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Complex sufaces have been classified by Kodaira in I of [12] up to birational isomorphism 

In this note we study effective smooth cirCle and torus actions on complex surfaces. In S I we 

consider actions on ruled surfaces, Enriques surfaces and the elliptio modu!ar surf:ace Br ( 8) -

The series of elliptic modular surfaces Br (N) (N~5) belong to the class rvo amd some falnily of 

elliptic surfaces den'ved from hasic ones are in the class IVo or Vlo ([1l]). Actions on these 

surfaces are considered im S 2. Hopf sufaces and Imoue surfaces [81 are im the class VIlo' Iin S 3 

we study actions on these surfaces. In this note we mean by an action an effective actioru. 

S 1. Surfaces of class lo 

For a complex surface, the following formulas are known 

( i ) 12(pg - q + 1) = c~ + c2 (Noether's formula e.g. (3) in I of [12]), 

( ii ) 3b+ _ 3b- = c~ - 2c2 (Hirzebruch signature theorem), 

(iii) if bl is even, then 2q = bl, 2pg=b+ _ 1, 

if bl is odd, then 2q = bl + 1, 2pg = b+ (Theorem 3 in I of [12]), 

(iv) c2=2-2bl+b2' 
First we have 

LEMMA 1. If a complex surface admits a holomorphic torus action, then Its 

Chern numbers are all zero. 

PRooF. Since the action is effective and holomorphic, its isotropy groups are all 

finite. Denote by C the additive group of complex numbers. Then we have a holo-

morphic C-action on the surface and the action is fixed point free. Thus on the surface 

there exists a non vanishing holomorphic vector field, and it follows from Corollary 1 

in [2] that its Chern numbers c~, c2 are zero 

Now we consider some rational surfaces. The projective plane admits a series 

of inequivalent holomorphic S1_actions which are given by [zo, zl, z2] -> [p~zo, Pzl' 

z2], where p e Sl and for all integers m. By Lemma 1, it does not yield any holo-

morphic torus action, because its Chern numbers are given by c~ = 9x2 c2 = 3x2 for 

a generator x of the second cohomology group with integer coefficient. However it 

has an infinite number of inequivalent smooth torus actions, e.g. [17]. Then we have 

PROPOSITION 1. On the projective plane, there exists an infinite number of 
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inequiva,lent hololnorphic circle and smooth torus actions, but it does not yield any 

holomorphic torus action. 

Consider the series of Hirzebruch manifolds ~* in [6], where n in a non negative 

mtegers. These surfaces are ruled surfaces of genus zero . Then we have 

PROPOsmON 2. Each sulface ~. (n=0, 1,2,...). has an jnfinite nulnbel' oj 
inequivalent holomorphic circle and s,nooth torus'actions, but it does not yield any 

holomorphic torus action. . 

PRooF. The surface is given by 

P2(xo, xl' x2) x P1(yl' y2):D ~~: " xlyl x2y~=0. 

It admits a holomorphic circle action which is given by 

(xo, xl,x2)=(pxo, Pkxl' pkx2) for each p eS1 and k=0, 2, 3,.. 

For an even integer n, the surface is diffeomorphic to the product of 2-spheres S2 x S2 

while for an odd integer n, it is diffeomorphic to a connected sum P#Q about a fixed 

point, where P is the projective plane and Q is the one with the reversed orientation. 

Then by Proposition I there exists an infinite number of inequivalent smooth torus 

actions on the surface. By (,i), (ii) above we have c2 =4, c~ = 8. By Lemma I we 

complete the proof of the proposition. 

Ruled surfaces of genus I have been completely classified by Atiyah and Suwa 

r_2l]. If an algebraic surface admits a holomorphic torus action then by [7] it is a 

principal Seifert fibre space over an algebraic curve. Using Folgerung in p. 122 of 

[19], the curve is non singular. Thus the surface is an elliptic surface. Elliptic 

ruled surfaces are given by Theorem 5 in [2l]. Each ruled surface of genus I is 

diffleomorphic to So Or A _ 1, which are elliptic ruled surfaces. Thus we have 

PROPOSITION 3. Any ruled surface of genus I admits a smooth torus action 

REMARK. In [2l], Suwa has constructed complex analytic families for the sur-

faces. We may see that some of ruled surfaces admit holomorphic circle actions 

Next let us consider ruled surfaces of genus g ~ 2. Such a surface is a projective 

line bundle over a non singular algebraic curve Xg Of genus g ~ 2. We prove 

THEOREM 1. Any ruled sulface of genus g~2 admits a smooth circle action, 

but these surfaces do not yield any smooth torus action. 

