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1 Introduction

In mathematical programming, various kinds of optimality conditions have
been introduced; for convex programming [1–6], for generalized convex pro-
gramming [7–12], for quasiconvex programming [13–22], and so on. In the
research of optimality conditions, some types of subdifferentials play an impor-
tant role. Especially, by the subdifferential in convex analysis, a necessary and
sufficient optimality condition for convex programming has been investigated.
The optimality condition is an essential tool in convex programming, and
has been generalized to various cases. Recently, by using Greenberg-Pierskalla
subdifferential and Mart́ınez-Legaz subdifferential, necessary and sufficient op-
timality conditions for quasiconvex programming have been introduced by
Suzuki and Kuroiwa; see [20,21]. Similar results for quasiconvex programming
have been investigated; see [14,22].

On the other hand, constraint qualifications are essential elements for du-
ality theory in mathematical programming. Over the last decade, necessary
and sufficient constraint qualifications for duality theorems have been inves-
tigated extensively; see [1,3,17,19,23–30] and references therein. Especially,
in convex programming, necessary and sufficient constraint qualifications for
Lagrange duality have been investigated; see [1,3,23–25]. In the research of
these constraint qualifications, Fenchel conjugate and the subdifferential play
a central role. Recently, a notion, called a generator of a quasiconvex function,
was defined by Suzuki and Kuroiwa in [26], which is based on the following
property: a quasiconvex function consists of the supremum of quasiaffine func-
tions; in detail, see [31,32]. By using the notion of generator, necessary and
sufficient constraint qualifications for Lagrange-type duality theorems have
been investigated; see [17,19,26,27,29,30]. However, constraint qualifications
for optimality conditions in terms of Greenberg-Pierskalla subdifferential and
Mart́ınez-Legaz subdifferential have not been investigated yet.

In this paper, we study optimality conditions and constraint qualifications
for quasiconvex programming. We introduce necessary and sufficient optimal-
ity conditions in terms of Greenberg-Pierskalla subdifferential, Mart́ınez-Legaz
subdifferential and generators. We investigate necessary and/or sufficient con-
straint qualifications for these optimality conditions. Additionally, we show
some equivalence relations between duality results for convex and quasiconvex
programming.

The rest of the present paper is organized as follows. In Section 2, we
give preliminaries. In Section 3, we study necessary and sufficient optimal-
ity conditions and related constraint qualifications. In Section 4, we discuss
about our optimality conditions and constraint qualifications. Section 5 is the
Conclusions.
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2 Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. Given a nonempty set A, we denote the closure, the
convex hull, and the conical hull, generated by A, by clA, convA and coneA,
respectively. By convention, we define cone ∅ = {0}. The normal cone of A
at x ∈ A is denoted by NA(x) := {v ∈ Rn : ∀y ∈ A, ⟨v, y − x⟩ ≤ 0}. The
indicator function δA of A is defined by

δA(x) :=

{
0, x ∈ A,
∞, otherwise.

Let f be a function from Rn to R, where R := [−∞,∞]. We denote the
domain of f by domf , that is, domf := {x ∈ Rn : f(x) < ∞}. The epigraph
of f is defined as epif := {(x, r) ∈ Rn × R : f(x) ≤ r}, and f is said to be
convex, iff epif is convex. The Fenchel conjugate of f , f∗ : Rn → R, is defined
as f∗(v) := supx∈Rn{⟨v, x⟩ − f(x)}. Define the level sets of f with respect to
a binary relation ⋄ on R as

lev(f, ⋄, β) := {x ∈ Rn : f(x) ⋄ β}

for any β ∈ R. A function f is said to be quasiconvex, iff lev(f,≤, β) is a
convex set for all β ∈ R. Any convex function is quasiconvex, but the opposite
is not true.

A function f is said to be essentially quasiconvex, iff f is quasiconvex
and each local minimizer x ∈ domf of f in Rn is a global minimizer of f
in Rn. Clearly, all convex functions are essentially quasiconvex. It is known
that a pseudoconvex differentiable function is essentially quasiconvex; see [7,
33,34] for more details. It is shown that a real-valued continuous quasiconvex
function is essentially quasiconvex, if and only if it is semistrictly quasiconvex;
see Theorem 3.37 in [13]. In [35], the notion of neatly quasiconvex function is
introduced. A function f is said to be neatly quasiconvex, iff it is quasiconvex
and for every x ∈ Rn with f(x) > infy∈Rn f(y), the sets lev(f,≤, f(x)) and
lev(f,<, f(x)) have the same closure. By Proposition 4.1 in [35], a real-valued
quasiconvex f is neatly quasiconvex, if and only if f is essentially quasiconvex.

