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A regular semigroup S is said to be quasi-orthodox if there exist an inverse semigroup I"
with basic semilattice 4 (that is, 4 is the semilattice of idempotents of I") and a surjective
homomorphism f: S—I" such that Af-! is a completely simple subsemigroup of S for each
Ae . In this paper, the structure of quasi-orthodox semigroups is studied.

§0. Imtroduction

As generalizations of groups, there are two important classes of regular semi-
groups. One is the class of inverse semigroups, and the other is the class of completely
simple semigroups. The structure of inverse semigroups has been firstly investigated
by Vagner [11] and Preston [8], and successively many papers concerning this class
have appeared. On the other hand, a structure theorem for completely simple semi-
groups has been established by Rees [10]. He has shown that every completely simple
semigroup can be obtained, up to isomorphism, as a matrix semigroup called a Rees
matrix semigroup over a group. These two classes are generalized to the class of
orthodox semigroups and the class of completely regular semigroups®) respectively,
and quite a lot of papers concerning these two classes have appeared during the last
two decades (for example, see Hall [3], [4], [5] and the author [13], [14] etc. for
orthodox semigroups; and Clifford [1], Petrich [9] and Lallement [7] etc. for com-
pletely regular semigroups). As a class containing both the class of orthodox semi-
groups and the class of completely regular semigroups, we introduce the class of quasi-
orthodox semigroups in this paper and discuss the structure of these semigroups.
Throughout this paper, we shall use the following notations and terminology: For a
completely regular semigroup M, the notation M ~X{M,: L€ A} means that M is a
semilattice 4 of completely simple semigroups {M,: A€ A} (that is, M~XZ{M,: Ae A}
means the structure decomposition of M). Hereafter, the term ‘‘a completely regular
semigroup M ~2{M;,: A€ A}” means that M is a completely regular semigroup and has
M~Z{M,: Ae A} as the structure decomposition. If an inverse semigroup I" has A

#) A part of this paper has appeared in “Symposium on Regular Semigroups, Northern Illinois
University, 1979”.

1) A semigroup S'is said to be completely regular if S is a union of groups. In this case, S is uniquely
decomposed to a semilattice of completely simple semigroups; and this decomposition is called
the structure decomposition.
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as the semilattice of idempotents of I" (that is, the basic semilattice), we shall denote it
by I'(A). For a regular semigroup S, the notation E(S) denotes the set of idempotents
of S. In particular, if S is an orthodox semigroup then E(S) denotes the band of
idempotents of S.

§1. Basic properties

Let S be a regular semigroup. If there exist an inverse semigroup I'(A) and a sur-
jective homomorphism ¢: S—I'(A) such that 1¢~! =35, is a completely simple subsemi-
group of S for each A € A4, then S is said to be quasi-orthodox. In this case, it is obvious
that M= U {S;: Ae 4} is a completely regular subsemigroup of S, and the structure
decomposition of M is M~X2{S,: Ae A}. T.E. Hall has shown the following result
(see [19]): A regular semigroup S is quasi-orthodox if and only if the subsemigroup
(E(S)) of S generated by E(S) is completely regular.?

Now, we have the following results concerning quasi-orthodox semigroups:

LemMA 1.1.  Any homomorphic image of a quasi-orthodox semigroup is a quasi-
orthodox semigroup.

ProOF. Let I' be a homomorphic image of S. Then there exists a surjective
homomorphism ¥ : S—I'. Let a denotes ayy. For any idempotent ¢ I', there exists
ee E(S) such that é=¢. Hence, E(I')=E(S)={é: e€ E(S)}. Therefore, the subsemi-
group (E(I) of I' generated by E(I') is the same to {E(S)y ={w: we (E(S)>}. That
is, (E(I)y =<E(S)). Since {E(S)) is a union of groups, {(E(S)) is also a union of
groups. Hence, I' is quasi-orthodox.

LemMMA 1.2. If p is a congruence on a quasi-orthodox semigroup, then S|p is a
quasi-orthodox semigroup.

ProOOF. This is obvious from Lemma 1.1.

LemMA 1.3. A regular subsemigroup of a quasi-orthodox semigroup S is quasi-
orthodox.

ProOF. Let A be a regular subsemigroup of a quasi-orthodox semigroup S.
Since <E(S)) is a union of groups, (E(S)) is a semilattice A of completely simple semi-
groups {M,: Ae A}. Now, (E(4)) =<E(S)>. LetaeM,n{E(A)). Since {E(4)) is
regular, there exists an inverse a* of a in (E(4)). Since (E(S))><E(A)), it follows
that a*e{E(S)). Suppose that a*e M, Then, a=aa*ae M;M ,M,cM,,, while
a*=a*aa*e M,M,M,=M,,. Hence, A=Au=p. Therefore, a*eM, n {E(4)).
This implies that M, n (E(4)) is regular. Since any idempotent of M, is primitive
in M, every idempotent of M, n (E(A)) is of course primitive in the regular semigroup

2) It follows from [2] that (E(S)) is regular.
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M, n{E(A)y. Hence, M, n{E(A)) is completely simple. Since {E(A)>=U{M,n
(E(A)): Ae A}, {E(A)) is a union of groups. Thus, 4 is quasi-orthodox.

Hereafter, for any element a of a regular semigroup S, V(a) denotes the set of
inverses of a.

LemMa 1.4. Let A and B be regular subsemigroups of a quasi-orthodox semi-
group S. If

(1.1) AnB#o and An B> a implies a* e AN B for some a* e V(a),
then AN B is a quasi-orthodox subsemigroup of S.

Proor. This is obvious from Lemma 1.3.
Let R and T be regular semigroups, and f: R—T a homomorphism. If the con-
dition
(1.2) for any aeR and for any (af)* € V(af), there exists a* € V(a) such that a*f=
(af)*

is satisfied, then f is called *-homomorphism.

LemMA 1.5. Let S and T be quasi-orthodox semigroups, and f: S—T a surjective
x-homomorphism. For any regular subsemigroup K of T, Kf~! is a regular sub-
semigroup of S. Hence, Kf~! is a quasi-orthodox subsemigroup of S.