PRooF. For any projective line bundle there is an associated holomorphic plane 

bundle E->Xg. In the smooth category, its structure group GL(2, C) can be reduced 

into the unitary group U(2). Denote by Eo ~>Xg the associated principal U(2) bundle 

Then the projective line bundle is given by 7c : P(E) = Eo/U(1) x U(1)->Xg' Since a 

fibre is a 2-sphere, it admits a cross section and the bundle Eo is reducible to a U(1) 
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x U(1)-bundle i,e. Eo =FO X U(1)'U(i) U(.2). Then we have 

P(E) = (FO X U(1)"U(1) U(2)) X U(2) (U(2)/U(1) x U(1)) 

= Fo x U(1). U(1) (U(2)/U(1) x U(1)) . 

We can define a U(1) x (e)-action on P(E) by x(f, gH) = (f, xgH), F= U(1) x U(1) and 
x e U(1) x (e), where feFo, 9H e U(.2)/U(1) x U(1) and e is the unit element ot. U(1). 

Now the Euler characteristic of the surface P(E) is given by 

X(P(E)) = c2(P(E)) = X(S2)X(Xg) = 2(.2 ~ 2g) 

Since a torus is arcwise connected, the induced homomorphism f* : H*(P(.E))H-

H*(P(E)) is the identity mapping for a torus action T2 x P(E)->P(E) and any fe T2 

and its Lefschetz number Af rs non zero. Choose f to be a generator of the torus 

group. Then we see that the fixed point set of the action is non empty. If the action 

is effective, then by VI of [16] the fundamental group lzl(P(E)) must be a free product 

of infinite and finite cyclic groups. On the other hand, we have 7~l(P(E)) = 7cl(Xg), 

which can not be a free product. This is a contradiction 

Next we prove 

THEOREM 2. Enl'iques surfaces may not yield any smooth cil'cle action 

PROoF. Since c2 = 12~0, any circle action has the non empty fixed point set. 

Any Enriques surface admits a K3-surface as an unramified double covering (S 5, 

Chap. X in [18])_ . If an Enriques surface admits a circle action, then by 9. Chap. II 

in [3], we may lift the action to an action over the K3-surface, but a K3-surface may 

not yield any circle action except for a trivial action, which is a contradiction 

Let r(N) be the principal congruence subgroup of level N in the group SL(2, Z) 

and Br(N) be the elliptic modular surface attached to the group F(N) as in [20] . Then 

we have 

LEMMA 2. We /1ave an equalitJ' c2(Br(N))='l(N), where right hand side denotes 

the index of th,e subgroup F(N) . { I!1 1} in the gl'oup SL(.2, Z). 

PROOF. By (5.5), (5.3) in [20] and the relation q =g(Ar(N)), the genus of the base 

curve Ar(N), we have 

_ _ (N-6)//(N) +1= = //(N) p q + I - (N- 3) p(N) I (2N- 6) - (N-6) /t(N) 

Since Br(N) rs an elliptic surface for each N, c~ = O. Then by the Noether's formula (i), 

we obtain the lemma 

Now we consider the elliptic modular surface Br(3) especially. Then we have 

THEOREM 3. The elliptic modular surface Br(3) admits a smooth torus action. 
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PROOF. The Lefschetz pencil in S 1, Chap. VII of [18] is an elliptic surface over 

the projective line and by definition it is diffeomorphic to the connected sum P#9Q 

and the second Chern class c2 = 12 by the formula (iv) above. On the other hand the 

surface Br(3) rs an elliptic surface over the projective line with c2 = 12. Taking an 

analogue to the proof of Theorem 8 using Lemma 4 which appeared in S I of Part II 

of [15], we obtaih the following : Br(3) rs deformable into a regular Lefschetz fibration 

with singular fibres of type 11 x 12 by Lemma 6 in p. 155 of [15]. Then we can apply 

Theorem 9 in p. 175 of [15]. Hence the Lefschetz pencil is diffeomorphic to the 

surface Br(3)' The surface Br(3) h-as the invariants q =0, pg=0, c~ =0 and it is a b-dsic 

member in the sense 11 of [1l], then it is a surface of class lo' The surface P#9Q 

admits an infinite number of smooth torus actions ([17]) 

S 2. Surfaces of classes IVo amd Vlo 

In this section, first we have 

PROPOSITION 4. In the classes IVo and Vlo, there exist infinitely many surfaces 

with holomorphic torus actions, while in the class IVo, there exist infinitely many 

sulfaces without slnooth circle actions. 

