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A regular semigroup S is said to be quasi-orthodox if there exist an inverse semigroup r 

with basic semilattice A (that is, A is the semilattice of idempotents of F) and a surjective 

homomorphlsm f: S->F such that If-1 is a completely simple subsemigroup of S for each 

1 e A . In this paper, the structure of quasi-orthodox semigroups is studied 

S O. Introduction 

As generalizations of groups, there are two important classes of regular semi= 

groups. One is the class of inverse semigroups, and the other is the class of completely 

simple semigroups. The structure of inverse semigroups has been firstly investigated 

by Vagner [1l] and Preston [8], and successively many papers concerning this class 

have appeared . On the other hand, a structure theorem for completely simple semi-

groups has been established by Rees [10] . He has shown that every completely simple 

semigroup can be obtained, up to isomorphism, as a matrix semigroup called a Rees 

matnx semrgroup over a group. These two classes are generalized to the class of 

orthodox semrgroups and the class of completely regular semigroupsl) respectively, 

and quite a lot of papers concerning these two classes have appeared during the last 

two decades (for example, see Hall [3], [4], [5] and the author [13], [14] etc. for 

orthodox semigroups; and Clifford [1], Petrich [9] and Lallement [7] etc. for com-

pletely regular semigroups). As a class containing both the class of orthodox semi-

groups and the class of completely regular semigroups, we introduce the class of quasi-

orthodox semigroups in this paper and- discuss the structure of these semigroups 

Throughout this paper, we shall use the following notations and terminology : For a 

completely regular semigroup M, the notation M - ~{M;L : ~ e A} means that M is a 

semilattice A of completely simple semigroups {MA : ~ e Al･ (that is, M - ~{M;L : ~ e A} 

means the structul'e dec07n.position, of M). Hereafter, the term "a completely regular 

semrgroup M - Z{MA : ~ e A}" means that M is a completely regular semigroup and has 

M - Z{M;L : ~ e A} as the structure decomposition. If an inverse semigroup F has A 

*) A part of this paper has appeared in "Symposium on Regular Semigroups, -Northem lllinois 

University, 1 979". 

1) A semigroup S is said to be completely regular if S is a union of groups. In this case, S is uniquely 

decomposed to a semilattice of completely simple semigroups ; and this decomposition is called 

the structure decomposition 
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as the semilattice of idempotents of F (that is, the basic semilattice), we shall denote it 

by F(A). For a regular semigroup S, the notation E(S) denotes the set of idempotents 

of S. In particular, if S is an orthodox semigroup then E(S) denotes the band of 

idempotents of S 

S 1. Basic properties 

Let S be a regular semigroup. If there exist an inverse semigroup F(A) and a sur-

jective homomorphism ip : S->F(A) such that ~ip-1 = SJL is a completely simple subsemi= 

group of S for each ~ e A, then S is said to be quasi-orthodox. In this case, it is obvious 

that M = U {S~ : ~ e A'} is a c_ompletely regular subsemigroup of S, and the structure 

decomposition of M is M-~{SA : ~ e A}. T. E. Hall has shown the following result 

(see [19]): A regular semigroup S is quasi-orthodox 1:fand only if the subsemigroup 

 of S genel'a.ted by E(S) is completely regular.2) 

Now, we have the following results concerning quasi-orthodox semigroups 

LEMMA 1.1. Any homomorphic ilnage ofa quasi-orthodox semigroup is a quasi-

orthodox semigroup. 

PROOF. Let F be a homomorphic image of S. Then there exists a surjective 

homomorphism ~ : S->r. Let d denotes a~. For any idempotent e e r, there exists 

e e E(S) silch that ~ = 8. Hence, E(F) = E(S) = {~: e e E(S)}･ Therefore, the subsemi-

group 

 of F generated by E(F) is the same to 

 = {~~: w e 

}･ That 

is, 

 = 

･ Since 

 is a union of groups, 

 is also a union of 

groups. Hence, F is quasi-orthodox 

LEMMA 1.2. If p is a congruence on a quasi-orthodox semigroup, then S/p is a 

quasi-orthodox semigroup. 

PROOF. This is obvious from Lemma I . 1 

LEMMA 1.3. A regular subsemigroup of a quasi-orthodox semigroup S is quasi-

orthod ox. 

PROoF. Let A be a regular subsemigroup of a quasi-orthodox semigroup S 
Since 

 is a union of groups, 

 is a semilattice A of completely simple semi-
groups {MjL : ~ e A}･ Now, 

 c 

･ Let a e MA n 

･ Since 

 is 

regular, there exists an inverse a.* of a in 

. Since 

:) 

, it follows 

that a*e
･ Suppose that a*eMp. Then, a = aa*a e MAMpMJL CMAu, while a* F a~aa* e MpMhMu c MAP. Hence, ~ = ~// = //･ Therefore, a* e MA n 
-This implies that MA n 
 is regular. Since any idempotent of Mh is primitive in MA, every idempotent of MJL n 

 is of course primitive in the regular semigroup 
2) It follows from [2] that 

 is regular 
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MA n 

･ Hence, M~ n 

 is completely simple. Since 

 = U {M;L n 

 : ~ e A}, 

 is a union of groups. Thus, A is quasi-orthodox. Hereafter, for any element a of a regular semigroup S, V(a) denotes the set of 

inverses of a 

LEMMA l..4. Let A and B be regular subsemigroups of a quasi-orthodox semi-

(1.1) A nB~c:1 and A nB3 a implies a*eA nBfor solne a*e V(a)~ 

then A n B is a quasi-ort/･rodox subsemigroup of S. 

PRooF. This is obvious from Lemma 1.3. 

Let R and T be regular semigroups, and f : R~>Ta homomorphism. If the con-

dition 

(1.2) for any a e R and for any (af)* e V(af), there exists a* e V(a) such that a~f= 

(af ) * 

is satisfied, thenf is called *-holnomorphism 

LEMMA 1.5. Let S and Tbe quasi-orthodox semigroups, andf: S~Ta surjective 

*-homomorphism. For any regular subsemigroup K of T, Kf-1 is a regular sub-

semigroup of S. Hence. Kf-1 is a quasi-orthodox subsemigroup of S. 

PROOF. Let a e Kf-1. Then, afeK. There exists an inverse (af)* of af in K. 