Proor. Let ae Kf~!. Then, afe K. There exists an inverse (af)* of af in K.
Hence, there exists an inverse a* of a in S such that a*f=(af)*e K. Hence, a*e
Kf-1, It is clear that Kf~! is a subsemigroup of S. Therefore, Kf~! is a regular
subsemigroup of S, and it follows from Lemma 1.3 that Kf~* is quasi-orthodox.

If every H-class of a semigroup S consists of a single element, then S is said to be
H-degenerated.

THEOREM 1.6. An H-degenerated quasi-orthodox semigroup is an orthodox
semigroup.

Proor. Let S be an H-degenerated quasi-orthodox semigroup. Then, {E(S))
is a union of groups {G,: Ae A}. However, each G, is contained in an H-class of S,
and accordingly G, must be a single element. That is, {E(S)) is a band. This im-
plies that E(S)=<E(S)). That is, S is orthodox.

Let S be a regular semigroup. A completely regular subsemigroup G~ZX{S,:
Ae A} is called a kernel normal system of S if G E(S) and if there exists a congruence
o on S such that each S, (1€ A) is a complete o-class. In this case, such a congruence
o is unique and is called the congruence determined by G~Z2{S,: Ae A}. Of course,
o is an inverse semigroup congruence on S. If p is an inverse semigroup congruence
on a quasi-orthodox semigroup such that ep is a completely simple subsemigroup of S
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for each ee E(S), then G= U {ep: ec E(S)} is a kernel normal system of S and has
G~X{S,;: Ae A} as its structure decomposition (where each S, is a p-class). In this
case, the kernel normal system G~X{S,: Ae A} is called the kernel normal system
determined by p, and conversely p is called an inverse semigroup congruence with
kernel normal system (abbrev., k.n.s.). The completely regular subsemigroup M ~
2{S,: Ae A} in Page 2, Line 10 is a kernel normal system, which is called the kernel
normal system determined by ¢.

Let S be a quasi-orthodox semigroup. Let G, be a subgroup (of S) containing e
for each e e E(S) such that G= U {G,: ee E(5)} is a subsemigroup of S. In this case,
G~X{S,: Ae A} is not necessarily a kernel normal system of S. However, at least we
have the following:

LemMA 1.7. Let S be a regular semigroup, and G, a subgroup (of S) contaiﬁing
e for each e E(S). If G=U {G,: ec E(S)} is a subsemigroup of S, then S is quasi-
orthodox.

PrOOF. Suppose that G= U {G,: ec E(S)} is a subsemigroup of S. Of course
G> E(S), and hence (E(S)> =G. On the other hand, (E(S)) is a regular subsemigroup
of the completely regular semigroup G. Hence, {E(S)) is completely regular (it is well
known that any regular subsemigroup of a completely regular semigroup is com-
pletely regular). Hence, S is quasi-orthodox.

LemMmA 1.8. Let S be a quasi-orthodox semigroup. Let ¢ be an inverse semi-
group congruence on S with k.n.s.

(1) Ifp>oisaninverse semigroup congruence on S with k.n.s., then the relation
p on S/o defined by

(1.3) xopyo ifandonlyif xpy

is an idempotent separating congruence on S/o.
(2) Conversely, if p is an idempotent separating congruence on S|o, then the relation
p on S defined by

(1.9) xpy ifandonlyif xopyoc
is an inverse semigroup congruence on S with k.n.s. and satisfies o < p.

PrOOF. (1) Assume that ecpfo for e, fe E(S). Since epf and the p-class ep
containing e is a completely simple subsemigroup, efe € ep and there exists the group
inverse (efe)~! of efe in a maximal subgroup A4 of ep; that is, efe(efe)™! =(efe) lefe=g
and efe(efe)~lefe=efe, where g is the identity of the maximal subgroup A containing
efe. Since ge=eg=g, g € ep and ep is completely simple, it follows that g=e. Hence,
the maximal subgroup M of S/¢ containing es contains (efe)o. Similarly, the maximal
subgroup N of S/¢ containing f¢ contains (fef)o. Since (efe)o=(fef)o, it follows that
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N =M, and hence es=fgo.

(2) For ecE(S), put ec=a. Then, ep={xeS: ecpaxo}={xeS: apoxc}. Since
p is an idempotent separating congruence, «p is a subgroup of the H-class (this is a
group) of /¢ containing the idempotent «. Hence, for any xo € ap there exists yo € ap
such that yoxo=xoyoc=w«. Since ¢ is an inverse semigroup congruence, x*¢ = yo for
any inverse x* of x. Thus x*eep. This implies that ep is a regular subsemigroup
of S. Next, assume that es # fo for e, fe E(S). Since p is an idempotent separating
congruence on S/g, ep# fp. Hence, ep N E(S)=ec N E(S). Since every idempotent
of S contained in es is primitive, ep is a regular semigroup in which every idempotent
is primitive. Hence, ep is a completely simple subsemigroup of S. It is obvious that
S/p is an inverse semigroup.

THEOREM 1.9. If S is a quasi-orthodox semigroup, then there exist a funda-
mental inverse semigroup I'(A) and a surjective homomorphism y: S=I'(A) such
that 21 is a completely simple subsemigroup of S for each L€ A.

ProoF. There exist an inverse semigroup I'(A) and a surjective homomorphism
¢: S—I'(A) such that 1¢~! is a completely simple subsemigroup of S for each Ae 4.
Let p be the maximum idempotent separating congruence on I'(4), and define p on S
by

xpy if and only if x¢ pyd.

Then, it follows from Lemma 1.8 that p is an inverse semigroup congruence with kernel
normal system, and S/pé I'(A)/p and I'(A)/p is a fundamental inverse semigroup (see
[7]), where ¥: S/p—I(A)/p is given by (xp)¥=(x$)p. Let v: I'(A)—I'(A)/p be the
natural homomorphism. For an idempotent A of I'(4)/p, where A€ A, there exists
an idempotent y of S such that A=y¢$. Now, S,=(App 1 13 x=xdpe(lpp <
(xp)v = Ap<>(xp)p = Ap<>x p yp<>x p y<>x € yp. Hence (Ap)v~1¢p~t=yp. Since y is
an idempotent, yp is a completely simple semigroup.

