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REGULARLY TOTALLY ORDERED SEMIGROUPS I

by Miyuki YAMADA
(Received Nov. 30,1956)
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By an ordered semigroup we mean a semigroup S in which a binary relation < is
defined as follows ;
(1) a<a for every a<=S,
(2) a<b, b<a imply a=>b,
(3) a<b, b<c¢ imply a<c,
(4) a<b implies both a¢ <bc and ca=<ch for eve;-y ¢=S.
We write usually a<b if a<<b but a=b. Especially, we say S to be a totally ordered
semigroup if the binary relation < is a totally ordering, Ordered semigroups have been
studied by A. H. Clifford, O. Hgrder, F. Klein-Barmen, O, Nakada and many other
mathematicians, The present paper takes a small portion of this study in parallel with
Clifford [1] and Klein-Barmen [27], [3], [4]. Let S be a commutative semigroup. Then
we shall call S to be a regularly totally ordered semigroup (r.t. o, semigroup) if S
satisfies the following two conditions;
(1) for any different @,b= S, either aSCHS or bSCaS holds,
(2) if aSCbHS, then there exists a positive integer 7 such that ¢"CH”S, where the
symbol (C means ‘is of a proper subset of’,
In fact, S becomes a totally ordered semigroup if a binary relation < in S is defined as
follows; @<bh means aS°2bS. A naturally totally ordered commutative semigroup (see
Clifford [1]) is not necessarily a r. t. o. semigroup, and vice-versa, A linear holoid
defined by Klein-Barmen [ 3] is, however, the same thing as a r, t. o, semigroup with
identity element, Moreover, both a dense-in-itself segment in sense of Clifford [1] and an
archimedean naturally totally ordered commutative semigroup satisfying the cancellation law
are interest examples of r, t. 0, semigroups. A r, t. 0. semigroup is said to be locally

nilpotent if S satisfies the following condition; for any element ¢ cf S,

J——— ¢ if S has no zero element,
Na™S

n = {0} if S has zero element o,

where ¢ and {¢} denote the empty set and the set consisting of only one element zero o
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respectively, Moreover S is said to be discrele or non-discrete according to whether S
contains the least element (i. e. the element ¢ such that ¥>>e for any x & S) or not,
respectively.

In §1 we define, for every positive real number a and for every non-negative real
number B, a closed half line L [a] and an open half line L(B), and define their
indexed subgrowps. In §2 we discuss, in preperation for §3 and §4, on general
properties of locally nilpotent r, t. 0. semigroups without zero. We devote §3 to show
that a discrete, locally nilpotent r. t. o. semigroup without zero is characterized as an
indexed subgroup of the closed half line Z[1], and §4 to show that a non-discrete,
locally nilpotent r. t. o, semigroup without zero is characterized as 'a [-dense, indexed
subgroup of an open half line L(fB). In the concluding section we show that if a locally
nilpotent r, t, 0. semigroup S contains zero element ¢ and if S satisfies the cancellation law
(i. e. the law; a@x=bx==0 implies a=b), then the problem of determing the structure of
S is reduced to the problem of deteimir.g the stiucture of either locally nilpotent r. t. o,
semigroups without zero or dense-in-itself segments,

Notations, {x | -+ (proposition about x)} denotes the set of all elements x such that the
proposition about x is correct. If ACB, B—A denotes the complement of A in B, lf
{Ar | t&1} is a set of classes, o3 Ar denotes their class sum, If A and B are subsets

7€
of a semigroup, AB denotes the set {xy | x©A, yEB}.