PROOF. Let A be a non singular algebraic curve with genus p, and Co = C/G a 

torus. C.onsider the product surface Bo = A x Co' The invariants are given by 

b 2p+2 q p+1 b 4p+2 c 2 2b +b O pg=q-1=p. 
Then if p = O, then the surface is of class lo ; and if p ~ 1, then it is of class IVo' Clearly 

the surface admits a holomorphic torus action. Let f be the normal bundle of the 

embedding A c B. Then f is the product bundle and we have the exact sequence of 

cohomology groups ((11.7) in 111 of [1l]), 

- H1(A, Q(f)) H1(A, Q(B)) -~' H (A G) - O 

In this case, it follows that G ~; Ze)Z. Further, we have 

b (Bn)= 2P+2 if c(n)=6*(n)=0 for n e H (A Q(B)) 

2p + I otherwise. 

Then the surface Bn is of class IVo if c(n) = O and of class VI if c(n) ~ O By the con 

struction 9 of 11 in [1l], we have 

dim H1(A, Q(f)) = pg = p. 

Now we consider the elliptic modular surface Br(N) -~ Ar(N) for each N ~ 5. Let 

f be a holomorphic line bundle over the curve Ar(N) with Chern class cl = - pg + q - 1 
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Then the canonical line bundle of the surface Br(N) rs given by K = y*(k ･f-1), where 

k is the canonical line bundle of the curve Ar(N) (III of [1l]). We have cl(k ･f-1) = 

2(g - 1)+pg-q+ 1, where g is the genus of the curve Ar(N)' By //(N) = I N3 
2 pnlN 

(1 - 1/p2) and the proof of the lemm~ 2 in S I it follows that cl(K) is an even 

multiple of some class in H2(Br(N), Z) if N ~~ O mod 8. Thus in this case the surface 

Br(N) rs a spin manifold and c2 ~ O. Since the surface is an elliptic surface, c~ = O and 

we have 

1
 

A~- I (2c -c ) ~24 2 21 =12c2~0 

Hence by the criterion in [1], the surface may not yield any smooth circle action. 

Since bl=2g and pg > O by (5.5) in [20], the surface is of class IVo' Thus we have 

proved the proposition. 

Concerning to the proposition 4, here we prove two propositlons. 

PROPosITloN 5. The elliptic modular surface Br(N) may not yield any smooth 

torus action for each n~6. 

PROoF. The elliptic modular surface Br(N) has a cross section, then the funda-

mental group lcl(Br(N)) has a subgroup which is isomorphic to the fundamental group 

7cl(Ar(N)) and it is not a free product. Then by VI of [16], the surfac~ may not yield 

any torus action. 

PROPosmoN 6. Let S be an algebraic surface with invariants bl=0, pg>0. 
Then the surface S may not yield any holomorphic circle action. 

PRooF. Suppose that the surface S admits a holomorphic circle action. The 

group of all holomorphic automorphisms of the surface S rs a complex Lie group. 

By the assumption its Lie algebra has a positive dimension over the complex number 

field and there exists a non zero holomorphic vector field X on S. Smce bl=0, it 

follows from Matsushima's theorem (e.g. Theorem 9.8 in 111 of [10]) that the vector 

field X has a non empty zero set, i.e. Zero (X) ~ c. Further 

O ~ dim Zero (X) 

by Theorem 1 1 . I (Howard) in [10] . It is a contradiction. 

REMARK. The elliptic modular surface' Br(5) has invariants bl=0 and pg > O. 

Hence, it can not yield any holomorphic circle action. In the projective 3-space CP~ 

the' surface : z~･+z~ + z~ + z~ = O is of class Vo, since its invariants are given by q = O, 

Pg=4, c~ = 5, c2 = 55, bi=0, b2=53. The surface does not admit any holomorphic 
circle ~ action . 
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S 3. Surfaces of class VIlo 

First we have 

PROPOsmoN 7. Any. elliptic surface of class VIlo admits a holomorph.ic torus 

action. 