THEOREM 1.10. Let S be a regular semigroup, and G, a subgroup (of S) con-
taining e for each ec E(S). If G=U {G,: ee E(S)} is a subsemigroup of S, then
there exists a kernel normal system M ~Z2{S,: Ae A} of S such that M>G. Accord-
ingly, S is a quasi-orthodox semigroup.

PrOOF. Suppose that G= U {G,: ee E(S)} is a subsemigroup of S. By Lemma
1.7, S is quasi-orthodox. Hence, there exists a surjective homomorphism ¥ of S
onto a fundamental inverse semigroup I'(A) such that Jy~!=M is a completely simple
subsemigroup for each Ae A. Then, M= U {M,: A€ A} is a subsemigroup, and M~
Z{M,: Ae A} is a kernel normal system of S. Suppose that GZ U {M,: le A}=M.
Since Gy is a subsemigroup of the inverse semigroup I'(4) and is the union of groups
{G,: ec E(S)}, Gy is a semilattice A of groups {T,:aeAd}. Now, Gy A since
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GZ U {M;: AeA}. Hence, there exists T, such that T, is not a single element. Let
9, 6€ T, such that y#d. Consider the relation u={(¢, #)eI'(A)xI(A): {leé=
n~'en for all ee A}. This u is the greatest idempotent separating congruence on r(A)
(see Howie [6]). For y and 8, y~ley=571¢ for all ee A (since both y~ley and 5-1ed
are idempotents and contained in the same T,s,ifee Ty). Therefore, (y, d)epu. Since
I'(4) is a fundamental inverse semigroup, u must be trivial. That is, y=4. This con-
tradicts to y#0. Hence G U {M;: le A}=M.

Let S be a regular semigroup, and M, a maximal subgroup (of S) containing e for
each ee E(S). If M= U {M,: ec E(S)} is a subsemigroup of S, then S is said to be
natural regular. By the result above, in this case M ~X{S,: A€ A} is a kernel normal
system of S. Of course, a natural regular semigroup is quasi-orthodox.

For the kernel normal systems of regular subsemigroups of a quasi-orthodox semi-
group, we have the following result:

LEmMMA 1.11. Let S be a quasi-orthodox semigroup, and N~Z2{S,: Ae A} a
kernel normal system of S. Let A be a regular subsemigroup of S, and put A’=
{AedA:S;nA#}. Then, ANN~Z{ANS,: A €A’} is a kernel normal system of
A.

Proor. Put S; N A=A, for each 1€ A such that S, N A4# 3. There exists an in-
verse semigroup I'(4) and a surjective homomorphism y: S—I'(A) such that Ay~1=S5,
for Ae A. If ae A,, then ayy=a is an idempotent. There exists an inverse a* of g in
A. Since a*=a*} is an inverse of 4, it follows that a=a*. Hence, a*e 4,. Since
a*eS;NA=4,, A, is a regular subsemigroup of 4. Hence, N n 4 is a regular sub-
semigroup of the completely regular semigroup N, and accordingly N n 4 is completely
regular. Of course, NN A~Z{S; nA: X' e A'}, where A'={leA: S,n A# 3}, is the
structure decomposition of Nn 4. Now, consider §: A—I'(A) defined by aff=ay
for ae A. Then, ¥ is a surjective homomorphism of 4 onto I'(A’), where I’ (AN =
AYy. For any Aed’, W'=Y 'nA=S,nA=A, Therefore, NnA~Z{S, nA:
A'e A'} is a kernel normal system of A.

Let S be a regular semigroup. Let M ~X{M,: 1€ A} be a completely regular semi-
group, and I'(A) an inverse semigroup. If
(1) M is a subsemigroup of S, and
(2) there exists a surjective homomorphism f : S—I'(A) such that Af~1=M, for each

AeA,
then S is called a regular extension of M~X{M,: A€ A} by I'(A).

Next, we show some characterizations of a quasi-orthodox semigroup:

THEOREM 1.12. For a regular semigroup S, the following five conditions are
equivalent: '
(1) S'is a quasi-orthodox semigroup.
(2) The subsemigroup {E(S)) is completely regular.
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(3) There exists a completely regular subsemigroup C of S such that S> C> E(S).

(4) S is a regular extension of a completely regular semigroup M ~X{S,;: Ae A}
by an (fundamental) inverse semigroup I'(A).

(5) S has a kernel normal system; and accordingly, there exists an inverse semi-
group congruence (on S) with kernel normal system.

Proor. The part “‘(1)=>(2)=>(3)” is obvious. The part “‘(3)=>(1)"" follows from
Lemma 1.7, while the part *“(1)=>(4)=-(5)=-(1)" is also obvious.

Now, we can infer from the results in this section that an analogue to the process
used in [13], [3], [14] and [5] for the study of orthodox semigroups will be applicable
for the theory of quasi-orthodox semigroups. In the following sections, we shall dis-
cuss the structure of quasi-orthodox semigroups under this direction.

§2. Inverse semigroup congruences with k.n.s.

If S is a quasi-orthodox semigroup, then it has been seen from Theorem 1.9 that
there exists an inverse semigroup congruence pg with kernel normal system such that
S/ps is a fundamental inverse semigroup.

THEOREM 2.1. pg is the maximum inverse semigroup congruence (on S) with
kernel normal system.

PrOOF. Let p be an inverse semigroup congruence (on S) with kernel normal
system such that po>pg. Then, g defined by “x p y<>xpsp yps (x, y€S)” is an idem-
potent separating congruence on S/pg. Since S/pg is a fundamental inverse semi-
group, p must be the identity congruence. Hence, p=p;s.

Let Ng be the set of all inverse semigroup congruences (on S) with kernel normal
system: Ng={p,: weQ}. It is easily verified that ng=n {p,: e Q} is an
inverse semigroup congruence on S.

Moreover,

LEMMA 2.2. 15 is an inverse semigroup congruence with kernel normal system.
Accordingly, ng is the least inverse semigroup congruence (on S) with kernel normal
system.

