zES(e). [z], is crearly contained in G*. 

[x]O[ y]-=*C[x] + [ y] - ~) + ~ + (p( [x] + [ y] - ~ )-Ci+ [z] - ~) + ~ + ~p( i + [z] - ~ ) 

=([z] - ~) + e ~-q)([z] - ~) --[z] 

Consequently [x] O [y]EG* , which implies G* to be closed under the binary relation @. 

It is easy to see that [e] is an identity element in G*. Finally we prove , for each element 

[x] of G* , the existence of an inverse element of [x]. In case x = e the existence of an 

inverse elenent of [x] is trivial. We may , therefore, consider it in case x+e. Let x+e. 

exlsts an element y 0L S such that xy=e3. Since xS]e2S is satisLied by Lemma 9, there ' 

On the other hand , y is expressed as follows; = y e z Tvhere i>0 and zES(e). Hence 

es-_eix~;. Since i<3 is obviously, we have e3~'i-x~ by Lemma 6. Accordingly 

[x] @ [z]-([x] +[z] - ~) + ~+(p([x] +[z]- ~)=-C3-i- p) + ~ +~,(3-i-~) I _[e]. 

That is , [z] is an inverse element of [x]. 

Set L*(~)- {(x, n) I xh'~~._G* , Ie is a non-negative integer}. Since G* is a sub*'roul.1' of 

G(p), the set L*(p) is clearly an I-sub.'roup of L(~). 

Moreover we can prove the ~-desity of L*(~) as follows. Sin*-e I > ~ - inf [x] thelfe exists, 
s 9" 

for any elernent (~,o) E L(~), an element z of S such that p <: [z] <~ and [z] <:1. 

[z]<1 impl.ies z~EeS, hence [Z]EG* , and hence ([z] ,o)F~ L*(p) . Thus ,the ~-density 

of L*(p) is proved. Let x be any element of S. Then x is uniquely expressed. in the 

form x=-e"y , where n is an integer and y is an element of S (e). We define a mapping 

~f of S into L*(~) as follows; 

~r ;x->([y],n) ,if x e"y yES(e) 

Then it is easy to see that IP is an isomorphism of S onto L*(p). Thus we have 

Theorem 3. Let S be a nole-discrete , Iocally nilpotelet r. t. o. sem,igrobrp witholtt zero. 

Tilele S is iso,eeorphic with a ~-de,ese, I-subgroup of an opele half line L(~), z,vhere ~<:1. 
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Fronl Theorem I and Theorem 3 , we con*_lude that a non-discrete , Iocally nilpotent r. t. 

o. semigroup without zero is essentially the same thing as a ~-dense , indexed subgroup of 

an open halL Iine L(~), where ~<1. 

S 5･ Locally nilpotent r. t. o. sernigroups with zero. 

Let S be a locally nilpotent r. t. o. semigroup with zero o. By a zero divisor we shall 

mean a non-zero element x such that xy-- by o for some non-zero element y. Moreover, 

a nil ele,1zejet we shall mean an element z satisfying z " o for some in*eger n. 

Theorem 4. If S has no zero divisor an:d if the set S* S-{o} is not th,e e;e'ipty set 

then S* is a locally nilpotent r. t. o. subselnigroup of S. That is , S* becolnes a s~ebseln-

igro~rp of S which is also a locally nilpotent r. t. o. se;nigrozrp witho~lt zero. 

Proof. It is obvious that S* is a subsemigroup of S, and that S* has no zero element 

in S* itself. Tberefore, we shall next prove the remaining part of this theor-.*m. 

( I ) For any two different elernents a ,b~S* either aSClbS or bSCaS holds. 

In case aSCbS we have aS*CbS* , while in case bSr_aS we have bS*r_aS*. 

(2) Let a,b be elements of S*. aS*ClbS* irnplies aS*.+{o}(lbS*+{o}, hence aSCbS. 

Hence a'*Eb'*S for some mteger n. Since a'+~0, we have a'*Eb"'S*. 

(3) Let a be an element of S* Then na"S {o} Since na"'S*C na"S {o} , na"S* 

must be the empty set. 

From ( I )-(3) we obtam this theorem. 

Lemma 15. Every elei;zent of S is a nil-ele;nent if S has at least one zero divisor. 

