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For the quantized Dirac and Proca fields ten generators of the Poincaré group, energy
and momenta, three angular momenta and three boost generators, are brought into diagonal
form in the spin and momentum space. The results are quite simple and physically sensible.
Some applications are also given.

§1. Introduction and Summary

The principle of invariance under the inhomogeneous Lorentz group (the Poincaré
group) plays a fundamental role to describe all of the physical phenomena except for
the gravitational one in a cosmological scale. It gives the conservation laws of energy-
momentum and angular momentum as well as the law of Lorentz covariance for any
isolated system. It is a rather remarkable fact [1, 2] that this principle determines all
of the possible types of free particles in the universe with the help of the quantum
mechanics. In order to guarantee the Poincaré invariance the existence of the gener-
ators of this group with well-known commutation relations is essential. Ten generators
of this group have also important physical meanings.

In the relativistic quantum field theory these generators can be written in terms
of quantized field operators [3,4]. To get a particle picture we must decompose
these generators into normal mode in terms of occupation number representation in
momentum space. Every text book [5, 6, 7, 8] on quantum field theory describes
four generators, energy and three momenta, in normal mode. But no text book
except one [2] describes other six generators, three angular momenta and three Lorentz
boosts, in normal mode, as far as we know. In his excellent book [2] Ohnuki develops
a general theory of the representations of the Poincaré group. He uses the Bargmann
Wigner amplitudes and gives ten generators in normal mode for local quantized fields
with arbitrary spin.

Owing to their fundamental character it will be worth while to describe a different
procedure from that in reference 2 to decompose the six generators into normal mode.
In this paper we follow the standard Lagrangian theory of quantized field, and de-
compose the field into Fourier components, thereby fixing the spin quantization axis
arbitrarily. We express the six generators in terms of creation and annihilation
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operators in momentum space for the Dirac and the Proca fields in §§3 and 4, respec-
tively. The calculation is rather tedious, but the results are quite simple and coincide
with that in reference 2 for the case of the Dirac field. We use the traditional field
theory with the familiar physical meanings, therefore, if we consider the interaction
with other fields, we would have more transparent physical picture than that of reference
2. As a simple application of §3 we examine the transformation properties of the
creation and annihilation operators of the spinar particle in § 5.

§2. The Generators of the Poincaré Group

In the Lagrangian quantum field theory [3, 4] the ten generators P* and M** can
be written® as

pr=: | g, (1)
and
M = XMOF”‘dx: (2)
with
MY = xt g2y — x¥ QA — A ZrY (3)
and
nh= 556:?; .

In Eq’s (1), (2) and (3) we denote ¢ (multi components) the quantized field, =° its
canonical momentum and 6*¥ canonical energy momentum tensor, respectively and
: means Wick’s normal product. 6*¥ is defined through Lagrangian % by

Ory =qudvp — gty & 4)
and satisfies conservation law
8,04 =0 &)

by virtue of the Euler equation for ¢. In Eq. (3) 2*¥ is the spin matrix of ¢ and is
defined by the transformation property

9() — 9'(x)=(1= & &0 2 ) ()
for the infinitesimal Lorentz trénsformation

X ——s x't =P+ ehV X,

+) We use the metric (1, —1, —1, —1).



Generators of the Poincaré Group in terms of Normal Coordinates 75

By using the canonical commutation relations

[TCO(xO, x)’ @(xos y):’ F== 15(x - .‘)’) s (6)
[no(x09 x)s nO(xO’ y)]i = [q’(xos x)’ (P(xo, y)]i =0.

we can show that the ten generators P* and M#*'= — M"# satisfy the following com-
mutation relations:

[P, P']=0, (i)
[P*, M ]=i(g*P*—g*"P*), (i) (7
[Muv, Mat] _— i(gm:Mvcr + gvaMut _ gua‘Mvr — gvtM;w) . (lll)

Eq’s (7) are the defining equations of the Lie algebra of the Poincaré group.

As is well known, from the conservation laws (5) we can deduce the time in-
dependence of P* in accordance with (7) (i). From the relativistic invariance of the
Lagrangian ., we deduce [4]

T 0V p — ¥ OFQ=i0,7* I* @ +in* I* 0, 0. 8)
By using (8) and (5), we obtain
0, M*v =0, 9

Therefore we also deduce the time independence of M*¥ defined by (2) in accordance
with (7)(ii). It should be noted that owing to the explicit time dependence of MO
we must use the following equation

d 240 = MOk

yi o +Hi[P% MO]= Pk +i[P%, M%]=0. (10)

In the remaining of this section we shall discuss the physical meaning of MO°%,
The symmetrical energy momentum tensor (the Belinfante tensor) 84" is given [3, 4] by

O = 0w+ L5, x 30 (11)

with
X = — XFrV = — (g2 ZBY o — " TA o — ¥ T2 @) . (12)

Since the difference between 64 and 6* is total divergence of an anti-symmetric
tensor, P* can also be rewritten as

pr=: SOOB“dx:. (1)