PrROOF. As was stated above, #gis an inverse semigroup congruence on S. Hence,
it is needed only to show that eng is a completely simple subsemigroup of S for any
ecE(S). Let xeens. Then, xys=ens. Let x* be an inverse of x. Since eng is an
idempotent of the inverse semigroup S/ns, x*ns=ens. Hence, x* e eng. This implies
that eng is a regular subsemigroup of S. If fe E(S) N ens, then feep, for all e Q.
Since ep,, is a completely simple subsemigroup of S, fis a primitive idempotent of ep,,.
Since ep,, D eng, f is also a primitive idempotent of eng. Hence, ey is a regular semi-
group in which every idempotent is primitive. Therefore, erg is completely simple.
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ReMaRk. It is also seen from the proof of Lemma 2.2 that the intersection of any
collection of inverse semigroup congruences (on S) with kernel normal system is also
an inverse semigroup congruence (on S) with kernel normal system.

Let S be a quasi-orthodox semigroup. It is easily seen that the intersection tg
of all inverse semigroup congruences on S is the least inverse semigroup congruence on
S.

 Now,

THEOREM 2.3. #Hg=Ts.

PrROOF. It is obvious that tgcns. It is also easily verified that ety is a regular
subsemigroup of S for each ee E(S). Since etgcens and each idempotent of eng is
primitive, et is a regular semigroup in which every idempotent is primitive. Hence,
ety is completely simple. This implies that tg is an inverse semigroup congruence (on
S) with kernel normal system. Hence, ng=1s.

Let ¢ be an inverse semigroup congruence on S with k.n.s., and put C (S)={p:
p is an inverse semigroup congruence on S with k.n.s. such that po¢}. On the other
hand, let I_(S) be the set of all idempotent separating congruences on S/o. Then,

THEOREM 2.4.
(1) For any p e C/S), the congruence p defined by

(2.1) . : xocpyo ifandonly if xpy

is an element of I1,(S).
(2) For any Tel(S), the congruence t defined by

(2.2) xty ifandonlyif xo7Tyc

is an element of C,(S).
(3) The mapping Y: C,(S)—1,(S) defined by py=p is an order-preserving bijection
(where ordering in each of C,(S) and I(S) is given by the set-inclusion).

Proor. This is obvious from Lemma 1.8.

In particular, consider the case where o=ns. Then, y in Theorem 2.4 is an
order-preserving bijection of the set of all inverse semigroup congruences on S with
k.n.s. onto the set of all idempotent separating congruences on S/ys. Hence, if (g is
the greatest idempotent separating congruence on S/ys then (g given by (2.2) is the
maximum inverse semigroup congruence on S with k.n.s. Hence, {g=ps.

Next for A=Cy(S), put py=n {p: ped}. Then pse Cy(S). Accordingly, if
o U p is defined by oUp=n {r€C,y(S): 720, p} for g, pe Cyy(S) then Cyy(S) is a
complete lattice with respect to n, U. Similarly, I,(S) is a complete lattice with
respect to the ordering defined by set-inclusion.
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COROLLARY 2.5. The complete lattices C,(S) and I,(S) are lattice isomorphic.
ProoOF. Obvious.

. THEOREM 2.6. Let a quasi-orthodox semigroup S be a regular extension of a
completely regular semigroup G~2{S,: Ae A} by an inverse semigroup I'(A). If
I'(A) is H-degenerated, then G is the union of all maximal subgroups of S. Con-
versely, if G is the union of all maximal subgroups of S then I['(A) is H-degenerated.

Proor. There exists a surjective homomorphism ¢: S—I'(4) such that Ag~1=S,
for every Ae A. Firstly assume that I'(A4) is H-degenerated. . For a subgroup M of S,
M¢ is a subgroup of I'(A) since M¢ is a homomorphic image of a group. Since I'(A)
is H-degenerated, M¢ must be a single element. Hence McA¢~'=G. This im-
plies that G is the union of all maximal subgroups of S.- Conversely, assume that.G-
is the union of all maximal subgroups of S. Suppose that there exists an H-class H,
of I'(A) which contains 1€ 4 and at least two elements. Of course, in this case H,
is a group having A as its identity. If H,¢~!> x, then there exists y¢ € H, such that
(y¢) (xd)=(x¢)(ypp)=A since H, is a group. On the other hand, if x* is an inverse of
x then x*¢ is an inverse of x¢. Since I'(A) is an inverse semigroup, x*¢=y¢. That
is, x*e H,¢~!. Let H;¢p~'=G,. Then, xx*, x*x€S,cG, for xeG,. Let B be an
ideal of G,. Then, BN S,% [, and hence BN S, is an ideal of S;. Since S, is simple,
S,=B. For any x€G,, xx*eS,cB. Therefore, x=xx*x€B. Thus, G,=B. This
implies that G, is a simple subsemigroup of S. Since it is easily seen that E(G,)=
E(S,), it follows that G, is a simple subsemigroup in which every idempotent is primi-
tive. Hence, G, is a completely simple semigroup. Therefore, G, =G, and hence
G,p=H,cA. This contradicts the assumption that H, consists of at least two ele-
ments. Hence, I'(A) is H-degenerated.

If Green’s H-relation is a congruence on a semigroup 7, then T is said to be H-
compatible.

THEOREM 2.7. Let S be an H-compatible regular semigroup. For each a€ S,
let H, be the H-class of S containing a. If for any e, fe E(S) there exists u € E(S)
such that '

HerCHu)

then S is a quasi-orthodox semigroup in which the union of maximal subgroups is a
kernel normal system. ‘ i

PrOOF. This is obvious from Theorem 1.12 and the fact that G= U {H,: e e E(S)}
is a subsemigroup of S.
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§3. Construction

In this section, we shall consider the construction of quasi-orthodox semigroups.
A construction theorem for general quasi-orthodox semigroups has been given by the
author [16], but it is given in a somewhat complicated form and we omit to show it in
this- paper. We shall only consider the construction of some special quasi-orthodox
semigroups called
1. an upwards [downwards] directed quasi-orthodox semigroup, and
II. a split quasi-orthodox semigroup.