Proof. Let a be a zero divisor of S. Then there exists an element b such that ab o 

and b ~o. Take up any element x of S. Were x"'<b for every positive integer n , we 

would have nx"S~~bS, hence bS {o}, contrary to our assumption b+0. Thus there 

exists an integer i satisfying xi>b. Similarly, there exists an integer j satisfying xj >a. 

Hence we have o ab<xi'+j , and hence xi+j o. ( It is obvious that zero element o is the 

greatest element of S) 

Lerr~rna 16. xt x ilnplies x o. 

Proof. Since t"x x is satisfied for any positive integer n, we obtain {o} n t""S~)x, 

and hence x o. 

Lernma 17. xt y, yt! x imply x y o. 

Proof. xt y , ytf x imply x(tt/) x. We obtain therefore x y o from Lemma 16. 

The author is not able to know whether every locally nilpotent r. t. o. semigroup having 

zero elment o always satisfies the cancellation law or not , but at least he is able to present 

the foltowing statement. 
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Theorerr~ 5. If S sati~"j'ies the cancellatiole law and if S has at least ol'ee zero divisor, 

then S is a dense-in-itself seglne7et ( in sense of Clifford [1])*L 

Proof. We shall prove this theorem in three steps. 

( I ) S is a natural!y total/y ordered comgmbtative semz~orovrp. 

We Lirst prove the relation S S2. Assurne the contrary , and take up any elerr~ent . 

tES-S2. Then txySf~t2S holds for any elernents x ,y of S. Thus we have tS3~t2S, hence 

tS2,.-1 r= t'"S for every int.eger n > 2. Since t is a nil-element , there exists an integer i > 2 

satisfying ti o. Hence we have tS2i-1 {o}. Let j be an integer such that tSj~1~ {o} 

and tSj {o}. Then there exist elements xl ' x2, """, xj_1 Such that txlx2"""xJ,_1 ~ o. 

On the other hand, we have txlx._･････"xj_1S ~~ tSj {o}, hence txlx2"""xj_1 o. ConLse-

quentl y S S2 holds. 

Now , it is sufficient to prove that for any different elernents x, y of S at least one of 

relations xt y and yt x holds for some element t of S, since fron:L Lemn:La 17 it is 

impossible that both xt y and yt x happen at the sarD:e time. Assume x<y. In case 

y o the above assertion is trivial. We assume therefore y ~ o. Then there exists an 

element t satisfying yt ~ o. Moreover , xy' < y is satisfied by some element t' of S. 

In Lact , this is proved as follows. Since xz~/+y means xzSCyS for any element z of S, 

if xz>y holds for every elernent z of S we obtain xS-'~:yS, hence xS~yS. This is inrpossi-

ble since x<y means xS_1)yS. There exists therefore an element t/ satisfyiro.g xt/ < y. Set 

Inin (t,tf) t//. Then ytS !~ ytif S, and hence yt!l~0. Since xtff < y we have xt//S ~} yS. 

There exists therefore an element s such that xt/!s yt// ~ o. Thus we obtain xs y bv_ 

using the cancellation law. 

Hereafter S(~) will denote S in which the naturally ordering ~ is defined 

(2) S(1~) is ordinally irredetcible (see Cllffo;'d [1]). 

Obviousness. 

(3) Eve;'y ele7nent of S(~~) l'ras a f'e7lite order. 

Obviously by Lemma 15. 

(4) S(~) is dense-in-itself That is , for given xJgy t/7e/'e exists an eleleeent z sati-

sfying xe~z~y. 

Assume the contrary. x~~y implies x + o and x<y. In case y o , we have xt o for 

any element t F_S, hence xS {o},' and hence x o. This is contrary to x ~ o. In case 

y~0, xt/ xt~0 is satisfied if we take up two elemen_ts t , t/ such that xt y and t/<t. 

( The existence of these elements is obvious). By the can*~ellation law we have therefore 

t t/, contrary to tl<~t. 

From ( I ) ~J (4), we conclude that S is a dense-in-itself segment. 
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A naturally totally ordered comnurtative senligroup S is s.aid to be a segJner~t if S is 

ordinally irreducible and if each element of S.has a einite order. 