Hence, there exists an inverse a* of a in S such that a*f= (af)* e K. Hence, a* e 

Kf-1. It is clear that Kf-1 is a subsemigroup of S. Therefore, Kf-1 is a - regular 

subsemigroup of S, and it follows from Lemma I .3 that Kf-1 is quasi-orthodox. 

If every H-class of a semigroup S consists of a single element, then S is said to be 

H-d eg enera ted . 

THEOREM 1.6. An H-degenerated quasi-orthodox semigroup is an orthodox 

semigrou p. 

PROOF. Let S be an H-degenerated ~uasi-orthodox semigroup. Then, 
 rs a union of groups {G;L : ~ e A}･ However, each GjL is pontained in an H-class of S, 

and accordingly GA must be a single element. That is, 

 is a band. This im-plies that E(S) = 

･ That is, S is~orthodox. Let S be . a regular semigroup. A completely regular subsemigroup G -Z{SA : 

h .e A} is c~ alled a kernel normal system of S if G D E(S) and if there exists a congruence 

a^on S such that each SA (~ e A) is a cdmplete a-class. In this case, such a congruence 

a rs unique and rs called_ the congruence determined by G-~{SjL : A e A}. Of course, 

a rs _an ~ mverse semrgroup congruence on S. If p is an' inverse semigroup congruence 

on a q.uasi-orthodox semigroup such that ep is a completely simple -subsemigroup of S 
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for each e e E(S), then G = U {ep : e e E(S)} is a kernel normal system of S and has 

G - ~{SA : ~ e A} as its structure decomposition (where each SA is a p-class) In this 

case, the kernel normal system G-Z{SA: A e A} is called th.e kernel .normal system 

determined by p, and conversely p rs called an Inverse selnlgloup congruence wlth 

kernel normal syste7n (abbrev., k.n.s.). The completely regular subsemigroup M -

~{SA : ~ e A} in Page ~-, Line 10 is a kernel normal system, which is called the kernel 

normal system determined by c. 

Let S be a quasi-orthodox semigroup. Let G. be a subgroup (of S) containing e 

for each e e E-(S) such th-at G= U {G. : e e E(S)} rs a subsemigroup of S. In this case, 

G - ~{S ~ e A} rs not necessarily a kernel normal system of S. However, at least we 

have the following : 

LEMMA 1.7. Let S be a regular semigroup, and G. a subgroup (of S) containing 

efor each e eE(S). If G= U {G.: e eE(S)} is a subsemigroup of S, then S is quasi-

orthod ox. 

PRooF. Suppose that G= U {G* : e e E(S)} is a subsemigroup of S. Of course 

GDE(S), and hence 

 c G. On the other hand, 

 is a regular subsemigroup 

of the completely regular semigroup G. Hence, 

 is completely regular (it is well known that any regular subsemigroup of a completely regular semigroup is com-

pletely regular). Hence, S is quasi-orthodox 

LEMMA 1.8. Let S be a quasi-orthodox semigroup. Let a be an inverse semi-

group congruence on S with k.n.s. 

(1) Ifp=)er is an inverse semigroup congruence on S with, k.n.s., then the relation 

~ on S/a defined by 

(1.3) xer~ya 1:fandonly if xpy 
is an idempotent separating congruence on Sla. 

(2) Conversely, if~ is an idempotent separating congruence on S/a, then. the relation 

p on S defined by 

(1.4) xpy ifandonly if xapya 
is an inverse semigroup congruence on S with k.n.s. and satisfies acp. 

PROOF. (1) Assume that ecr ~fa for e, feE(S). Since e pf and the p-class ep 

contaming e is a completely simple subsemigroup, efe e ep and there exists the group 

inverse (efe)~1 of efe in a maximal subgroup A of ep ; that is, efe(efe)~1 = (efe)~1 efe = g 

and efe(efe)~1efe = efe, where g is the identity of the maximal subgroup A containing 

efe. Since ge=eg = g, g e ep and ep is completely simple, it follows that g = e. Hence, 

the maximal subgroup M of S/cr containing ea contains (efe)cr. Similarly, the maximal 

subgroup IY of S/a containing fa contains (fef)a. Since (efe)a=(fef)or, it follows that 
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N = M, and hence ecr =fa 

(2) For eeE(S), put ea=0c. Then, ep={x e S: ea~3xa}={x e S: ocp3xa}. Since 
p is an idempotent separating congruence, ce~ is a subgroup of the H-class (this is a 

group). of S/er containing the idempotent cc. Hence, for any xa e cc~ there exists ya e ocp 

such that yaxa=xcryer=0e. Since cr is an inverse semigroup congruence, x*a=ya for 

any inverse x* of x. Thus x* e ep. This implies that ep is a regular subsemigroup 

of S. Next, assume that ea ~ fo for e, feE(S). Since p is an idempotent separating 

congruence on Sl(7, ep ~ fp. Hence, ep n E(S) = ea n E(S). Since every idempotent 

of S -contained in ea is primitive, -ep is a regular senu'gr-oup in whi-ch ev-ery idempotent 

is primrtrve. Hence, ep is a completely simple subsemigroup of S. It rs obvious that 

S/p is an inverse semigroup 

THEORl3M 1.9. If S is a quasi-ol'thodox semigroup, then there exist a funda-

mental inverse semigroup F(A) and a surjective homomorphism ~ : S->F(A) such 

that ~~-1 is a completely simple subselnigroup of S for each ~ e A. 

PRooF. There exist an inverse semigroup F(A) and a surjective homomorphism 

ip : S->F(A) such that ~ip-1 is a completely simple subsemigroup of S for each ~ e A. 

Let p be the maximum idempotent separating congruence on r(A), and define p on S 

by 

xpy if and only if xip ~yip. 

Then, it follows from Lemma I . 8 that p is an inverse semigroup congruence with kernel 

normal system, and S/p ~ F(A)/p and r(A)/~ is a fundamental inverse semigroup (see 

[7]), where ~ : S/p~'r(A)/~ is given by (xp)y=(xip)p. Let v : r(A)->r(A)/p be the 

natural homomorphism. For an idempotent h~ of F(A)/~, where ~ e A, there exists 

an idempotent y of S such that ~ =yip. Now, S~ =(~p~)v~1ip-13xc>xipe(~p~)1)~1

 (xip)v = ~p

xip ~ yip~~x p yan idempotent, yp is a completely simple semigroup 

THEOREM 1.10. Let S be a regular semigroup, and G. a subgroup (of S) con-

taining e for each. e e E(S). !f G= U {G.: e e E(S)} is a subserriigroup of S, then 

there exists a kernel normal system M-Z{SA: A e A} of S such that MD G. Accord-

ingly, S is a quasi-orthodox semigroup. 