First, we introduce the concept of a partial chain as follows:

Let A be a semilattice, and T, a semigroup for each Ae A. If a partial binary
operation o is defined in T=Z{T;: A € A} (disjoint sum)¥ such that
(1) A>rt,aeT,and be T, imply that acbh [boa] is defined and acb [bea]e T,
(2) a, be T, implies acb=ab (the product of a, b in T;), and
(3) A>t>0,aeT, beT, and ce T;imply ac(boc)=(acb)oc [(cob)ea=co(beoa)],
then the resulting system T'(°) is called a lower [upper] partial chain A of {T;: Ae A}.
We denote it by T=LP{T;: Le A; o} [T=UP{T,: Ae 4; -}].

First, we consider the construction of all LP{T,: A€ A; o} for a given semilattice
A and for given right reductive semigroups {T;: A€ A}. This has been given by the
author [20] as follows: If G is a right reductive semigroup, then the inner left trans-
lation semigroup A,(G) of G is a left ideal of the left translation semigroup A(G) of G
and the mapping ¢: G— A(G) defined by a¢ =41, (where 1, is the inner left translation
of G induced by a) is an injective homomorphism. Hereafter, D(G) denotes an iso-
morphic copy of A(G) such that D(G) contains G as its left ideal and there exists an
isomorphism ¢g: D(G)— A(G) satisfying apo=4, for a e G.

Then,

THEOREM. Let A be a semilattice, and S, a right reductive semigroup for each
AeA. For every pair (o, p) of o, fe A with o> B, let ¢, 5: S,—D(S;) be a homomor-
phism such that the family {¢,z: a=p, a, pe A} satisfies the following (3.1) and
3.2):

(3.1) ¢,,; is the identity mapping on S, for each Le A,

(3.2) (ag,p*b)ps,=(ad,)x(bd,,) for a>p>y,acS, and be S,,, where * denotes
the multiplication in D(S,) (t € A),

then S=2{S,: A€ A} becomes a lower partial chain A of {S;: A€ A} under the partial
binary operation o defined by

3) Hereafter 3 means “‘disjoint sum™.
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(3.3) acb=(ad,p)xb for a>p, aeS, beS;.
Further, every LP{S,: A€ A; o} can be obtained in this way.

Dually, we can construct every UP{S;: A€ A; o} for a given semilattice A and left
reductive semigroups {S,: A€ A4}.

Let S be a quasi-orthodox semigroup, and G~X{G,: Ae A} a kernel normal
system of S. Then, there exist an inverse semigroup I'(4) and a surjective homomor-
phism ¢: S—TI'(A) such that Ap~1=G, for all LleA. Put y¢p~'=S, for yeI'(4). Let
L, and R} be an L-class and an R-class of G, respectively, and put E(R})=R;. Then,
by [16], L[A]=X{L,: L€ A} [R*[A]=2{R¥: Ae A}] is a lower upper [partial] chain
A of {L;: Ae A} [{R¥: Ae A}] with respect to the multiplication in S.

In [16], the following has been proved:

THEOREM. Let u, be a representative of S, for yeI'(A). Then, for any a€S§,
there exist a unique x and a unique y such that x€ L,,-1, yeR,-1, and a=xu,y.

I. The construction of upwards [downwards] directed quasi-orthodox semi-
groups

Let S be a quasi-orthodox semigroup, and G;~Z{G; ;: A€ A}, G,~Z{G,4:
6 € 4} kernel normal systems of S. Let p,, p, be the inverse semigroup congruences
determined by these kernel normal systems G; ~2{G, ;: Aec A} and G, ~2{G, ;: 6 4}
respectively. Let p, N p,=p;. Then, as was shown above this p; is also an inverse
semigroup congruence with kernel normal system. Let G3~Z2{G;,: v €Q} be the
kernel normal system determined by p;. Define a congruence p; (i=1, 2) on S/p;
as follows:

aps ﬁ;- bp; if and only if ap;b.

As was already shown above, p; is an idempotent separating congruence. Now, if
Gy G (M#W) =Gy, then ep;#fp; and ep; pyfp; for ee E(Gs,) and fe E(G3 ).
This contradicts to the fact that p, is an idempotent separating congruence. Hence,
for any 1€ A there exists a unique A’ € Q such that G, ;, =G, ;. Therefore, the map-
ping ¥: A—Q defined by Ay =1’ gives an isomorphism, and accordingly we can assume
A=Q if X is identified with A. Further, in this case E(G, ,)=E(G;,) holds for all
weQ. Similarly, we can assume that 4= and E(G,,)=E(G;,) for all we®.
Hence, we have 4=Q=A and E(G, ,)=E(G,,) for all we Q.
Thus, we have the following result:

LemMma 3.1. Let S be a quasi-orthodox semigroup, and G~Z2{G, ;: A€ A}, Gy~
2{G,s: 0 € 4} kernel normal systems of S. Then there exists an isomorphism : A—
A such that E(G, ;)=E(G; ;) for all Ae A.

Let S be a quasi-orthodox semigroup, and G~X{G,: L€ A} a kernel normal
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system of S. If
3.4 E(G)E(G,) = E(G)) for “A<py -
[E(G)E(G)<E(G, for A<yl

then S is said to be upwards directed [downwards directed].

It is easy to see from Lemma 3.1 that this concept is independent from the selection
of a kernel normal system of S.. A natural regular semigroup introduced by Warne
[12] and a completely regular semigroup are quasi-orthodox semigroups, and an ortho-
dox semigroup and a completely simple semigroup are both an upwards directed
quasi-orthodox semigroup and a downwards directed quasi-orthodox semigroup.
Hereafter, we shall investigate the construction of upwards directed quasi-orthodox
semigroups.

Now, let I'(A) be an inverse semigroup with basic semilattice 4. Let L[A]=
Z{L,: A€ A} be a lower partial chain A of left groups {L,: A€ A}, and R[A]=2{R;:
)€ A} an upper partial chain A of right zero semigroups {R,: A€ A}. Further, assume
‘that L,, R; have an idempotent u, as their common element for each A€ A4; that is,
L,NR,;={u;}, and u3=u, in both L, and R, for each 1€ A.