A function f is said to be quasiaffine, iff it is quasiconvex and quasiconcave.
It is known that f is lower semicontinuous (lsc) quasiaffine, iff there exist k ∈ Q
and w ∈ Rn such that f = k ◦ w, where

Q := {h : R → R : h is lsc and non-decreasing}.

Furthermore, f is lsc quasiconvex, iff there exists {(kj , wj) : j ∈ J} ⊂ Q×Rn

such that f = supj∈J kj ◦wj ; see [31,32] for more details. This result indicates
that a lsc quasiconvex function f consists of a supremum of a family of lsc
quasiaffine functions. A set G = {(kj , wj) : j ∈ J} ⊂ Q × Rn is said to be a
generator of f , iff f = supj∈J kj ◦ wj . All lsc quasiconvex functions have at
least one generator. In particular, when f is a proper lsc and convex function,



4 Satoshi Suzuki Communicated by Fabián Flores-Bàzan

Bf := {(kv, v) : v ∈ domf∗, kv(t) = t− f∗(v),∀t ∈ R} ⊂ Q×Rn is a generator
of f . Actually, for all x ∈ Rn,

f(x) = f∗∗(x) = sup{⟨v, x⟩ − f∗(v) : v ∈ domf∗} = sup
v∈domf∗

kv(⟨v, x⟩).

We call the generator Bf “the basic generator” of a convex function f . The
concept of the basic generator is very important for the comparison of convex
and quasiconvex programming; in detail, see [26,29,31,32].

The following function h−1 is said to be the hypo-epi-inverse of a non-
decreasing function h:

h−1(a) := inf{b ∈ R : a < h(b)} = sup{b ∈ R : h(b) ≤ a}.

It is known that, if h has the inverse function, then the inverse and the hypo-
epi-inverse of h are the same; see [32]. In the present paper, we denote the
hypo-epi-inverse of h by h−1.

In [29], we study the following constraint qualifications. These constraint
qualifications are necessary and sufficient condition for Lagrange-type duality
theorems. Let {gi : i ∈ I} be a family of lsc quasiconvex functions from Rn

to R, {(k(i,j), w(i,j)) : j ∈ Ji} ⊂ Q × Rn a generator of gi for each i ∈ I,
T = {t = (i, j) : i ∈ I, j ∈ Ji}, A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0}, and C a
closed and convex subset of Rn. Assume that A ∩ C is non-empty.

Definition 2.1 [29] The inequality system {gi(x) ≤ 0 : i ∈ I} is said to
satisfy the closed cone constraint qualification for quasiconvex programming
(Q-CCCQ) w.r.t. G = {(kt, wt) : t ∈ T} relative to C , iff

cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗C

is closed.

Definition 2.2 [29] The inequality system {gi(x) ≤ 0 : i ∈ I} is said to satisfy
the basic constraint qualification for quasiconvex programming (Q-BCQ) with
respect to {(kt, wt) : t ∈ T} relative to C at x ∈ A ∩ C, iff

NA∩C(x) = cone conv
∪

t∈T (x)

{wt}+NC(x),

where T (x) = {t ∈ T : ⟨wt, x⟩ = k−1
t (0)}. {gi(x) ≤ 0 : i ∈ I} is said to

satisfy the Q-BCQ w.r.t. {(kt, wt) : t ∈ T} relative to C if for all x ∈ A ∩ C,
{gi(x) ≤ 0 : i ∈ I} satisfies the Q-BCQ w.r.t. {(kt, wt) : t ∈ T} at x.

In [29], we show the following two theorems concerned with Q-CCCQ and
Q-BCQ.

Theorem 2.1 The following statements are equivalent:

(i) {gi(x) ≤ 0 : i ∈ I} satisfies Q-CCCQ w.r.t. {(kt, wt) : t ∈ T} relative to C,
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(ii) for each real-valued continuous convex function f on Rn, there exist a finite
subset T̄ = {t1, . . . , tm} ⊂ T and λ̄ ∈ Rm

+ such that k−1
tj (0) ∈ R for each

j ∈ {1, . . . ,m}, and

inf
x∈A∩C

f(x) = inf
x∈C

f(x) +

m∑
j=1

λ̄j(wtj (x)− k−1
tj (0))

 .