PRooF. Suppose that G = U {G* : e e E(S)} is a subsemigroup of S. By Lemma 

1 .7, S is quasi-orthodox. Hence, there exists a surjective homomorphism ~ of S 

onto a fundamental inverse semigroup F(A) such that ~~-1 = M;L is a completely simple 

subsemigroup for each ~ e A. Theh, M = U {MA : ~ e A} is a subsemigroup, and M -

~{M;L : ~ e A} is a kernel normal system of S. Suppose that G~ U {MjL : h e A} =M. 

Since G~ is a subsemigroup of the inverse semigroup F(A) and is the union of groups 

{G.: e e E(S)}, G~ is a semilattice A of groups {T*: oc e A}･ Now, G~~:A since 
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G~ U {M;L : ~ e A}. Hence, there exists T. such that T* is not a single element. Let 

y, ~ e T. such that y~~. Consider the relation //={(~, n) e r(A) x r(A): ~-18~ = 

n-18n for all e e A}･ This p is the greatest idempotent separating congruence on F(A) 

(see Howie [6]). For v and 6, y~1ey = 6~186 for all 8 e A (since both y~1ey and 6-188 

are idempotents and contained in the same T.p, if e e Tp). Therefore, (y, 6) e u. Since 

F(A) is a fundamental inverse semigroup, // must be trivial. That is, y = 6. This con-

tradicts to y ~8. Hence Gc U {M~: A e A} =M 

Let S be a regular semigroup, and M. a maximal subgroup (of S) containing e for 

each e e E(S). If M= U {M.: eeE(S)} i-s a subsemigroup of S, then S is said to be 

natural regular. By the result above, in this case M-~{SA : ~ e A} is a kernel normal 

system of S. Of course, a natural regular semigroup is quasi-orthodox 

For the kernel normal systems of regular subsemigroups of a quasi-orthodox semi-

group, we have the following result : 

LEMMA 1.11. Let S be a quasi-orthodox semigroup, and N-~{SA: ~eA} a 
kernel norlnal system of S. Let A be a regular subsemigroup of S, and put A'= 

{~eA: SA nA~c:l}･ Then, A n N-~{A n S ~ eA } Is a kernel normal system of 
A. 

PROOF. Put Sh n A = AA for each ~ e A such that S;L n A ~ c:1 . There exists an in-

verse semigroup r(A) and a surjective homQmorphism ~ : S->F(A) such that ~~-1 = S;L 

for ~ e A. If a e AA, then a~=~ is an idempotent. There exists an inverse a* of a in 

A. Since d*=a*~ is an inverse of d, it follows that d = ~*. Hence, a*eAA. Since 

a* e SjL n A = AA, A;L is a regular subsemigroup of A. Hence, N n A is a regular sub-

semigroup of the completely regular semigroup N, and accordingly N n A is completely 

regular Of course N n A -~{S , n A : ~' e A'}, where A'= {~ e A : SA n A ~ c:l}, is the 

structure decomposition of N n A. Now, consider ~ : A->F(A) defined by a~=a~ 

for a e A. Then, ~ is a surjective homomorphism of A onto F'(A'), where r'(A') = 

A~･ For any ~eA', ~~-1=~~-1 n A=SjL n A=A;L' Therefore N n A-2:{S n A 
~' e A'} is a kernel normal system of A 

Let S be a regular semigroup. Let M - ~{MJL : ~ e A} be a completely regular semi-

group, and F(A) an inverse semigroup. If 

(1) M is a subse.migroup of S, and 

(2) there exists a surjective homomorphism f : S~r(A) such that Af-1 = MA for each 

~ e A, 

then S is called a regular extension of M-~{MA : ~ e A} by F(A). 

Next, we show some characterizations of a quasi-orthodox semigroup 

THEOREM: 1.12. For a regular semigroup S, the following five conditions are 

equivalent: 

(1) S'is a quasi-orthodox semigroup. 

(2) The subsemigroup 

 is completely regular. 
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(3) There exists a completely regular subsemigroup C of S such that S::)C=)E(S). 

(4) S is a, regular extension, of a completely regular semigroup M-~{Sh: ~ e A} 

by an (fundamental) inverse semigroup r(A). 

(5) S has a kernel normal system; and accordingly, there exists an inverse semi-

group congruence (on S) with kernel normal system. 

PROOF The part "(1)~(2)=>(3)" rs obvrous. The part "(3)~(1)" follows from 

Lemma 1.7, while the part "(1)=>(4)~(5)=>(1)" is also obvious 

Now, we can infer from the results in this section that an analogue to the process 

used in [13], [3], [14] and [5] for the study of orthodox semigroups will be applicable 

for the theory of quasi-orthodox semigroups. In the following sections, we shall dis-

cuss the structure of quasi-orthodox semigroups under this direction 

S 2. Inverse semigroup comgruemces with k. n. s. 

If S is a quasi-orthodox semigroup, then it has been seen from Theorem I .9 that 

there exists an inverse semigroup congruence ps With kernel normal system such that 

S/ps is a fundamental inverse semigroup 

THEOREM 2.1. ps is the maxauuln Inverse seuagroup congruence (on S) wtth 

kernel normal system. 

PROOF. Let p be an inverse semigroup congruence (on S) with kernel normal 

system such that p D ps' Then, p defined by "xp y

potent separatmg congruence on Slps' Since S/ps is a fundamental inverse semi-

group, ~ must be the identity congruence. Hence, p = ps 

Let Ns be the set of all inverse semigroup congruences (on S) with kernel normal 

system: Ns={p~:coe~}. It is easily verified that ns= n {p~:coe~} is an 
mverse semrgroup congruence on S 

Moreover, 

LEMMA 2.2. ns is an inverse semigroup congruence with kernel normal system 

Accordingly, ns is the least inverse semigroup congruence (on. S) with, kernel normal 

s ystem. 