_ For each pair of y, § e ['(A4), let

Sfeyert Ry-1y%X Lgs-1 — Lygy5-1  and
9éz05° Ry-1yX Lgs-1 — Ry5)-1y5

‘be mappings. Let us introduce two conditions I and II for the set A={f¢, 57, d€
T'(A)} U {gey 5t v> 6 € I'(A)} as follows:

(I) For aeL,-1,ecR,-1,, beLs-s, f€ER;-15,c€L,,-1 and heR,-y,

a(ea b((f’ c)f<6,1>))f<y,6t>=a((ea b)f(y,&>) ((e, b)g(y,6>f? c)f(wi,O .

(II) For aeL,,-i, eeR,-1,, there exist beL,-;, and feR,,-: such that
) (e’ b)f<y,v“1>(f9 a)f<y)" 1€ E(Lyy‘l) .

If A satisfies (3.4), then 4 is called a factor set of {L[A], R[A]} belonging to I'(A).
Assume that 4 above satisfies (3.4). Then,

(3.4)

LemMa 3.2. S={(x, 7, e): x€L,,-1, e R -1, y e I'(A)} is a quasi-orthodox semi-
group under the multiplication defined by

(35) (X, ?s e) (ya é’ f)=(x(e, y)f(y,&)a yéa (es y).g<v,6>f) .

© PRrROOF. By ﬁsing the condition (I), it is easily verified that S is a semigroup.
By the condition (II), for any (x, y, e) of S there exist yeL,-1, and heR,,-.
) such that (ea .v)f<y,y'1>(_h: x)f()'y'l,ﬁeE(Lyy‘l)' NOW, (xa Vs e) (.V, )’_13 h) (xa ?s e) =
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(x(e,. y)f(y,y“)((es y)g<'y,y"1>ha x)f(yy‘l,v>’ s ((e’ y)g(y,'y‘1>h9 x)g<y)'“,y>e)' - Since
(e, ¥)9¢yy-1>€R,-1 and heR,,-1, (e, ¥)g¢),-vh=h. Since xeL,,-., we have
-x(e, ¥) f -8 V) Fyy-1hy X) fyy-1,,5=%. On the other hand, (e, y) Geyy-1> € Ryp=r,y
(h, X)g¢yy-1,,> € Ry-1, and e€ R,-1,. Hence, we obtain ((e, y)g<,,,- b, X)gqyy-1,0e =
e. Consequently, (x,-y,-e)(y, y™1, h)(x, y, €)=(x, y, ). . This implies that S is regular.
Next, the mapping ¢: S—I'(A) defined by (x, y, e)p=y is clearly a surjective homo-
morphism. Put {(x, 4, u): xeL,, ueR;} =S, for each Ae A. It is obvious that S,
is a regular subsemigroup of S. Let (z, A4, u) € E(S,). (z, 4, u)>*=(z, 4, u) implies
(z(u, 2)f ez A w)=(z, A, w). Hence, z(u, z)f; »=2. Since L, is a left group,
(u, 2)f¢s,2> is an idempotent. Therefore, (z, 4, u) € E(S,) if and only if (u, z)f¢, ;5 €
E(L;)). For (z, 4, u), (w, A, v) € E(S;), (z, 4, w)(w, A, v)=(w, 4, 0)(z, A, u)=(z, A, u)
implies (z(u, w)fci 2, 4 V) =W, 2)fun, 4 w)=(z, A, u). Hence, u=v and
z(u, W) fan=ww, 2)fqunr=z Since u=v, (v,2)f,»=W,z) f¢, and hence
(v, 2) fer,0 € E(Ly).  Therefore w(v, z) f¢; ,,=w, and hence z=w. Consequently
(z, A, u)= (w, 4, v). Thus, S, is a regular semigroup in which every idempotent is
primitive. Thatis, S,is a completely simple subsemigroup of S. Accordingly, S
is quasiorthodox.

The semigroup S in Lemma 3.2 is called the regular product of L[A], I'(A) and
'R[A] determined by A, and denoted by S=R(L[A] x I'(A) x R[A]; 4). This concept
is a generalization of the concept of a quasi-direct product introduced by [13], an
H.D.-product introduced by [15] and a regular product introduced by [17] for orthodox
semigroups.

Further, let us introduce the following conditions for the factor set 4:

(A) (us Z)f(l,DEE(LA)s (09 W)f(u,;DeE(Lu) and )I'<I-L lmply ((ll, W)Q(l,u)”a
z(u, w)f <l,u>)f <, € E(L,).
(Upwards directed condition)
.6
(36) (B) For any y, 6eI'(A),

(uy‘ly’ “66‘1)f<y,6>=uy6()’6)" and (”)r‘iw u&&“)g<y,5>=u(y6)‘l)'6'

(Splitting condition)

\

LemMmA 3.3. If the factor set A satisfies (A), then S in Lemma 3.2 is upwards
directed.

PRrOOF. Suppose that A<p, A, ueA. If (z, A, u) and (w, u, v) are idempotents,
then (u, z)fq€EL;) and (v, w) f p€E(L,). Hence, (z, 4, u)(w, p, v) =
(Z(u’ W)f().,u)’ Ay (u, W)Q(l,u) v), and ((ua W)Q(A,u)”ﬁ Z(ua W)f(ﬂ,u))f(l,DEE(LA) follows from
the condition (A). . Therefore, E(S,)E(S,) < E(S;). That is, S is upwards directed.

By using Lemmas 3.2 and 3.3, we obtain the following theorem: -
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THEOREM 3.4. A regular semigroup S is an upwards directed quasi-orthodox
semigroup if and only if S is isomorphic to some R(L[A]x I'(A)x R[A]; 4), where
L[A] is a lower partial chain A of left groups {L,: Ae A}, I'(A) is an inverse semi-
group, R[A] is an upper partial chain A of right zero semigroups {R;: A€ A}, and. 4
is a factor set of {L[A], R[A]} belonging to I'(A) which satisfies the condition (A).

