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On the VelOoity l)istribution in the TurbLilent 

Wake behind a 130dy of RevOlution. 

M. Hasegawa 

I Introduction 

The velocity distribution at a considera:ble distance downstream in the turbulent 

wake behind a body of revolution was calculated by Swain on the. momentum 
2.3 

transfer theory and by Goldstein on the vorticity transfer theories. We sha.'11 

consider the same problem by assuming the apparent turb. ulent . c"oefficient of 

diffusion of the appropriate form 

~ The Fundamental Theory 

In a wake behind a body of revolution, in which the mean motion is assumed 

symmetrical about its axis, Iet (r, 6, x) be cylindrical- po~ar coordinates, x being 

measured along the axis of symmetry and r being at_a distance from it. If Uo is 

the velocity of the undisturbed stream, Uo ~ U the .velocity in the wake parallel 

to the axis, and T the shearin.g stress, then far downstream the equatfon for U -is 

a p proximately 

OU l I a Uo =~ (rT)' (1) 
Ox . fJ r 6r 

where p is the density of a fluid 

If we now introduce the apparent turbulent coefficient of diffusion E, we have the 

following expression for the shearin*a stress T 

~r ' 

With the same assump'cions as in the two-dimensional case geometrical and 

mechanical similarity in different sections of the wake ---,we use the following 

expression for U 

U _ f(~) 
Uo ~ x~･3 ' (3) 

where 
r
 

~ - x~/"~ (4) 
We assume that the apparent turbulent coefficient of diffusion E takes the form 

E = 8 x~vJn ' (5) 
where ;e~ and n: alre un:determined constants 
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With Eqs. f2), (,3.), (4) and (5), the differential equation (1) is transformed in 

U 8 (~n+1 f (v))! }
~
 

_ o { _9 f (v) + ~ f(~) ~ ~- , (6) 
3x5./"~ xm+~/3 v

 

in which the prime denotes the differentiation with respect to v･ From the srmilar 

conditlon In different sections, we have 

_ 1 
.･ With this value of m ' Eq. (6) is integrated to 

U38' v2f (7) = ~n+1 f' (~) + c 

A~ the value of f (v) is fin_ite and the value of fr (v) zero at ~ O the constant 

C Inust be zero.' Then, 

Uo 1-n f'(~) 
- 38 v = ･ '(8) f (v) 

Integrating Eq. (8), we have 

Uo 

^ - , v2~te _ (9) 38 (2-n) , ' f (v) = Ae 

wher~ A is the integration constant. 

Then, we obtain th~ 6xpession for U 

U A x ~ e ~c~~2~n (10) U0= 
m which 

_ Uo c~: - 38(2_ Ie) ' (ll) 
If we denote the velocity U at = ~ O by U,m' we have 

2-ee 

U = Um e -~'Q~v ' (12) 
If we denote by ~* the value of v , at which the value of U Is half the value of 

Um ' we have 
O. 69315 

~2 - n 
*
 

With this value of c~:, the expression of U takes the form 

v 2~te 

= e ~ O 69315 (14) 
~!: Comparl~son wath the *~xperlmencal re~･pult~~ and other *-*,olutionS. 

We have not yet determined the value of le in the expression of U. We must 

determirie it in such a manner that the distribution of U/Um given by Eq. (14) ･agrees 

with the experimental distribution of U/U;ee given by Hall and Hislop. It seems to us 

that the value_ of 7c = ~~ gives the best agreerQent with the experimental results in 



h
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the range O < vh~~ <( 1 25 Therefore if we take n = ~/,._' the expression of U becomes 

a/_ 

~ 7* = e O 69315 ) TJm ~ ' ( ' ' ^ (15) 
The comparison of the above theoretical curve (15) with the re ults of measurements 

by Hall and Hislop is sho~l,',7n in Fig. l, where l.o. 

U/Um is plotted against ~ v and 

v * o. 8 r=R when U = ~~Um' The full line curve is 

the theoretical curve, the small circles are 0.6 

the experimental mean results. ' ~L u~~ 
The co~mparison of the result (15), with 0.4 

those of the momentum transfer theory and 0.2 

vorticity transfer thedries is also shown in 

Fi>a 1, where the broken line･---- is given by ' o
 1.0 i,5 os 

r/R, _ 

the vorticity transfer theory the chain dotted ' ~ ' - ' , - ~ ' - Fig. 1 line-･-･- by the~ modifie~ vorticity transfer theory, the dotted line ･ -･ ･ ･ ･ by the momentum 

transfer theory. From this figure, we <-ee th~t Eq. (15) of U *~hows best agreeirient with 

the experimental results in these theoretical curves. 

~ Conclu~~=~ion 

With the asstlmptions of geometrical and mechanical similarity ~ in different sections 

of the wake and the expression (5) of the apparent turbulent coefficient of diffusion, 

the velocity distribution at a considerable distance downstream in the turbulent wake 

behind a body of revolution was calculated･ The expression of U takes the iorm (15) 

and shows the best agreement with the experimental results in the theoretic_al curves 

hitherto obtained. 
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