PROOF. As was stated above, ns is an inverse semigroup congruence on S. Hence, 

it is needed only to show that ens is a completely simple subsemigroup of S for any 

e e E(S). Let x e ens' Then, xns = el7s' Let x* be an inverse of x. Since ens is an 

idempotent of the inverse semigroup Slns, x*ns = ens' Hence, x* e ens' This implies 

that ens rs a regular subsemigroup of S. If feE(S) n ens, then feep~ for all co e ~ 

Smce ep~ Is a completely simple subsemigroup of S, f is a primitive idempotent of ep~. 

Smce ep~ :) ens, f is also a primitive idempotent of ens' Hence, ens is a regular semi-

group in which every idempotent is primitive. Therefore, ens is completely simple 
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REMARK. It is also seen from the proof of Lemma 2.2 that the intersection of any 

collection of inverse semigroup congruences (.on S) with kernel normal system is also 

an inverse semigroup congruence (on S) with kernel normal system 

Let S bc ~ quasi-orthodox semigroup. It is easily seen that the intersection Ts 

of all inverse semigroup congruences on S is the least inverse semigroup congruence on 

S. 

Now, 

THEOREM 2.3. ns = Ts 

PROoF. It rs obvious that 1:s C ns' It is also easily verified that exS is a regular 

subsemi-group of ~ for ~ach e e E(.S). Since exS C ens and each idempotent of ens is 

primitive, exS is a regular semigroup in which every idempotent is primitive. Hence, 

exs is completely simple. This implies that Ts is an inverse semigroup congruence (on 

S) with kernel normal system. Hence, ns = Ts 

Let a be an inverse semigroup congruence on S with k.n.s., and put C.(S) = {p : 

p is an mverse senngroup congruence on S with k.n.s. such that p ~) a}･ On the other 

hand, Iet I.(S) be the set of all idempotent separating congruences on S/a. Then, 

THEOREM 2.4 
(1) For any p e C.(S), the congruence p defined by 

(2.1) xapya ifandonly if xpy 
is an element of I.(S). 

(2) For any ~el.(.S), the congruence T defined bJ' 

(2.2) xTy ifand only if xa~ycr 
is an element of C.(S). 

(3) The mapping ~ : C.(S)->1.(S) defined by p~=p is an ordel~-pl'eserving bijection 

(where ordering in eac/1 of C.(~S) and I.(.S) is given. by t/･7e set-inclusion). 

PRooF. This is obvious from Lemma I .8 

In particular, consider the case where cr = ns' Then, ~ in Theorem 2.4 is an 

order-preservmg biJection of the set of all inverse semigroup congruences on S with 

k.n.s, onto the set of all idempotent separating congruences on Slns' Hence, if ~s is 

the greatest idempotent separating congruence on S/ns then ~s given by (2.2) is the 

maxlmum mverse semrgroup congruence on S wrth k.n.s. Hence, ~s = ps 

Next for A c: Cns(S), put pA = n {p : p e A}. Then pA e Cns(S). Accordingly~ if 

a U p ~is defined by a U p = n {T e Cns(~) : 7::)a, p} for a, p e Cns(S) then Cns(S) is a 

complete lattice with respect to n , U . Similarly, Ins(S) is a complete lattice with 

respect to the ordering defined by set-inclusion 
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COROLLARY 2,5. Tl･7e complete lattices Cns(S) and Ins(S) al'e lattlce rsomolphlc 

PRooF. Obvious. 

THEOREM 2.6. Let a quasi-orthodox semlgloup S be a 1'egular exten'sion, of a 

com,pletely regular semigroup G-~{Sh : ~ e A} by an inverse semigroup F(A). If 

F(A) is H-degenerated, then G is the union of all Inaximal subgroups of S. Con-

verselJ', if G is the union of all maximal subgroups of S then F(A) is H-degenerated. 

PRoor. There exists a sur_jective h-ornomorphism ip : S~'F(A) such- that ~-c-1 = S~ 

for every ), e A. Firstly assume that F(.A) is H-degenerated. For a subgroup M of S,' 

Mip is a subgroup of F(.A) since Mip is a homomorphic image of a group. Since F(A) 

is -H-degenerated, 'Mc must be_ a single -element. Hence M c Aip-i=G. This im-

plies that G is the union of all maximal subgroups of S. ･ _Conversely, assume that,G. 

is the union of- all maximal subgroups of S. Suppose that there exists an H-class HA 

of F(A) which contains ~ e A and at least two elements. Of course, in this case Hh 

rs a group having ~ as its identity. If H4ip-1 3 x, then there exists yip e HA such that 

(yip) (xip) = (xip) (yip) = ~ since HA is a group. On the other hand, if x* is an inverse of 

x then x*c is an inverse of xip. Since F(A) is an inverse semigroup, x*lp=yip. That 

is, x* e HAip-1. Let Hhip-1 = GA. Then, xx*, x*x e SA c Gh for x e G;L' Let B be an 

ideal of GA. Then, B n Sh ~ D , and hence B n SA is an ideal of SA. Since S;L is simple, 

SjLCB. For any x e Gh, xx* e SJLCB. Therefore, x=xx*x eB. Thus, G;L=B. This 
implies that GA is a simple subsemigroup of S. Since it is easily seen that E(G~) = 

E(SA), it follows that Gh is a simple subsemigroup in which every id~mpotent is primi-

trve. Hence, GA is a completely simple semigroup. Therefore, G;L C G, and hence 

Ghc = HA c A. This contradicts the assumption that H~ consists of at least two ele-

ments. Hence, F(A) is H-degenerated 

If Green's H-relation is a congruence on a ' senugroup T then T rs said to bc H-
coln patible. 

THEOREM 2.7. Let S be an H-compatible regular semigroup. For each a e S, 
let Ha be the H-class of S containing a. Iffor any e, feE(.S) thel'e exists u e E(S) 

such that 

H H cHu' *f 
then S is a quasi-orthodox se,nigl'oup in which, the union of maximal subgroups is a 

kernel normal system. ' ~ PRooF. This is obvious from Theorem I . 12 and the fact that G = U {H. : e e E(S)} 

is a subsemigroup of S 
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S 3. Construction 

In this section, we shall consider the construction of quasi-orthodox semigroups. 