We can also rewrite [3, 4]
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M= SM};"“dx: 2"

where

My = x# 0 —x" 03 3)

From (2') and (1) we have
MOk =x0; g 0% dx:—: Sx"@%" dx:
=x0Pk—: Sx" 0 dx: . (13)

The physical meaning of Eq. (13) is as follows: we define the center of the mass
operator [9] X* by

X*Po=: Sx" 09 du: . (14)
By differentiating (14) with x°, we have
Xepo=: S Xk 0P dx: = — :S xk 0, 00 dx:
= Sego dx:=P*. (15)

By differentiating (13) with respect to x° and using (13), (14) and (15) we again obtain
Eq. (10). The explicit x°-dependence of M is canceled by the x°-dependence of X*.
By using above discussions we have

Jk=Mii= :Sno(x"af—xja"—ilifypldx:

x0=0

(i, j, k is a cyclic permutation of 1, 2, 3.) (16)
MOk = S(—x"@oo—inol‘o" P)yo=p dx: (17)

Our next task is to express (16) and (17) in terms of normal mode. This will be done
in the next two sections for the Dirac and the Proca fields.

§3. The Dirac Field
For the spin 1/2 field we have the following relations:

,'f(x) = ‘Z(i'y”au - m)lﬁ,

_oz
oY,

(18)

= i(y°),= iy}

g
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In order to satisfy the Dirac equation ¥(x) and ¥(x) are expanded into Fourier
components:

V) =3 | - (0P (p) e+ bi(p (p) ),
(p°=+/p*+m? and r, s= £1/2) (19)
P=% SW (b(p)P)(p) €™ i7* + al(p)a(p) eiP¥).
The four component Dirac spinors u")(p) and v'*X(p) satisfy
(p—mu(p)=u®(p)(p—m)=0,
(p +mp(p)=5"(p)(p+m)=0
with the ortho-normalization relations
uI(pu(p)=—i"(p)N(p)=2mb,,
5(')(p)u (S)(P) = {[(')(P)U(S)(p) =0.

In order to satisfy (6) a,(p), al(q), bl(p) and b(qg) must satisfy the following anti
commutation relations:

La(p), al(@)]+ =[b{p), b}(q)]+=(2m)*2p°,,6(p—q)
La(p), afq@)]+=Lalp), b(q)].="--=0.
Substituting (18) and (19) into (16), we obtain

w9 =3 - B al ()1 a(p) + 51 (p) 1 b(p)]

dp

> - G

H(b(—p)o@1(—p) +al(p)u(p)) x (20)
x| a(p) (P4 "T’) u®(p) + (- p)(1 +GTJ> v (=p) |:

with [ = —1<p I %) and ¢i/ = —f)— [y%, /1. To further simplify Eq. (20),
i 2

we must use the explicit form of Dirac spinors u)(p) and v'")(— p):
PP+ mw®
\/17_0—71 (omn) w®
—/P°—m (gn) w'"
\/p°+m w'r) }

u(”(p)=[ :|, n=p/|p|,

(1)

v"’(—p)=[
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In Eq. (21) w is a two component Pauli spinor with arbitrary spin-quantization-axis

e. Explicitly,
( 1
0
‘1,2:\:1/2)=e~i%a,e—i%ﬂy % ?

(),

with e: (sin 6 cos @, sin §sin ¢, cos §). From the consideration for charge conju-
gation invariance [8] we choose w'(" = — g w(""* for the Pauli spinor for anti-particle.
Note that w'¢=Tgw' "N = —w"Tgw), By using (21) we get

(13 =20(5),
vt (—p) <l+%> u®(p)=0, (22)

v©t(p) (l + %) v"(p)=—2p° <%>

Substituting (22) into (20) we get the result

Fs*

=% |- [al(p) T map)+ bi(P) TS b)) (23)
where

T =8+ 1o,
(24)
k— _ k = ws) T gkw(r)
<p6p1 p@p and {(o*>,=wSTgkwr),
For the helicity state we must choose e= p/|p|, but be careful that the differential
operation I’/ in Eq. (20) does not act on w(), since the momentum and the spin

belong to different freedoms.
For the boost operator MO the similar calculation as (20) leads to

d ' :
M= 3 |- B (a1(p) 5 an(p) +01(p)s 5 b))

+§S (27:;3417 (b (_P)U(S)T(_P) +(lTu(s”(P)) X (25)

x| ) (=11 je+%5- ) u(p) + b1(=p) (10" 52+ 55 )0 (=p) |

By using (21), noting 0% =iy =ia*, we have the following relations:
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u(s”(p)<—ll7 —'H_)”(r)(l’)_ Po+m <i>2<£>sr’

v@1(=p) (—ipO-a% +i L )u(p) =0, (26)

gXp

.0 0 | .a 2p°
()T —ipn0 il (r) = —
v (p)( P +i 2)0 (p) O
From Eq’s (25) and (26) we get the result

MO = — Z S—dp—— [al(p) <K*>qa(p)+bi(p) <K*)b(p)], e2))

@r)2%°
with
o~ o 0 1
<K >sr_5srlp ap p°+m <0' ><P>sr/2
and
(@ Xp)a=w1(a xp)w. (28)

Eq’s (25) and (27) coincide with that given in reference 2. Finally, for the sake of
completeness we write P* in our notations:

=X (B Pl (pas(p)+ b PIbAP) 29

with p#: (p°=./p?+m?, p).