Proor. The ‘‘only if” part is obvious. The “if*‘ part: Suppose that S is an
upwards directed quasi-orthodox semigroup. There exist an inverse semigroup
I'(A) and a surjective homomorphism ¢: S—I'(A4) such that A¢~! is a completely simple
semigroup for each AeA. Put y¢~'=S, for yeI'(A). Further, E(S,)E(S,)<E(S,)
for A, pe A, A<p, since S is upwards directed. Now, let u, be a representative of S,
for each y e I'(4) such that u, is an idempotent of S, for ke 4. Let L, and R} be the
L-class and R-class of S, containing u, respectively for each A€ 4. Put E(R})=R,.
Then for A, pe A such that A<p, R;R,<E(S;) N Rf=R,. Hence, R;R,cR;. There-
fore, L[A]=2{L,: Ae A} and R[A]=2X2{R;: A€ A} are a lower partial chain A of the
left groups {LA': A€ A} and an upper partial chain A of the right zero semigroups {R;:
A € A} respectively with respect to the multiplication in S. For any ae S, and be S;,
there exist peL,,-1, e€R)-1,, p'€Ls;-1 and €' € R;-1; such that a=pu,e and b=
p'use’. Now, ab=p(u,ep’us)e’. Since u.,ep'u;€S,; u,ep’'u; can be uniquely written
in the form wu,epu;=p"u,se’, p"€Lysu5-1, € €R(y5-1,5. Define mappings f¢, 5:
R,-1,% Lss-1—Lysy-1 and  ge, 55 Ry-1, X Lsz-1—> Rysy-1,5 by (e, p') f¢,,=p" and
(e, P9, =¢". Then, it is easily verified by simple calculation that 4={f¢, s:
9, 0€L(A)} U {g¢y: 7, 6€T(A)} is a factor set of {L[A], R[A]} belonging to I'(A)
and satisfies the condition (A). Hence, we can consider the regular product S="
R(L[A] X I'(A)x R[A]; 4). Define yy: S—S by

(x9 Vs e)l//=xu,,e.

Of course, it is obvious that xu,e e S, and V is surjective. Further, ((x, y, e)(y, J, /)Y
= (e, W fopon 1. @ Moo NV =x Nfoptse. Noqof =(xue) (usf)=
((x, y, V) (¥, 8, /). Hence, ¥ is a homomorphism. Since ¥ is clearly injective by
Theorem of [16] above, ¥ is an isomorphism.

Let G~2{G,: A€ A} be an upwards directed completely regular semigroup, and
I'(A) an inverse semigroup. Let u; be an idempotent of G,;, L, the L-class (of G,)
containing u,, and R, the right zero semigroup of idempotents of the R-class (of G,)
containing u,. Let L[A]=2{L,: Ae A} and R[A]=Z{R,: € A} be the lower partial
chain A of the left groups {L,: A€ A} and the upper partial chain A of the right zero
semigroups {R,: A€ A} with respect to the multiplication in G. For a factor set 4=
{foo1 0 0€T(D} U {geys: 1, 6€(A)} of {L[A], R[A4]} belonging to I'(A), let us
consider the following condition:

(C) For A, ted, xeR, and yelL, xy=(x, Y)fotslXs V)9

(G-embedding condition)
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In this case, S=R(L[A]x I'(A)x R[A]; 4) is a regular extension of G~Z{G,: A 4}
by I'(A4). In fact: Consider the homomorphism ¢: S—I'(A) defined by (x, y, e)p =7
for (x,y, e)eS. Let A¢~'=G, and Ap~'=G. We need only to show that there

- exists an isomorphism ¥ : G—G such that G,y =G, for Ae A. Define ¥ by (¢, 4, u)y
=tu,u. It is obvious that ¥ is surjective and injective. For (t, 4, u), (s, 7, h) €G,
({8, 2 0)(s, T W =(10t, 5)f i A7, (ty )GamW =1(tt, S)f sttt $)Gca0)h = tush
(by (C)) = (tu,u) (suh)=((t, 4, W) ((s, T, h)y). Further, G lé G, obviously holds.

Now, we have the following theorem:

THEOREM 3.5. Let G~X{G,: Ae A} be an upwards directed completely regular
semigroup, and u, an idempotent of G, for Ae A. Let L, and R, be the L-class of G,
and the right zero semigroup of idempotents of the R-class of G, such that L, and R,
contain u,. Let L[A], R[A] be the lower partial chain A of {L,: A€ A} and the upper
partial chain A of {R,: A€ A} with respect to the multiplication in G. Let I'(A) be
an inverse semigroup. If A={f¢, 57, 6€ (M} U{g¢5: 7, 0€(A)} is a factor
set of {L[A], R[A]} belonging to I'(A) and if 4 satisfies (C), then S=R(L[A] x I'(A) x
R[A]; A) is a regular extension of G~3{G,: Ae A} by I'(A). Conversely, every regu-
lar extension of G~2{G;: A€ A} by I'(A) can be constructed in this way.

Proor. The first half was already proved above. The latter half is obvious.

ReMARk. For a given (fundamental) inverse semigroup I'(4) and for a given
upwards directed completely regular semigroup G~2{G,: A€ A}, there is not neces-
sarily a regular extension of G~ZX{G;: Ae A} by I'(A). This can be seen from an
example given by Hall [5] for the orthodox case.

II. The construction of split quasi-orthodox semigroups

A completely regular semigroup G~ZX{G,: A€ A} is said to be split if there exist
homomorphisms ¢: G—A and y: A—G such that y¢ =, (where ¢, denotes the identi-
ty mapping on A). Similarly, a quasi-orthodox semigroup S is said to be split if there
exist an inverse semigroup I'(A), a surjective homomorphism ¢: S—I'(4) and a homo-
morphism ¥ : I'(4)—S such that

(1) A¢~1is a completely simple subsemigroup of S for all 1€ 4, and

(2) Ydp=cr(4 (the identity mapping on I'(4)).