§ 1. Closed half lines, Open half lines. Indexed subgroups,

Let| £ || and (&) be, for any non-negative real number ¢, the integral part and the
decimal part of & respectively; i.e., if & is expressed in the form &=w;as:----- Q. PafBeeee-
by the decimal system, then | &| = azas---- an, and (E)=o0. B,z . Take up a real
number a>0 and set Ifa]={x| a<x<a+1,x is a real number}. Then I[a] becomes a
group if we define a binary relation o in ITa] as follows; yoy=(x+y—a) +a. We shall
de;flote by G[a] the above-mentioned group. Next, we set Plal={(x,n) | +=G[a], = is
a non-negative integer} and define a binary relation X in P[a] as follows; (&, 2) X (¥, 72)
=(xoy, n+m+ | x+y—all ). PLa] becomes then a semigroup, which we shall call a clo-
sed half line L[a]. Let G*[a] be a subgroup of G[a], and set L*[al={(x, 2)]| x=
G*[a], n is a non-negatve integer}. Then it is obvious that L*[«] is 2 subsemigroup
of Lla]. We shall call such L*[a] an indexed subgroup (I-subgroup) of L[«

Similarly, we define open half lines and their l-subgroups as follows. Take up a real
number (=0, and set I(p)={x| B<x<p+1, x is a real number}, Then () becomes

a group if we define a binary relation © in I(f) as follows;
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¥Qy=Cx+y—F1+B+¢(x+y—B),
where ¢ is a real function such that
p(2)—o if (23+o,
=1 if (2)=o0.

We shall denote by G(p) the above-mentioned group. Next, we set P(8) ={(x, ) | x&
G(B),n is a non-negative integer} and define a binary relation ¥ in P(fB) as follows;
(2, 20K(y, m)=(xQy, n+m+ || x+y—p || —p(x-+y—B)).

P(B) becomes then a semigroup, which we shall call an open half line L(f3).
Let G*(B3) be a subgroup of G(B), and set L*(B)={(x,7) | ¥&G*(B), # in 2 non-nega-
tive integer}, Then it is easy to see that L*(B) is a subsemigroup of L(B).
We shall call such L*(B) an indexed subgroup (l-subgroup) of L(B).
Especially an indexed subgroup L*(g) of L (pR) is said to be g-dense if it satisfies the
following condition ;

for any (x,0)EL(B), there exists (y,0)EL*(B) such that y< x.
The reason for the term “a closed half line L[a]” [“an open half line L(B)”] is that
Lla] [L(B)] is isomorphic with the additive semigroup consisting of all real numbers
xza [x>6]

By a half line we shall mean a semigroup which is either a closed half line or an open
half line, In conclusion of this section we present the next theorem, omitting its proof,
E"I‘heoreml/jl Every I-subgroup of any half line is a locally nilpotent . t. o. Semnigr-
ozzﬁ: without zero. Espe{%'ﬁzlly, every I-subgroup of L[ 1] is discrete, locally wnilpotent
7. t. 0. Semigvoup without zevo, while every B-dense, I-subgroup of L(B) iS a non-

discrete, locally nilpotent Semigroup without zero.

§2. Locally nilpotent r.t, 0. semigroups without zero.

Throughout this section S will denote a locally nilpotent r.t. 0. semigroup without zero,
(Lem.ma lJ S is archimedean, i.e. for any a,b=S there exist positive integers m; 7
such that a"=b and b"=a.

(WPoof.;’ Take up any two elements @,b from S, We may show that there exist positive
integers 72,m2 such that ¢”SCAS and SCaS. Were 5'SHaS for every positive integer
7, we would have ﬂbiSQaS, hence aS=¢, contrary to a@S=+¢. Hence, there
exists an integer 2 su::h that #SCaS. Similarly, there exicts an integer 7 such that
a™SChS.

Lemma 2, If a<lb, then there exists an ingteger n such that a™+<_b".

Proof, a<b implies @SbS, hence #=a’S for some integer 7,
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We have therefore bi=ait for some element # of S. On the other hand, there exists an
integer % such that ##>g. Hence we have §#*=qa%#>q"+?, and hence b%*=>qg¥+2,
Lemma 3. S contains no idempotents. V
Proof, Obviousness,

Lemma 4. S /s a positively ordeved semigroup) 7. e. for any a,b=S, a<ab holds.
Proof. a<ab is obvious by the definition of the ordering <. Were g=ab, we would
have @=ab’ for every positive integer 7. From Lemma 1 we obtain #>a for some integer

j. Consequently, we have a=ab'>q?, hence @=a?, contrary to Lemma 3,

Lemma 5. For any a<lb and for any c¢ES theve exist integers n, m such that a"<c»
<b™