Theorem 2.2 Let x0 ∈ A∩C. Then, the following conditions are equivalent:

(i) {gi(x) ≤ 0 : i ∈ I} satisfies Q-BCQ w.r.t. {(kt, wt) : t ∈ T} relative to C
at x0,

(ii) for each real-valued continuous convex function f on Rn that attains its
infimum value at x0, there exist a finite subset T̄ = {t1, . . . , tm} ⊂ T and
λ̄ ∈ Rm

+ such that k−1
tj (0) ∈ R for each j ∈ {1, . . . ,m}, and

f(x0) = min
x∈A∩C

f(x) = inf
x∈C

f(x) +

m∑
j=1

λ̄j(wtj (x)− k−1
tj (0))

 .

In the research of constraint qualifications for Lagrange strong duality, set
containment characterizations are very important. In this paper, we need the
following set containment characterization in [29].

Theorem 2.3 Consider the pair (v, α) ∈ Rn × R. Then, the following state-
ments are equivalent:

(i) A ∩ C ⊂ {x ∈ Rn : ⟨v, x⟩ ≤ α},

(ii) (v, α) ∈ cl

(
cone conv

∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗C

)
.

Theorem 2.3 means that

epiδ∗A∩C = cl

(
cone conv

∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗C

)
In quasiconvex analysis, various types of subdifferentials have been intro-

duced; Greenberg-Pierskalla subdifferential [20,22,36], Mart́ınez-Legaz subd-
ifferential [21,31], Q-subdifferential with a generator [17–19], Moreau’s gener-
alized conjugation [43], and so on; see [15,16,32,37–45]. In [20,21], we study
necessary and sufficient optimality conditions for quasiconvex programming in
terms of the following subdifferentials.

In [36], Greenberg and Pierskalla introduced the Greenberg-Pierskalla sub-
differential of f at x0 ∈ Rn as follows:

∂GP f(x0) := {v ∈ Rn : ⟨v, x⟩ ≥ ⟨v, x0⟩ implies f(x) ≥ f(x0)}.

Mart́ınez-Legaz subdifferential of f at x ∈ Rn is defined as follows:

∂Mf(x) := {(v, t) ∈ Rn+1 : inf{f(y) : ⟨v, y⟩ ≥ t} ≥ f(x), ⟨v, x⟩ ≥ t}.
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Mart́ınez-Legaz subdifferential is introduced by Mart́ınez-Legaz in [31] as a
special case of c-subdifferential in Moreau’s generalized conjugation in [43].

The following theorems are concerned with necessary and sufficient opti-
mality conditions for quasiconvex programming. In [20], we show the following
necessary and sufficient optimality condition in terms of Greenberg-Pierskalla
subdifferential.

Theorem 2.4 Let f be a upper semicontinuous (usc) essentially quasiconvex
function from Rn to R, F a convex subset of Rn, and x ∈ F .

Then, the following statements are equivalent:

(i) f(x) = min
y∈F

f(y),

(ii) 0 ∈ ∂GP f(x) +NF (x).

In [21], we show the following necessary and sufficient optimality condition
in terms of Mart́ınez-Legaz subdifferential.

Theorem 2.5 Let f be an usc quasiconvex function from Rn to R, F a convex
subset of Rn, and x ∈ F .

Then, the following statements are equivalent:

(i) f(x) = min
y∈F

f(y),

(ii) 0 ∈ ∂Mf(x) + epiδ∗F .

3 Optimality Conditions and Related Constraint Qualifications

Throughout this paper, let I be an index set, {gi : i ∈ I} a family of lsc
quasiconvex functions from Rn to R, {(k(i,j), w(i,j)) : j ∈ Ji} ⊂ Q × Rn a
generator of gi, T = {t = (i, j) : i ∈ I, j ∈ Ji}, G = {(kt, wt) : t ∈ T}, f an
usc quasiconvex function from Rn to R, and A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0}.
Assume that A is non-empty.

In this section, we study the following quasiconvex programming problem:

minimize f(x), subject to x ∈ A.

We show two types of necessary and sufficient optimality conditions for the
problem and related constraint qualifications.

At first, we assume that f is usc essentially quasiconvex. We introduce the
following optimality condition:

0 ∈ ∂GP f(x0) + cone conv
∪

t∈T (x0)

{wt}.

In the following theorem, we show a necessary and sufficient optimality condi-
tion for essentially quasiconvex programming and related necessary and suffi-
cient constraint qualification, Q-BCQ.