It is easily verified that if a completely regular semigroup G~2{G,: A€ 4} is split
as a completely regular semigroup then G is also split as a quasi-orthodox semigroup.
Conversely, if a completely regular semigroup G~Z{G,: A€ A} is split as a quasi-ortho-
dox semigroup then G~ZX{G,: Ae A} is split as a completely regular semigroup.
Therefore the concept of split for quasi-orthodox semigroups can be considered as a
generalization of that for completely regular semigroups. Let S be a regular extension
of a completely regular semigroup G~Z{G,;: A€ A} by an inverse semigroup I'(4).
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Let ¢: S—I'(A) be the homomorphism determined by G~2{G,: A€ A} (that is, 1¢p~!
=G, for all ke A). If there exist y: I'(A)—S such that Y¢=c,), then S is said to be
a split extension of G~Z{G,: Ae A} by I'(A4). Of course, in this case (| 4)(¢|G)
(where Y| A4 and ¢ |G denote the restrictions of ¥, ¢ to A, G respéctively)=z 4, and
hence G~Z{G;: Ae A} is a split completely regular semigroup. Further, let yj=u,
for yeI'(A). Then, ¥ gives an isomorphism of I'(4) onto Uy ,,={u,: yeI'(A4)}, and
U,={us: A€ A} is the basic semilattice of the inverse subsemigroup Up,, of S. This
Ur(ay is called a skeleton of S with respect to I'(A).

Now, let S be a split quasi-orthodox -semigroup. Then, there exist an inverse
semigroup I'(A), a surjective homomorphism ¢: S—I'(A) and a homomorphism
Y: I'(A)—S such that

(1) A¢~!is a completely simple subsemigroup of S for each Ae A, and

()] 'l’¢=5r(A) .

Now, let S,=1¢~! for yeI'(A) and G=Z{S,: Ae A}. Then, G is a completely regular
semigroup G~2{S,: AeA}. Further, let u,=A4y for each Ae A. Then, | becomes
an isomorphism of A4 to U, ={u,;: Ae A}. Thatis, U, is a skeleton of G with respect
to 4. Hence, of course G is a split completely regular semigroup. For each Ae A,
let L, be the L-class (of G) containing u, and R, the right zero semigroup of idempotents
of the R-class (of G) containing u,. In this case, LLA]=2{L,: A€ A} is a lower partial
chain A of {L,: Ae A} with respect to the multiplication in G. Further,

LemMma 3.6.

(1) If A<p,eeR, and feR, then ef=f.

(2 If A<p,ecR, and feR,, then feeR,;.

(3) Accordingly, R[A]=X{R;: A€ A} is an upper partial chain A of {R,: A€ A}
with respect to the multiplication in G.

Proor. (1) We have ef=eu,f=euu,f=u,u,f=u,f=f.

(2) Since fefe=ffe=fe, it follows that fee R, .

(3) It is obvious from (1), (2) above that R[A] is an upper partial chain A of {R,:
A € A} with respect to the multiplication in G.
For A, te A above, define f(; »: R;x L,—L,, and g, »: R; x L,>R;_ by

(e, X)fp=x; and (e, X)gno=¢€1

if ujexu,=ex=xquye; (in G). Then A= {f, 1 A, 1€A}U{ggo: 4, 1€} satisfies
(D), (1) of (3.4). Further since u;u,=u,, for 1, te 4, it follows that (u,, u,)f; »=
Uy, and (uy, u)gey»=uy, for A, e A. Ttis easily proved that ¢: R(L[A] x A x R[A];
4)—G defined by (x, 4, e)é=xu,e induces an isomorphism. - Now, we have the fol-
lowing theorem: '

THEOREM 3.7. Let A be a semilattice, LLA]=2{L,: A€ A} a lower partial chain
A of left groups {L,: A€ A} and R[A]=2{R;: A€ A} an upper partial chain A of right
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zero semigroups {R;: A€ A}. Further assume that L, N R;={an idempotent u,} for
all e A and uu,=u, in R[A] and uu,=u, in L[A] for A<t. If a family A=
{f<},,t>: A TEA} u {g<}.,t>: A, TE A} Of mappings f().,-r)z R; % L.—L, and gt
R; x L,—~R,, is a factor set of {L[A], R[A]} belonging to A and satisfies

(37) (Ul’ ut)f().,t) =Upes and (ul’ ut)g<2.,t> =Uy s

then S=R(L[A] x A x R[A]; 4) is a split completely regular semigroup. Conversely,
every split completely regular semigroup can be constructed in this way.

PrOOF. We prove that the completely regular semigroup S=R(L[A] x A x R[4];
A) constructed as above is split. For any Ae A4, let S;={(x, 4, ¢): xe L;, ee R;}. Of
course, (u,, A, u;)€S,;. Define y: A-Sand ¢: S—>A by W=(u;, 4, u;) and (x, 1, )¢
=]. Then, ¢ and Y are homomorphisms and Y ¢=c,. Hence, S is split. The con-
verse was already proved above.

Similarly, we obtain the following result:

THEOREM 3.8. Let A be a semilattice, I'(A) an inverse semigroup, L[A]=X{L,:
Le A} a lower partial chain A of left groups {L;: Ae A} and R[A]=Z{R;: A€ A} an
upper partial chain A of right zero semigroups {R;: Ae A}. Further, assume that
L,, R, have a common idempotent u, as their intersection, i.e. L, N R;={u,}, for all
reA, and uu,=u, in R[A] and uu,=u, in L[A] for A<t. If a family A={f¢,s:
7, 6€T(A)} U {gey: v, 6€I(A)} is a factor set of {L[A], R[A]) belonging to I'(A)
and satisfies

B) (u‘y_l'y9 ll.sa-l)f<y,a>=uya(y.s)—l and (uy“y’ u&&“‘)Q(y,6>=u(y6)"lyé
for all vy, 6eI(A)

(Split condition),
then S=R(L[A] x I'(A)x R[A]; 4) is a split quasi-orthodox semigroup. Conversely,
every split quasi-orthodox semigroup can be constructed in this way.

ProOOF. Since this can be proved by slightly modifying the proof of Theorem 3.7,
we omit a proof.
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