Proof. By Lemmma 2, g <p" holds for some integer 7. Since @*=>¢? is also satisfied
for some integer %, we have @"*+D<_p¥  therefore atic><b*’. From Lemma 1, we are able
to show that ¢#<<a* < ¢i*’holds for some integer j=>2. Accrdingly we have @< ¢iti<ci*?
=a"¢"<b". Putting n=Fk/ and m=j-+1, we obtain the desirable relation @»<¢™< "
ﬁ_emma 6_;’{ S satisfies the cancellation law, i.e. ax=>bx implies a=h.

(Proof.?’Assume that @x=>bx but a=b. Since a<b or b<a we may assume a<b. By

Lemma 2, we have gm’<p™ for some integer s Hence gntiyn<prym=qgrxm, Putting

arxm=§, we obtain af<§g, contrary to Lemma 4,

I:Lemma ]ﬂ Let a be any element of S. Then /SQ Sformutlarized as follows; :;?S")a"S( a),

where S(a) denotes the set S—aS and a’S(a) means the set S(a).

(\Proof.) It is obvious that S is partitioned such as S= ;:\: (a"S — a"*+1S). Accordingly

—o

we may show only that g?S(a)=a"S— ¢"*+S holds for each non-negative integer 7z, Take up

any a"y=a"S(a), where y is an element of S(a@). Were a"yEq"t.S, we would have g”y

=a"*tz for some 2&S. Hence, by Lemma 6, we obtain y=q@z, which contradicts to our

assumption y=S(a@). Accordingly we have g"vd-g™+1S, which induces the relation a"S(a)

Ca*S—a+8. Conversely,let y be any element of @"S—a"*+S. Then y=a"f for some element

teS, If tES(a) we have f=aS, which implies af/=¢ for some # = .S, Accordingly we

have y=g™+#/, which is contrary to our assumption yda"+2S. We obtain therefore #6F

S(a), hence y=a"S(a), which induces the relat’on @*S— a”“Sgp”S(a).

Lemma 8. Let @ be any element of S. Then every element y of S is uniquely expres-
sed in the form y—arx, where 1 is a non-negative integer, x is an element of S and

a’x means x itself.

Proof. From Lemma 7, it is easy to see that y is expressed in the form y—ag™s, xC

S(a). Therefore we may show only the uniqueness of such a decomposition, Assume that
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y is expressed in two ways such that y=a"x and y=a™z, where x,2&5(a). Were 1>,
by Lemma 5 we would have ¢"~"x=z and %— >0, contrary to our assumption zES‘(a).
Hence we have # >, and similariy m pbn. Consequently n—=s is satisfied, Since .S satis-
fies the cancellation law, we conclude x=—2z from the relation a"x—=a™z.

Lemma 9. If b s an element of S(a), then b az holds for any element 2 of S.

Proof, H=S—aS is obvious by the definition of S(a@). Assume that there exists an
element z satisfying @z<h. Then 5SC azS, hence bz—azy for some y=S. By Lemma 5,
we obtain d=ay, contrary to && aS.

Let e be any element of S. Then, there exists, for every ¥=S, an integer j satisfying
e=x/, From the above-mentioned lemmas it is easy to see that an integer x(#) satisfying

"M xm< e"™+1 is uniquely determined for every integer #>>j. Since we can easily prove

the existence of I7m ~(n—), we set lim (n)

N —¥rs0 % —320

v(n) =[],

as follows, 1 zm

We shall call [«] “the coordinate of x which is induced by the base point e”.

Lemma 10. [e]=1.

Proof. Obviousness,

Lemma 11. a<d implies [a]<[b].

Proof, By Lemma 4, g"< ei<p" is satisfied for some integers 1,j =>2, Morover, by Lem-
ma 2 D P s satisfied for some integer 7. Accordingly @"<leli< et eiGiHD P,
Putting ni=*Fk, we have @t<{ei' <+ <pt, Take up two integers a(k) and b(%) such

that e“®W<gt e+ and el ph W+, q(B) and H(E) must then satisfy the relations

a(k)<_ji and B(E)=j(i+1).