Theorem 3.1 Let x0 ∈ A. The following statements are equivalent:



Optimality Conditions and Constraint Qualifications 7

(i) {gi(x) ≤ 0 : i ∈ I} satisfies Q-BCQ w.r.t. G relative to Rn at x0,
(ii) for each extended real-valued usc essentially quasiconvex function f on Rn,

x0 is a global minimizer of f in A, if and only if

0 ∈ ∂GP f(x0) + cone conv
∪

t∈T (x0)

{wt}.

Proof Assume that {gi(x) ≤ 0 : i ∈ I} satisfies Q-BCQ w.r.t. G relative to
Rn at x0, and let f be an extended real-valued usc essentially quasiconvex
function on Rn. By Theorem 2.4, x0 is a global minimizer of f in A, if and
only if

0 ∈ ∂GP f(x0) +NA(x0).

By Q-BCQ at x0,

∂GP f(x0) +NA(x0)

= ∂GP f(x0) + cone conv
∪

t∈T (x0)

{wt}+NRn(x0)

= ∂GP f(x0) + cone conv
∪

t∈T (x0)

{wt}.

This shows that (ii) holds.
Next, we show that (ii) implies (i). Assume that for each extended real-

valued usc essentially quasiconvex function f on Rn, x0 is a global minimizer
of f in A, if and only if

0 ∈ ∂GP f(x0) + cone conv
∪

t∈T (x0)

{wt}.

We need to show that

NA(x0) = cone conv
∪

t∈T (x0)

{wt}+NRn(x0).

We can check easily that one inclusion always holds. Let t̄ = (̄i, j̄) ∈ T (x0)
and y ∈ A,

kt̄(⟨wt̄, y⟩) ≤ sup
j∈Jī

k(̄i,j) ◦ w(̄i,j)(y) = gī(y) ≤ 0.

Hence, ⟨wt̄, y⟩ ≤ ⟨wt̄, x0⟩ because ⟨wt̄, x0⟩ = k−1
t̄ (0) = sup{b ∈ R : kt̄(b) ≤ 0}.

This shows that wt̄ ∈ NA(x0). Since NRn(x0) = {0} and NA(x0) is a convex
cone,

NA(x0) ⊃ cone conv
∪

t∈T (x0)

{wt}+NRn(x0).

Let v ∈ NA(x0). If v = 0, then it is clear that

v ∈ cone conv
∪

t∈T (x0)

{wt}+NRn(x0).
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Hence, we assume that v ̸= 0. Since ⟨v, y − x0⟩ ≤ 0 for each y ∈ A, x0 is a
global minimizer of −v in A. Since −v is a continuous essentially quasiconvex
function on Rn, by the statement (ii),

0 ∈ ∂GP (−v)(x0) + cone conv
∪

t∈T (x0)

{wt}.

By the definition of Greenberg-Pierskalla subdifferential,

∂GP (−v)(x0) = {w ∈ Rn : ⟨w, x⟩ ≥ ⟨w, x0⟩ implies ⟨−v, x⟩ ≥ ⟨−v, x0⟩}
= {−λv : λ > 0}.

Hence there exists, λ0 > 0 such that

0 ∈ −λ0v + cone conv
∪

t∈T (x0)

{wt}.

Since cone conv
∪

t∈T (x0)
{wt} is a cone,

v =
1

λ0
λ0v

∈ cone conv
∪

t∈T (x0)

{wt}

= cone conv
∪

t∈T (x0)

{wt}+NRn(x0).

This shows that (i) holds, and completes the proof. ⊓⊔

Next, we assume that f is usc quasiconvex, not necessary essentially qua-
siconvex. We introduce the following optimality condition:

0 ∈ ∂Mf(x0) + cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ {0} × [0,∞[.

In the following theorem, we show a necessary and sufficient optimality con-
dition for quasiconvex programming and related constraint qualification, Q-
CCCQ.

Theorem 3.2 The following statement (i) implies the statement (ii):

(i) {gi(x) ≤ 0 : i ∈ I} satisfies Q-CCCQ w.r.t. G relative to Rn,
(ii) for each extended real-valued usc quasiconvex function f on Rn and x0 ∈ A,

x0 is a global minimizer of f in A, if and only if

0 ∈ ∂Mf(x0)+cone conv
∪
t∈T

{(wt, δ) ∈ Rn×R : k−1
t (0) ≤ δ}+{0}×[0,∞[.

Furthermore, if A is compact, then (i) and (ii) are equivalent.
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Proof Assume that {gi(x) ≤ 0 : i ∈ I} satisfies Q-CCCQ w.r.t. G relative to
Rn. Let f be a real-valued usc quasiconvex function on Rn and x0 ∈ A. By
Theorem 2.5, x0 is a global minimizer of f in A, if and only if

0 ∈ ∂Mf(x0) + epiδ∗A.