A construction theorem for general quasi-orthodox semigroups has been given by the 

author [16], but it is given in a somewhat complicated form and we omit to show it in 

this･paper. We shall only consider the construction of some special quasi-orthodox 

semigroups called 

I. an upwards [downwards] directed quasi-orthodox semigfoup, and 

II. a split quasi-orthodox semigroup 

Frrst, we introduce the concept of a partial chain as follows : 

Let A be a semilattice, and T;L a semigroup for each h e A . If a partial binary 

operation ･ is defined in T= ~{Th : ~ e A} (disjoint sum)3) such that 

(1) A~?, a e Th and b e T, imply that a'b [b･a] is defined and a'b [b･a] e T., 

(2) a, b e TA implies a'b=ab (the product of a, b in TA), and 

(3) A~~T~~ ~, a e TA, b e T, and c e T6 imply a'(b･c)=(a'b)･c [(c'b)･a =c'(b･a)], 

then the resulting system T(･) is called a lower [upper] partial chain A of {T;L : ~ e A} 

We denote it by T=LP{T~: ~ e A; ･} [T= UP{TA: A e A; ･}]. 

First, we consider the construction of all LP{TA : ~ e A ; '} for a given semilattice 

A and for given right reductive semigroups { T;L : ~ e A}. This has b~ een given by the 

author [20] as follows : If G is a right reductive semigroup, then 'the inner left trans-

lation semigroup Ao(G) of G is a left ideal of the left' translation semigroup A(G) of G 

and the mapping ip : G~'A(G) defined by aip = ~. (where ~* is the inner left trarislation 

of G induced by a) is an injective homomorphism. Hereafter, D(G) denotes an iso-

morphic copy of A(G) such that D(G) contains G as its left ideal and there exists an 

isomorphism cG: D(G)->A(G) satisfying aipG =h. for a e G 

Then 

THEOREM. Let A be a semilattice, and SA a right reductive semigroup for ~ach 

h e A. For every pair (oc, P) of oc, P e A with oc~: p, Iet ip.,p : S.->D(Sp) be a homomor-

phism such that th,e family {ip.,p: cc~p, oc, p e A} satisfies the following (3.1) and 
(3 .2) : 

(3.1) ipA,A is the identity mapping on SAfor each ~ e A, 

(.3.2) (ac.,p*b)ipp,v=(aip*,v)*(bipp,v) for oc~p~~y, a e S. and b e Sp, where * denotes 

the multiplication in D(.S.) (T e A), 

then S=~{Sh: ~ e A} becomes a lower partial chain A of {SA: ~ e A} under the partral 

binary operation ' defined by ' 

3) Hereafter ~ means "disjoint sum" 
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(3.3) a'b=(aip.,p)*b for oc~P, a e S., b e Sp . 

Further, every LP{SA: ~ e A; '} can be obtained in this way. 

Dually, we can construct every UP{SjL_: ~ e A ; '} .for a giY.en semilattice A and left 

reductive semigroups {SjL : ~ e A} 

Let S be a quasi-orthodox semigroup, and G-2:{Gh : A e A} a kernel normal 

system of S. Then, there exist an inverse semigroup F(A) and a surjective homomor-

phism ~ : S=>F(A) su-ch that ~ip-1=G~ for all ~ e A. Put yip-1=Sv f-or yer(A). Let 

LA and R~ be an L-class and an R-class of G,L respectively, and put E(R~) = R;L' Then 

by [16], L[A] =Z{Lh : ~ e A} [R*[A] =Z{R~ : ~ e A}] is a lower upper [partial] chain 

A of {LA : ~ e A} [{R~ : ~ e A}] with respect to the multiplication in S 

In [16], the following has been proved : 

THEOREM. Let uv be a representative of Sv for y e F(A). Then, for any a e Sv 

there exist a unique x and a unique y such, that x e Lvv~1' y e ~v~*v and a =xuvy. 

I. The construction of upwards [downwards] directed quasi-orthodox semi-

grou ps 

Let S be a quasi-orthodox semigroup, and G1~~:{G1,~: ~ e A}, G2-~{G2,~ 
8 e A } kernel normal systems of S. Let pl, p be the mverse semrgroup congruences 

determmed by these kernel normal systems G -~{G1,A: ~ e A} and G2 -Z{G2,6: ~ e A} 

respectively. Let pl n p2 =p3. Then as was shown above this p rs also an mverse 

semigroup congruence with kernel normal system. Let G3 - ~{G3,~ : co e Q} be the 

kernel normal system determined by p3' Define a congruence ~i (i=1, 2) on Slp3 
as follows : 

ap3pi bp3 if and only if a pi b. 

As was already shown above, pi is an idempotent separating congruence. Now if 

G3 n' G3 u (n~//) c G1 A then ep ~fp and ep3Plfp3 for e e E(G3,n) and feE(G3,p) 
Th'is contradicts to the fact that ~l is an idempotent separating congruence. Hence, 

for any ~ e A there exists a unique h' e Q such that G3,h, c G1,A' Therefore, the map-

ping ~ : A~,~ defined by A~ = ~' gives an isomorphism, and accordingly we can assume 

A = ~ if h' is identified with A. Further, in this case E(G1,~) = E(G3,~) holds for all 

co e Q. Similarly, we can assume that A = Q and E(G2,~) = E(G3,~) for all co e ~ 

Hence, we have A = Q = A and E(G1,~) = E(G2,co) for all co e ~ 

Thus, we have the following result : 

LEMMA 3.1. Let S be a quasi-orthodox semigroup, and G-Z{G1,A: h eA}, G2-

Z{G2,a: 6 e A} kernel normal systems of S. Then there exists an isomorphism ~ : A-> 

A such that E(G1.A)=E(G2.A~) for all ~ e A. 

Let S be a quasi-orthodox semigroup, and G - Z{GA : ~ e A} a kernel normal 
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system of S. If 

E(GA)E(.Gp) c E(G~)' for ' ~ (3 .4) 

[E(Gp)E(G1) cE(G~) .. for . A 

then S is said to be upwal'ds directed [downwal'ds dil'ected]. 