Hence [a] < —a(—k]gil < ]'?.2'1 and [4] = bk =~ Jjitj

These imply the desired relation [a]<[&].
Lemma 12. [abl=[al+[b], for any elements a,b of S.
Proof, By Lemma 1, e<a* and ¢<p/ hold for some integers Z,7.
Let a(n) and d(n) be, for every integer n>max(k, 7), two integers such that e™<am"<

e+ and PP W, Then e« <(ahYr< en+m+2 | Accordingly

lim %—;b(n) <ladl< lin M Hence we have ta]—i—[b]:[ab].

Let R[a], R(a) be two additive semigroups consisting of all real numbers x such that

x> and x> respectively. If we set a=:¢nf [x] , then it is obvious by Lemmas 11, 12
530

that S is embedded in R[a] or R(a) according to whether S is discrete or not, In §3 and

g 4,we shall yet discuss on the structure of .S more precisely,
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§ 3. Discrete, locally nilpotent r.t, 0. semigroups without zero.

Throughout this section S Will‘,\a discrete, locally nilpotent r.t.0, semigroup without zero,
and ¢ the least element of S. S(e) will denote the set S—eS, As was seen in §2, every
element x of S has a coordinate [x] which is induced by the base point e, Set
G*={[«x] | x£S(e)}. Then we have the following

{{_emma 13} G* s a subgroup of G[11.

Proof, [e]=1 is obviously by Lemma 10. Take up any elemernt [x]EG*. x<é& is
then satisfied by Lemma 9, Hence [4]<2, which implies [x]&G[1]. 'This implies the
relation G*CG[1]. Let [x7],[y] be any elements of G*., Since &<xy, aydES(e) holds,
Accordingly xy is expressed as follows; xy=—¢’z, where ;=1 and 2&S(e). [2] is clearly
contained in G*, On the other hand, we have CxJolyl=[x]+[y]- D+ 1=C+[2]-1]

41 =(z]-1D+1=[z].

Consequently [x]o[y] EG*, which implies G* to be closed under the binary relation o,
It is easy to see that [¢] is an identity element in G*. Finally we prove, for each elem-
ent [« of G*, the existence of an inverse element of [47]. In case x==¢ the existence of
an inverse element of [x] is trivial, We may, therefore, consider it in case x=te. Let
x5e. Since xSDe’S is satisfied by Lemuma 9, there exists an element y of S such that
xy=¢*, xy=e* implies [x]+[y] =3, Lence [y]<2, and hence y=S(e). Hence [y] EG*,
On the other band, we have [xJo[ yJ=([x]-+[y]—1D+1=1=[e].

Set L¥[1] ={(x, n) | ¥©G*, = is a non-negative integer}, Since G* is a subgroup of
G[ 1], the set L*[1] is clearly an I-subgroup of L[1]. Let x be any element of S, Then x
is uniquely expressed in the form x==¢”y, where 7 is an integer and y is an element
of S(e). We define a mapping 1 of S into L*[1] as follows;

5 x=—>([y]1,7), if x=ery, y=S(e).
Then it is easy to see that 1 is an isomorphism of S onto L*[ 17,

Thus we have
‘{i‘heorem 2.{ Let S be a discrete, locally nilpotent ». t. 0. Semigroup without Zzero.
Then S is isomorphic with an I-subgroup of the closed half line L[ 1].

From Theorem 1 and Theorem 2, we conclude that a discrete, locally nilpotent r. t. o,

semigroup without zero is essentially the same thing as an indexed subgroup of L[17.

§ 4. Non-discrete, locally nilpotent r.t,0. semigroups without zero,

Throughout this section S will denote a non-discrete, locally nilpotent r.t. 0, semigroup

without zero, Take up an element ¢ of S, S(e¢) will denote the set S—eS, As was seen
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in § 2, every element x has a coordinate [ 4] which is induced by the base point e. Set
Gt={[x] | x=S(e)}. Since S does not contain the least element, there exists no element

z such that [z]=¢nf[x]. Set B=inf[x]. Then 1>p=>0 is obvious,
Sdx N9z

Lemma 14. G* is a subgroup of G(B).
Pscof, Let £ be an element of S. Then z<ef for every element 2=S(e). We obtain

therefore [2]<C 14 [£] for every element 2=S(e) and for every element £=S. Hence wa

have [Z]<inf (1+[£D)=1+5.