By Q-CCCQ, Theorem 2.3, and epiδ∗Rn = {0} × [0,∞[, the above condition is
equivalent to

0 ∈ ∂Mf(x0) + cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ {0} × [0,∞[.

This shows that (ii) holds.
Next, we show that (ii) implies (i) assuming that A is compact. We need

to show that

cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗Rn

is w∗-closed. By the set containment characterization in Theorem 2.3, we can
see that

epiδ∗A = cl

(
cone conv

∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗Rn

)
.

This shows that Q-CCCQ is satisfied, if and only if

epiδ∗A = cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗Rn .

Hence, we show the above equality. We can check that one inclusion always
holds. Indeed, let t ∈ T and δ ≥ k−1

t (0), then kt ◦ wt(x) ≤ 0 for each x ∈ A.
Hence,

δ∗A(wt) = sup
x∈A

⟨wt, x⟩ ≤ k−1
t (0) ≤ δ.

This shows that {(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ} ⊂ epiδ∗A. Since epiδ∗A is a

convex cone,

epiδ∗A ⊃ cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗Rn .

Consider the pair (v, α) ∈ epiδ∗A. If v = 0, then, clearly, α ≥ 0 and

(v, α) ∈ cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗Rn .

Hence, we assume that v ̸= 0. Since A is compact and −v is continuous,
there exists x0 ∈ A such that x0 is a global minimizer of −v in A. By the
statement (ii),

0 ∈ ∂M (−v)(x0)+cone conv
∪
t∈T

{(wt, δ) ∈ Rn×R : k−1
t (0) ≤ δ}+{0}× [0,∞[.
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By the definition of Mart́ınez-Legaz subdifferential,

∂M (−v)(x0) = {(w, t) ∈ Rn+1 : inf{⟨−v, y⟩ : ⟨w, y⟩ ≥ t} ≥ ⟨−v, x0⟩ , ⟨w, x0⟩ ≥ t}
= {(−λv,−λ ⟨v, x0⟩) ∈ Rn+1 : λ > 0}.

Hence, there exists λ0 > 0 such that

0 ∈ −(λ0v, ⟨λ0v, x0⟩)+cone conv
∪
t∈T

{(wt, δ) ∈ Rn×R : k−1
t (0) ≤ δ}+{0}×[0,∞[.

Since cone conv
∪

t∈T {(wt, δ) ∈ Rn ×R : k−1
t (0) ≤ δ}+ {0}× [0,∞[ is a cone,

(v, α) = (v, ⟨v, x0⟩) + (0, α− ⟨v, x0⟩)

=
1

λ0
(λ0v, ⟨λv, x0⟩) + (0, α− ⟨v, x0⟩)

∈ cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ {0} × [0,∞[

= cone conv
∪
t∈T

{(wt, δ) ∈ Rn × R : k−1
t (0) ≤ δ}+ epiδ∗Rn .

This shows that (i) holds, and completes the proof. ⊓⊔

4 Discussion

In this section, we discuss about our optimality conditions and constraint
qualifications. Especially, we show some equivalence relations between duality
results via convex and quasiconvex programming.

In the second half of Theorem 3.2, we assume that A is compact. We
need the assumption to guarantee that a minimizer of v in A exists. Hence,
we can show the theorem under different assumptions; for example, A is an
intersection of finitely many closed halfspaces.

In Theorem 2.1 and Theorem 2.2, we show that Q-CCCQ and Q-BCQ
are necessary and sufficient constraint qualifications for Lagrange-type duality
theorems. By Theorem 3.1 and Theorem 3.2, we show the following corol-
laries for equivalence relation between Lagrange-type duality and optimality
conditions.

Corollary 4.1 Let x0 ∈ A. The following statements are equivalent:

(i) {gi(x) ≤ 0 : i ∈ I} satisfies Q-BCQ w.r.t. G relative to Rn at x0,
(ii) for each extended real-valued usc essentially quasiconvex function f on Rn,

x0 is a global minimizer of f in A, if and only if

0 ∈ ∂GP f(x0) + cone conv
∪

t∈T (x0)

{wt},
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(iii) for each real-valued continuous convex function f that attains its infimum
value at x0, there exist a finite subset T̄ = {t1, . . . , tm} ⊂ T and λ̄ ∈ Rm

+

such that k−1
tj (0) ∈ R for each j ∈ {1, . . . ,m}, and

f(x0) = min
x∈A

f(x) = inf
x∈Rn

f(x) +

m∑
j=1

λ̄j(wtj (x)− k−1
tj (0))

 .