' It is easy to see from Lemma 3.1 that this concept is independent from the selection 

of a kernel normal system of S. . A natural regular semigroup introduced by Warne 

[12] and a -completely regular semigroup are quasi=0rth

dox semigroup and a completely simple semigroup are both an upwards directed 

quasi-orthodox semigroup and a downwards directed quasi-orthodox semigroup 
Hereafter, we shall investigate the construction of upwards directed quasi-orthodox 

semrgroups 
Now, Iet F(A)_ be an inverse semigroup with basic semilattice A. Let L[A] = 

~{Lh : ~ e A} be a lower partial chain A of left groups {LA : ~ e A}, and R[A] =~{RA : 

~ e A} an upper partial chain A of right zero semigroups {RA: ~ e A}. Further, assurh'e 

that LA, Rh have an idempotent ujt as their common element for each ~ e A ; that is, 

LA n R;L~= {uA}, and u~ =uA in both LA and RA for each ~ e A. 

For each pair of y, 6 e F(.A), Iet 

f 

 : -
Rv ivXL66 ' ->.Ly6(v6)~i and 

9

 Ry v X L66 1 -> R(v6)~1v~ 
be mappings. Let us introduce two conditions I and 11 for the set A = {f

: V, 6 e r(A)} U {9

 : y, 5 e F(A)} as follows : 

(1) For aeL7')'-1.' eeRy-1y, beL66-i,feR6-16' ceL..-1 and heR.-i., 

(3.4) a(e, b((f, c)f

))f

 =,a((e, b)f

) ((e, b)g

f, c)f

 -

(II) For a e Lvv~i' e e Rv~iv' there exist b e Lv~1y and feRvy~1 such that 

' (e, b)f
(f, a)f
 e E(Lvv~i) ' ~ ' If A satisfies. (~3.4), then A is called a factor set of {L[A], R[A]} belonging to F(A) 

AsSume that A above satisfies (3.4). Then, 

LEMMA 3 2 S {(x, y, e) x e Lyv e e R -,y, y e F(A)} is a quasi-ol'thodox semi-

group under the multiplication defined bJ; 

(3.5) (x, y, e) (y, ~, f) = (.x(e, y)f

, y6, (e, J;).g

f) . - '_' PRooF. By using the. condition (.1), it is easily verified that S is a seinigroup. 

By the condition (II), for any (x, y, e) of S . there exist y e Lv~iy and h e Rvv~1 

such that (e, y)f

(h, x)f

 e E(Lyy-1)' Now, (_x, V, e) (y, y~1, h) (x, y, e) = 
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(x(e,. y)f~v,y~1>((e, y)g

h, x)f

, y, ((e, y)g

/7, x)g

e).,' 'Since 

(e, y)_ g

h ~' h. Since ' x e Lvy~1' w~ _ 'have -x(e, y)f

((e, "y)~

h, x) f

 i x. On the other hand, (e; y) g

 e ~~v~"r, 

(h,.x)g

 e; Rv~1v ' and ' e e R.y-1v' Hence, we obtain ~ ((~, y)g

h, x)g

e. Consequently, (x~ -y,.e) (y, y~1, h) (x, y, e) = (x, ~, e). This implies~ that S is'regular 

Next, the mapping c : S->F(A) cefined by (x, y, e)ip=y is clearly a surjective homo-

morphism. Put {(x, ~, u) : x e LA, u e RA} = SA for each ~ e A. It is obvidus that S;L 

is a regular subsemigroup of S. Let (.z, ~, u,). e E(S~). (z, ~, u)2 = (z. ~, u) implies 

(z(u, z)f

, ~, u) =-(z, ~, u). . Hence, z(u, z)f

 = 7-. Since LA is a left group, 

(u, z)f

 is an idempotent. Therefore, (z, ~, u) e E(.SA) if and only if (u,, z)f

 e 

E(LA). For (z, ~, u), (w, ~, :v) e E(SA), (z, ~, u) (w, ~, v) = (w, ~, v) (z, ~, .u) = (.z. ~, ~1) 

implies (z(u, w)f

, ~, v) = (w(v, z)f

, ~, u) = (z, ~, u). Hence, u = v and 

z(u, w)f

 = w(v, z)f

 = z. Since u = v, (v, z)f

 =(u, z) f

, and_ hence 

(v, z) f

 e E(.LA). Therefore w(v, z) f

 = w, and hence -7 = 14'. Consequently 

(z, ~, u)= (w, ~, v). Thus, Sh is a regular semigroup in which ev~ry idempotent is 

primitive. That is, SA is a completely simple subsemigroup of S. Accordingly, S 

'is quasiorthodox. 

The. semigroup S in Lemma 3.2 is called the regular pl'oduct of L[A], F(A) and 

'R[A] dletermined by A; and denoted by S = R(L[A] x F(A) x R[A] ; A). This concept 

is a generalization of the concept of a quasi-direct product introduced by [13], an 

H.D.-product introduced by [15] and a regular product introduced by [17] for orthodox 

semrgroups 
Further, Iet us introduce the following conditions for the factor set A : 

(A) (u, z)f

 e E(Lh), (v w)f

 e E(L ) and A 

v 

' Il'P Il z(u, w)f

)f

 e E(LA) . (Upwards directed condition) 

(3'6) (B) For any y, ~ e F(.A) , 

('uy-iy, ua6-i)f

=uy6(.v6)~ I and (uy-iv' u66-1)9

= u(y~)-1y6 ' 
(.Splitting condition) 

LEMMA 3.3. If thefactor set A satisfies (A), then S in Lemn7a 3.2 i~ upwards 

d irected . 

PROOF. Suppose that h

then (u, . z)f

 e E(LA) and (v, w)f

 e E(LjL). Hence, (.z, ~, u) (w) p, v) ..--~ 

(z(u, w)f

, )', (u, w)g

v), and ((u, w)g

v, z(u, w)f

). f

eE(L~) follows froin 

the condition (.A). Therefore, E(SA)E(Sp) c E(S;L)' That is, S is upwatds directed . 

By using Lemmas 3.2 and 3.3, we obtain the following theorem 
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THEOREM 3.4. A regular semigroup S is an upwards directed quasi-orthodox 

semigroup if and only if S is isolnorphic to some R(L[A] x F(A) x R[A] ; A), where 

L[A] is a lower partial chain A of left groups {Lh: ~ e A}, r(A) is an inverse semi-

group, R[A] is an upper partjal_ chain A of right zero semig.roups {RjL: h e A}, and A 

is a factor~ set of {L[A], R[A]} belonging to F(A) which. satisfies the condition (A). 