Consequently we have G*CG(p). [e]=1 is obviously by Lemma 10. Let [x7], [ y] be any
elements of G*. xy is then uniquely expressed in the form xy= ez, where />0 and
2=8(e). [z] is crearly contained in G*.

[ IOLy =]+ LyI—- 83+ B8+ e([4]1+[y]1— )=+ [2] -8+ B+ (i +[2]—-4)

=([z]- B3+ B8+¢([2]—8) =[z]

Consequently [x4]©@[ y]&G*, which implies G* to be closed under the binary relation .
It is easy to see that [¢] is an identity element in G*. Finally we prove, for each element
[«] of G*, the existence of an inverse element of [x]. In case x=e¢ the existence of an
inverse elenent of [x7] is trivial, We may, therefore, consider it in case x=Fe. Let x=e.
Since xSTe’S is satisfied by Lemma 9, there exists an element y of S such that xy=e.
On the other hand, y is expressed as follows; y=—e¢?z, where 7=>0 and 2S(e). Hence
e’=¢'xz. Since /<3 is obviously, we have ¢*~%=xz by Lemma 6, Accordingly
[x] © [zl=¥]+[2]-B)+B+e([4]+[2]—B)=(3—i—BI+B+¢(3—i—p)=1=[c].

That is, [2] is an inverse element of [ &7

Set L¥(B)={(x, ) | x=G*, n is a non-negative integer}, Since G* is a subgroup of
G(B), the set L*(R) is clearly an I-subgroup of L(g).

Moreover we can prove the g-desity of L*(8) as follows. Since 12> 8 ==inf [ x] there exists,
Sdx

for any element (£,0) ©L(B), an element 2z of S such that < [z]< € and [z]<1.
[2]<1 implies zdeS, hence [2]& G*, and hence ([z],0) & L*(8) . Thus the p-density
of L*(B) is proved. Let x be any element of S, Then x is uniquely expressed. in the
form x=e¢"y, where 2 is an integer and y is an element of S{¢). We define a mapping
Yr of S into L*(R) as follows;
VP oix—>([y],m) ,if x=e"y, y=S(e).

Then it is easy to see that Yr is an isomorphism of S onto L*(8). Thus we have

Theorem 3. Let S be a non-discvete, locally nilpotent v. t. o. Semigroup without zero.

Thewr S is isomorphic with a B-dense, I-subgroup of an open half line L(B), where 3<1.
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From Theorem 1 and Theorem 3, we conclude that a non-discrete, locally nilpotent . t.
o. semigroup without zero is essentially the same thing as a g-dense, indexed subgroup of

an open half line L(g), where g<1.

§ 5. Locally nilpotent r. t, 0, semigroups with zero,

Let S be a locally nilpotent r. t. o, semigroup with zero 0. By a zero divisor we shall
mean a non-zero element x such that xyzjo for some non-zero element y, Moreover, by
a #il element we shall mean an element z satisfying z7»—o for some inieger 72,

Theorem 4. If S has no zero divisor and if the set S*=S—{o) is not the empty set
then S* is a locally nilpotent 7.t.o0. subsemigroup of S. That is, S* becomnes a subsem-
igroup of S which is also a locally nilpotent v.1.0. Semigroup without zevo.

Proof, 1t is obvious that S* is a subsemigroup of .S, and that S* has no zero element
in S* itself, Therefore, we shall next prove the remaining part of this theorsm,

(1) For any two different elements @,b&S*, either @SCAS or 5SC aS holds,

In case @SC bS we have aS*(bS*, while in case bST aS we have 5S*_ aS*.