Proof By Theorem 2.2 and 3.1, we can prove the corollary. ⊓⊔

Corollary 4.2 Assume that A is compact. Then, the following statements are
equivalent:

(i) {gi(x) ≤ 0 : i ∈ I} satisfies Q-CCCQ w.r.t. G relative to Rn,
(ii) for each extended real-valued usc quasiconvex function f on Rn and x0 ∈ A,

x0 is a global minimizer of f in A, if and only if

0 ∈ ∂Mf(x0)+cone conv
∪
t∈T

{(wt, δ) ∈ Rn×R : k−1
t (0) ≤ δ}+{0}×[0,∞[,

(iii) for each real-valued continuous convex function f on Rn, there exist a finite
subset T̄ = {t1, . . . , tm} ⊂ T and λ̄ ∈ Rm

+ such that k−1
tj (0) ∈ R for each

j ∈ {1, . . . ,m}, and

inf
x∈A

f(x) = inf
x∈Rn

f(x) +

m∑
j=1

λ̄j(wtj (x)− k−1
tj (0))

 .

Proof By Theorem 2.1 and 3.2, we can prove the corollary. ⊓⊔

In convex programming, the following necessary and sufficient constraint
qualifications for Lagrange duality have been investigated; see [1,3,23–25].

Let I be an index set, gi proper lsc and convex functions from Rn to R,
C a closed and convex subset of Rn, A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0} and
assume that A ∩ C is nonempty.

(i) {gi(x) ≤ 0 : i ∈ I, x ∈ C} is said to satisfy Farkas-Minkowski (FM), iff

epiδ∗A∩C = cone conv
∪
i∈I

epig∗i + epiδ∗C ,

(ii) {gi(x) ≤ 0 : i ∈ I} is said to satisfy the basic constraint qualification
(BCQ) relative to C at x ∈ A, iff

NA∩C(x) = NC(x) + cone conv
∪

i∈I(x)

∂gi(x).
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Clearly, FM (BCQ relative to C) is equivalent to Q-CCCQ (Q-BCQ, respec-
tively) w.r.t. basic generator relative to C.

By Theorem 3.1 and Theorem 3.2, we show the following corollaries for op-
timality conditions and constraint qualifications via quasiconvex minimization
problem with convex inequality constraints. These results show that optimal-
ity conditions for quasiconvex programming are equivalent to Lagrange duality
theorems for convex programming.

Corollary 4.3 Let x0 ∈ A, and assume that gi are real-valued convex. Then,
the following statements are equivalent:

(i) {gi(x) ≤ 0 : i ∈ I} satisfies BCQ relative to Rn at x0,
(ii) for each extended real-valued usc essentially quasiconvex function f on Rn,

x0 is a global minimizer of f in A, if and only if

0 ∈ ∂GP f(x0) + cone conv
∪

i∈I(x0)

∂gi(x0).

Proof Since BCQ relative to Rn is equivalent to Q-BCQ w.r.t. the basic gen-
erator relative to Rn, we can prove the corollary by Theorem 3.1. ⊓⊔

Corollary 4.4 Assume that A is compact and gi are real-valued convex. Then,
the following statements are equivalent:

(i) {gi(x) ≤ 0 : i ∈ I, x ∈ C} satisfies FM,
(ii) for each extended real-valued usc quasiconvex function f on Rn and x0 ∈ A,

x0 is a global minimizer of f in A, if and only if

0 ∈ ∂Mf(x0) + cone conv
∪
i∈I

epig∗i + {0} × [0,∞[.

Proof Since FM is equivalent to Q-CCCQ w.r.t. the basic generator, we can
prove the corollary by Theorem 3.2. ⊓⊔

5 Conclusions

In this paper, we study optimality conditions and constraint qualifications for
quasiconvex programming. In Theorem 3.1, we show a necessary and sufficient
optimality condition for essentially quasiconvex programming and related nec-
essary and sufficient constraint qualification, Q-BCQ. In Theorem 3.2, we show
a necessary and sufficient optimality condition for quasiconvex programming
and related constraint qualification, Q-CCCQ. Additionally, we discuss about
our optimality conditions and constraint qualifications. Especially, we show
some equivalence relations between duality results for convex and quasiconvex
programming in Corollary 4.3 and Corollary 4.4.
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