PRooF. The "only if" part is obvious. The if part : Suppose that S is an ,,. '' 

upwards directed quasi-orthodox semigroup. There exist an inverse semigroup 
F(A) and a surjective homomorphism c : S->F(A) such that Aip-1 is a completely simple 

semigroup for each ~ e A. Put yip-1=Sv for y e r(A). Further, E(Sv)E(Sp) c E(Sv) 

for h, // e A, h 

for each y e F(A) such that uv is an idempotent of Sv for ~ e A. Let LA and R~ be the 

L-class and R-class of S~ containing uA respectively for each ~ e A. Put E(R~) = RA 

Then for A, /1 e A such that ~ 

fore, L[A] =~{Lh : h e A} and R[A] =~{Rh : A e A} are a lower partial chain A of the 

left groups {LjL : A e A} and an upper partial chain A of the right zero semigroups {Rh 

~ e A} respectively with respect to the multiplication in S. For any a e Sv and b e S6, 

there exist p eLyv~" eeRv~'v' P' eL66-* and e' eR6-'a such that a=puve and b= 

p'uae'. Now, ab=p(uvep'ua)e'. Since uyep'u6 e Sv6' uvep'u6 can be uniquely written 

in the form uvep'u6=p"uv6e", p" e Lv6(v6)~', e" e R(v6)~'v~' Define mappings f

 : Ry-ivxL66-i->Lv6(v~)~' and g

 : Rv~'vXL~6-'~>R(y6)-'v~ by (.e, p')f

 = p" and 

(.e,-p')g

 = e Then, it is easily verified by simple calculation that A = {f

 ' 

,
,
.
 

V, 8 e F(A)} U {9

 : y, 8 e F(A)} is a factor set of {L[A], R[A]} belonging to F(A) and satisfies the condition (A). Hence, we can consider the regular product S 

R(L[A] x F(A) x R[A] ; A). Define ~ : ~~'S by 

(x, y, e)~ xu e 

Of course, it is obvious that xuve e Sv and ~ is surjective. Further, (.(x, y, e) (y, 8, f))~ 

= (x(e, y)f

, V8, (e, y)g

f)~=x(e, y)f

uy6(e, y)g

f = (xuve) (yu6f) = 

((x, y, e)~) ((y, 6, f)~). Hence, ~ is a homomorphism. Since ~ is clearly injective by 

Theorem of [16] above, ~ is an rsomorphism 

Let G - Z{Gh : ~ e A} be an upwards directed completely regular semigroup, and 

F(A) an inverse semigroup. Let uh be an idempotent of G~, LA the L-class (of GA) 

containing uk, and RA the right zero semigroup of idempotents of the R-class (.of G;L) 

containing uh. Let L[A] = ~{Lh : ~ e A} and R[A] = ~{RA : ~ e A} be the lower partial 

chain A of the left groups {LA : h e A} and the upper partial chain A of the right zero 

semigroups {RA: A e A} with respect to the multiplication in G. For a factor set A = 

{f

 : y, 6 e r(A)} U {9

 : V, ~ e r(A)} of {L[A], R[A]} belonging to r(.A), Iet us 

consider the following condition 

(C) For A, T e A, x e RA and y e L*, xy =(x, y)f

uA*(x, y)g

 -
(G-embedding condition) 
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In this case, S = R(L[A] x F(A) x R[A] ; A) is a regular extension of G - ~{G~ : ~ e A} 

by r(A). In fact : Consider the homomorphism ip : S->r(A) defined by (x, y, e)c=y 

for (x, y, e) e S. Let ~ip-1=GA and Ac-1=G. We need only to show that there 
exists an isomorphism ~ : G->G such that GA~ = GA for ~ e A. Define ~ by (t, ~, u)~ 

= tu~u. It is obvious that ~ is surjective and injective. For (t, ~, u), (s, T, h) e Q, 

((t, ~, u) (s, 1:, h))~ =(t(u, s)f

, Alc, (u, s)g

h)~ = t((u, s)f

ujL.(u,.~s)g

)･h '~ tush 

~
 (by (C)) (tu u) (su h) ((t ~ u)~) ((s, 1:, h)~) Further,'GjL~;GA obviously holds. . . 

Now, we have the following theorem : 

THEOREM 3.5. Let G-~{GjL: ~ e A} be an upwards directed completely regular 

semigroup, and uA an idelnpotent of GA for h e A. Let LA and Rh be the L-class of G~ 

and the right zero semigroup of idem,potents of the R-class of GA such that Lh and RjL 

contain uh. L.et L[A]. R[A] be the lower partial ch,ain A of {LA: A eA} and the upper 

partial chain A of {R;L: ~ e A} with respect to the multiplication in G. Let' F(A) be 

an inverse semigroup. If A = {f

: y, 5 e F(A)} U {9

 : y, 5 e r(A)} is a factor 

set of {L[A], R[A]} belonging to F(A) and if A satisfies (C), then S=R(L[A] x F(A) x 

R[A] ; A) is a regular extension of G-~:{G~ : ~ e A} by r(A). Conversely, every regu-

la.r extension of G-~{GA: ~ e A} by r(A) can be constructed in this way. 

PRooF. The first half was already proved above. The latter half is obvious. 

REMARK. For a given (fundamental) inverse semigroup F(A) and for a given 

upwards directed completely regular semigroup' G - ~{G~ : A e A}, there is not neces-

sarily a regular extensron of G - Z{G ~ e A} by F(A). This can be seen from an 

example given by Hall [5] for the orthodox case 

II. The construction of split quasl-orthodox semigroups 

A completely regular semigroup G - ~{GjL : h e A} is , said to be split if thete exist 

homomorphisms ip : G->A and ~ : A~G such that ~ip = CA (where CA denotes the identi-

ty mapping on A). Similarly, a quasi-orthodox semigroup S is said to be split if there 

exist an inverse semigroup F(A), a surjective homomorphism ip : S->F(A) and a homo-

morphism ~ : F(A)->S such that 

(1) ~c-1 is a completely simple subsemigroup of S for all ~ e A, and 

(2) ~ip=cr(A) (the identity mapping on r(A)). 