(2) Let @,b be elements of S*. @S*(CbS* implies @S*+{0}CbS*+ {0}, hence aSCThHS.
Hence ¢"cbH”S for some integer 7. Since a0, we have g»&pnS*,

(3) Let @ be an element of S*, Then f;m"S: {0}. Since Na"S*C Na"S= {0}, Na"S*
must be the empty set, " " "

From (1)~(3), we obtain this theorem,

Lemma 15. Every element of S is a nil-element if S has at least one zero divisor.

Proof. Let @ be a zero divisor of S. 'Then there exists an element 4 such that ab—o
and b 0. Take up any element x of S. Were x"<\) for every positive integer 7, we
would have Qx"SQbS, hence 5S={0}, contrary to our assumption d==0. 'Thus there
exists an integer ¢ satisfying x?>>. Similarly, there exists an integer j satisfying x/ >a.
Hence we have 0=a@b<x*t , and hence x*+ —¢, (It is obvious that zero element ¢ is the
greatest element of .S)

Lemma 16. xt=x implies x=o.

Proof, Since t"x=x is satisfied for any positive integer 72, we obtain {o}="SDx,

and hence x=—¢. ’

Lemma 17. xi=y, yt'=x imply x=y—o.

Proof. st=y, yt'=x imply x(:#/)=x. We obtain therefore x¥—y—op from Lemma 16,

The author is not able to know whether every locally nilpotent . t. o, semigroup having
zero elment ¢ always satisfies the cancellation law or not, but at least he is able to present

the following statement,
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Theovem 5. If S satisfies the cancellation law and if S has at least one zevo divisor,
then S is a dense-in-itself segment (i1 Sense of Clifford [1])*.

Proof. We shall prove this theorem in three steps.

(1) S 7s a naturally totally ordered commutative Semigroup.

We first prove the relation S=S° Assume the contrary, and take up any element
t=S—S2 Then txySC#S holds for any elements x,y of S. Thus we have £S*C#S, hencg{
£S®=1 C S for every integer 72>>2. Since ¢ is a nil-element, there exists an integer 7 > 2
satisfying #* =0, Hence we have £5%-7= {¢p}. Let j be an integer such that £57-%=~ {0}
and 1§ = {0}. Then there exist eléments Ky Koy voveee s Xj-z such that fxixe-----%;-; 7 0.
On the other hand, we have fxxe-.---- %;-S C £ = {0}, hence fx%5 %;-1=o0. Conse-
quently S = 5? holds, -

Now, it is sufficient to prove that for any different elements x,y of S at least one of
relations xf =y and yf=x holds for some element £ of S, since from Lemma 17 it is
impossible that both xf =y and yf= x happen at the same time. Assume x<y. In case
y =0 the above assertion is trivial. We assume therefore y=~09. Then there exists an
element { satisfying yf=~0. Moreover, xy' <y is satisfied by some element # of S.
In fact, this is proved as follows. Since xz>>y means x2SCyS for any element z of S,
if 2>y holds for every element z of S we obtain xS?CyS, hence xSCyS. This is impossi-
ble since x<y means xSTOyS. There exists therefore an element # satisfying xf/ <y. Set
mane (¢,8')=1¢". Then ytS C y#!'S, and hence yf'==o. Since x#'' <y we have x#/S D yS.
There exists therefore an element s such that x//s = y# == 9. Thus we obtain xs=y by
using the cancellation law,

Heveafter S(=2) will denote S in which the naturally ordering =2 is defined.

(2) (2) s ordinally irreducible (see Clifford [1]).

Obviousness,

(3) Every element of S(=2) has a finite order.

Obviously by Lemma 15,

(4) S(B) is dense-in-itself. That is, for given x-3y there exists an element 2 Safi-
sfying x-32-3Y.

Assume the contrary, x-3y implies ¥ 3=0 and x<y. In case y=0, we have xf — ¢ for
any element ¢ =S, hence xS = {0}, and hence x =¢. This is contrary to x==¢. In case
Y0, xf!=xt=+0 is satisfied if we take up two elements £, # such that xt:y. and #<z.

(The existence of these elements is obvious). By the cancellation law we have therefore

t=t, contrary to #'<t,

From (1) —~_ (4), we conclude that S is a dense-in-itself segment.
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