§4. The Proca Field

For the neutral vector field ¢*, we have the following relations:
1
L= I(au(pv v¢u) (au(P - av(pu)+ A (pv(p ’

53 k0= k
™= Sgw =9F PO =)

o=t (30)
000 =L (24 m2p2 + (7 x @Y +(F M2 fm),

Z")yp=1(g"9 s — 9" 29" -

The Fourier expansion of ¢*(x) is written
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PH(x)= S —(—2—75i—3kz—]€0— (a*(k) e~ >+ a#1(k) ei*~)
(31)
with a%(k) = ka(k)/K°,
B = 585 | (ath) - 200 ) emsie— (a9 - BB et ] (3

The commutation relations between a*(k) and a*'(k’) is read from (6), (31) and (32) as

[a*(k), a*1 (k)] = — ) 2k03(hk—k) (g = LE) (ko= JRwm) (33)
others are zero.
In order to get the normal mode we must expand a“(k) in terms of the four
dimensional polarization vectors [7] e,

ke k(ke)
r) = ) =
o ( @ ey =129 (34)

where e are three orthogonal unit space vectors in the rest system of the time like
four vector k*,

a(k)=3 8(')”a(')(k), a"T(k) =3 g(r)na(r)T(k)_ (35)
Denoting
Ok =kr/m, (36)
we have the following relations:

8(9)118‘(‘0') = gPﬂ"

(37)
e@Oug(0Y _ 3 g(Mugr)y = guv |
Using (37) we can invert (35) as
a"(k)= — a"(k)e?. (38)
From (33), (37) and (38) we get
[a"(E), a®T(K')]=06,{27)*2k°5(k—K') . 39)

a"(k) and a7 (k) are the usual annihilation and creation operators of a vector meson
with momentum k and linear polarization e™. Substituting (31) and (32) into (16)
we have
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7= e (@@ —a(=B - & @@+ aO(—k)))

(kx7,) (ak) +a' (k) + (af(k)—a(—k)

~ @ 0 +a(—B) ) x @) +a' (k) |- (40)

By examining the symmetry operation k— —k, we can drop the terms quadratic in
a (a') in (40). Substituting (35) into (40) and making use of the following relations:

¥ (s(r)t _ ]’;_; s(r)O) f=5,
1
2 (sW ——’,j% e""’) (X 7 )s +(§<r> ——k’% e(")°> x i =eMxe®, = (41)

= ei(lx P )<S(s)t 6<s)0> 150 % (s(‘) _k_s(s)0>_e(r) X e |
we finally get the following result

I= X |-t a9 Do) | “2)

with
<J>sr = _lasr(k X Vk) —i(e(s) X e(')) .

To get the angular momentum representation we must make use of the circular
polarization;;

)= F (@O Fia®Y 5
At = F(aWF +ia @) /2, (43)

a®=g@®), GO =g®1,

As for the boost generators M° a similar calculation as that of J* yields the
following answer

--z ) Q—‘fj‘z,co_a<s>f<k)<K>s,a<'><k) (44)

with

((ke<s))e(') — (ke®)e®) .

<K>sr - 5srlk07k + ko



82 Yasuo MUNAKATA

§5. Application

As a simple application of the result in §3 we shall examine the transformation
property of the annihilation operator a,(p) of the Dirac particle. In this section we
denote it a,.,(p) to specify the spin quantization axis explicitly.

We consider a three dimensional rotation with rotation parameters ¢ =wuo. The
unit vector u represents the axis of the rotation and o its magnitude; —n<a<m.
By this rotation the momentum p is transformed to p’ and e to €. The unitary
transformation corresponding to this rotation is given by e~¥¢ with J* given by (23).
By a straightforward calculation we can prove that

924, (p) ¢4 =,.(p). (43)

Eq. (45) shows that a,,(p) behaves as a scalar operator in accordance with our
intuition.

The proof of (45) goes as follows. Calculating multiple commutators [Jal[--
[Ja, a,.(p)]---1, we write the Lh.s. of (45) as

(9% a (p))

where (J*) is the two by two matrix with the matrix element given by (24) and a ( p)
is two by one matrix. By using (24) we have the followings;

isa .
Lh.s. of (45)= 3 (WP e 2 w)eitea  (p)

=X WP wPa(p)=a,.(p).

For the boost operators (27) a similar relation as (45) can be proved.
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