PRooF. By making use of the construction 9 in 11 of [12], we have a torus action 

which is given by 

D* x C 3 (cr~, [~+]) - (cr~, [~,, + ~]) e D,, x C for ~ e C 

The action is compatible with the action of the group ~~ (see 9 [12]) and with the 

identification (78) in 11 of [12] . 

REMARK. The generalized Hopf surface H(a) in [4] has the invariants b I = I and 

q = 1, if ~(.a) is a homology sphere and such a surface admits a holomorphic torus 

action T. x H(a)~H(a) in [4]. Then by the lemma in S I , we have c~ = c2 = O and 
Pg = O. Hence the surface H(.a) is of class VIlo and is an elliptic surface. Concerning 

with non elliptic surfaces, first we have 

PRoposmoN 8. Any non elliptic Hopf surface adlnjts a smooth torus action 
with finite isotropy groups. 

PROoF. By Theorem 32 in 11 . of [12], the surface is given as a quotient manifold 

W/G where W= C2 - (O) and G = Z x Zl together with the actions 

f (zl' z2) ->(oclzl +~zT, oc2z2), where (ocl ~ oc'2") = O for a generator f of Z, 

and 

e : (zl' z2) ---> (elzl, 82z2), where (81 ~ e~) =0 for a generator e of Zl 

Put exp- P2 =0c~, exp P1 =0cl' (hlocl) exp ( -P1)=~l' and define the mapping F : R x S3 

-> W by 

F(t, zl' z2) =ft(zl' z2) = ((exp tP ) (z + t~lz~), (exp tp2)z2) ('ee [13]) 

where R is the real number field. Th~n it is a diffeomorphism and satisfies the equality 

f.ft=ft+1, and it induces a diffeomorphism ~ : S1 x S3->W/{f}. Since the mapping 

p commutes with the action e, it induces a diffeomorphism F : S1 x (S3/{e}) -> W/G. 

The quotient space S3/{e} admits a torus action which is given by [zl' z2] ~> 

[(exp 2lcep)z.1 ' (~xp 2lcO)z2] for (ep, O) e T2 . Thus the Hopf surface has the required 

action. . . ' . _ . ' ' Next we discuss an existence of a circle action on Inoue surfaces [8] . First we 

prove 
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LEMMA 3. Inoue surfaces are of type K(:rc, 1). 

PRooF. Denote by H, C and R the upper half of the complex, the ccunplex plane 

and the real line respectively. Define a diffeomorphism F : H x C->R4 by F(XI + i Y1' 

X2 + iY_.)=(X1' Iog Y1' X2, Y2)' Then the group GM = 

 determines a subgroup ~M = 

 of the affine group A(4) =R4 ･ GL(4, R) and we have a diffeomorphism F : SM->R4/~M. By Theorem 3.3 of [9], the quotient surface 

SM inherits a fiat connection with parallel torsion and is compact. Then by Proposi-

tion 4.3 of [9], it is of type K(7c, I ) i.e. aspherical. We can prove qutte similarly the 

statement about surfaces S(-), S(+) 

Now we have 

THEOREM 4. (1) The su.1ifaces SM and S(N~~,q,･ do not admit any smooth circle 

action. (2) The s'urfaces S(N+) admit a smooth circle action. 
, p , q,*,t 

PRooF. If a surface of type K(7c, 1) admits a circle action, then by Lemma 5.5 

[5] the action is injective and we have a central extension O->Z->1cl(SM)->N->1. 

By the relation in p. 274 [8], concerning the generators go, 91, 92, 93, we can choose 

an element of the form g = g~9~9~g6 as a generator of the normal subgroup Z. Then 

by a computation of the element go99~1, we have a relation tMt(a b c) = t(a b c), 

where the 3 x 3-matrix M e SL(3, Z) is the matrix in S 2 of [8] and t denotes the trans-

posed matrix. But the matrix M does not contain I as an eigenvalue. This is a 
contradiction. The situation is quite similar for the surfaces S(-) . Hence we have N, P,q,' 

(1). Now we consider the surfaces S(N+~ q,･,t' By the proof of Lemma 3 and S 3 in 

[8], the element ~3 generates an infinite cyclic subgroup of G(N+), which is a central 

subgroup and we have an action of the circle R(X2)/(mod s) on the surface S(N+) 
, p,q,*,t' 

where s =(bla2- b2al)/r. Thus we have proved (2). 
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