It is easily verified that if a completely regular semigroup G - ~{Gh : ~ e A} is split 

as a completely regular semigroup then G is also split as a quasl-orthodox semigroup. 

Conversely, if a completely regular semigroup G - ~:{Gh : ~ e A} is split as a quasi-ortho-

dox semigroup then G - ~{Gh : h e A} is split as a completely regular semigroup. 

Therefore the concept of split for quasi-orthodox semigroups can be considered as a 

generalization of that for completely regular semigroups. Let S be a regular extension 

of a completely regular semigroup G - ~{G~ : ~ e A} by an inverse semrgroup r(A) 
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Let c : S->F(A) be the homomorphism determined by G - ~{GA : ~ e A} (that is, ~ip-1 

= G;L for all ~ e A). If there exist ~ : F(A)~･S such that ~ip=cr(A), then S is said to be 

a split extension of G-~{GA : ~ e A} by F(A). Of course, in this case (~ I A) (ip I G) 

(where ~ I A and ip I G denote the restnctions of ~, ip to A, G respectively) = cA, and 

hence G - ~{G ~ e A} rs a split completely regular semrgroup Further let y~ = u 
for y e r(A). Then, ~ gives an isomorphism of F(.A) onto Ur(A)= {uv: y e F(A)}, an~ 

UA = {u~: A e A} is the basic semilattice of the inverse subsemigroup Ur(A) of S. This 

Ur(A) rs called a skeleton of S with respect to r(A). 

Now, Iet S be a split quasi-orthodox .semigroup- Then, there exist an inverse 

semigroup F(A), a surjective homomorphism c : S ~' F(A) and a homomorphism 
~ : r(A)->S such that 

(1) ~c-1 is a completely simple subsemigroup of S for each ~ e A, and 

(2) ~ip=cr(A)' 

Now, Iet Sv = ~c-i for y e r(A) and G = ~{SjL : A e A}. Then, G is a completely regular 

semigroup G -~{S;L: ~ e A}. Further, Iet u;L=A~ for each A e A. Then, ~ becomes 

an isomorphism of A to UA = {ui: ~ e A}. That is, UA is a skeleton of G with respect 

to A. Hence, of course G is a split completely regular semigroup. For each ~ e A, 

let LjL be the L-class (of G) containing uA and RjL the right zero semigroup of idempotents 

of the R-class (of G) containing uA. In this case, L[A] = ~{LA : ~ e Al･ is a lower partial 

chain A of {LA : ~ e A} with respect to the multiplication in G. Further, 

LEMMA 3.6. 

(1) If ~
(2) If ~
(3) Accordingly, R[A] =~{RA: ~eA} is an upper partial chain A of {RA: ~e A} 

with respect to the multiplication in G. 

PROoF. (1) We have ef= euAf= eupujLf= upuAf= uAf=f. 
(2) Since fefe =ffe =fe, it follows that fe e RA . 

(3) It is obvious from (1), (2) above that R[A] is an upper partial chain A of {RA 

h e A} with respect to the multiplication in G 

For ~, ? e A above, define f

 : Rj~ x L.->LjL* and g

 : Rh x L*->RA, by 
(e, x)f

 =xl and (.e, x)g

 = el 
if uhexu*=ex =xluA,el (in G). Then A = {f

 : ~, T e A} U {9

 : ~, Ic e A} satisfies 

(1), (II) of (3.4). Further since uAu.=u~, for ~, 1; e A, it follows that (uh, u..)f

 = ujL, and (uA, u.)g

 =uA, for ~, T e A. It is easily proved that ~ : R(L[A] x A x R[A] ; A)->G defined by (x, ~, e)~ =xu~e induces an isomorphism. Now, we have the fol-

lowing theorem : 

THEOREM 3.7. Let A be a semilattice, L[A] =Z{LA: ~ eA} a lower partial chain 

A of left groups {LA: ~ e A} and R[A] =~{RjL : ~ e A} an upper partial chain A of right 
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zero semigroups {RA: A e A}. Further assume that LA n RA={an idempotent uA} for 

all ~eA and ujLu*=uA in R[A] and u,uA=uA in L[A] for ~~T. If a family A= 
{f

: ~, T e A} U {9

: ~, T e A} of mappings f

:RjL X L.->Lh, and g

: 

R~ x L*->R~*,is a, factor set of {L[A], R[A]} belonging to A and satisfies 

(3.7) ･ and (uA, u.)g
=u~*, 

(uk, u*) f

 = u~* , 

then S=R(L[A] x A x R[A] ; A) is a split completely regular semigl'oup. Conversely, 

every split completely regular semigroup can be constructed in this way. 

PRooF. We prove that the completely regular semigroup S = R(L[A] x A x R[A] ; 

A) constructed as above is split. For any ~ e A, Iet SA={(x, A, e) : x e L;L, e e R;L}' Of 

course, (uA, A, uA) e S~' Define ~ : A->S and c : S->A by h~ =(uA, ~, uk) and (x, ~, e)c 

= ~. Then, ip and ~ are homomorphisms and ~ip = cA. Hence. S is split. The con-

verse was already proved above. 

Similarly, we obtain the following result 

THEOREM 3.8. Let A be a semilattice, F(A) an inverse semigroup, L[A] =~{LA: 

~ e A} a lower partial chain A of left groups {LA: ), e A} and R[A] =~{R;L: ~ e A} an 

upper partjal chain A of right zero semigroups {Rh: ~ e A}. Fu.rther, assume that 

LA, Rh have a common idempotent uA as their intersection, i.e. LA n Rh={u~}, for all 

~eA, and uhu.=u~ in R[A] and u.uA=uh in L[A] for A~7. If a family A ={f

: y, 5 e r(A)} U {9

: , 

V ~ e r(A)} rs a factor set of {L[A] R[A]) belon,ging to F(A) 

and satisfies 

(B) (uv~*y' u66-*)j'

=uv6(v6)~i and (u 

. v~iv' u66-')9

 =u(v6) iv8 for all y, 6eF(A) 

(Split condition) , 

then S =R(L[A] x F(A) x R[A] ; A) is a split quasi-orthodox selnigroup. Conversely, 

evel'J; split quasi-orthodox semigroup can be constructed in this way. 

PRooF. Since this can be proved by slightly modifying the proof of Theorem 3.7, 

we omit a proof 
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