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On the New Method for Obtaining Solution of

Boundary-value Problems of Elasticity
Misao Hasegawa

1. Introduction

When we treat stability and vibration problems of an elastic thin plate, we shall °
frequently encounter the difficulties of finding their solutions. Therefore, the
methods of Rayleigh-Ritz, Weinstein, Taylor, Iguchi and Collatz were found for
finding their approximate solutions.

In Weinstein method, the problem is solved as a modified variational problem
with a slightly different boundary conditions. In Taylor’s method, the complete
integral of the differential equation is firstly found and then expanded, for example,
in cosnx series with even integers # in order to satisfy the boundary conditions,‘
at x=:l:%, if it is an even function. In Rayleigh-Ritz’s method, the problem is
usually solved without much labour and serioﬁs loss of accuracy.

It is well known that the eigenvalue obtained by Rayleigh’s principle is always
larger, while the value by Wenstein’s method smaller than its true value. There-
fore, the values given by these two methods are considered as the upper und lower
limits of its true eigenvalue. ;

Among these methods, Weinstein's one is the best one from the mathematical
standpoint, but there is the defect that its range of application is very limited.
On the contrary, Rayleigh-Ritz’s method gives a useful process to obtain an
approximate solution but its accuracy is bad in comparison with the solutions
obtained by the methods of Weinstein and Taylor.

In the following section, we shall propose the new method which has not the
defects above mentioned and is applicable in many fields of mathematical ths'ics.
This method contains as a special case Taylor’s one and that of Weinstein, if its
solution exists. '

2. The new proposal

Let us consider to solve the following linear partial differential equation of w :

L(w)=f(x, ), ' (1)
under the boundary conditions of w and its derivatives:
M(w)=0, (i=i, PR D ) (2)

where f(x, v) is the given function of x and .
If we can find the integral of (1), the arbitrary constants involved into it must
be determined so as to satisfy the boundary conditions (2). But, as this is very
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difficult in general, we shall consider here that the boundary conditions (2), which
do not simply determine the above constants, are
' Mi{w)=0 (=1, 2,-+++- k). (3)
As the conditions (3) hold always on the all points of the boundary, the following
relations will be obtained for any arbitrary function Z(x, »)

[ Miw) (s, $)ds=0 (i=1, 2,-F) (3)

where the path of integration being a part of the boundary. Therefore, we can
determine the values of the arbitrary constants involved into the integral so as to
satisfy the following boundary conditions

| Miwnt, pyds=0,.G=1, 2,-#) (3)

and Mw)=0 (i=k—+1,p) ' (2)

If we consider a eigenvalue problem, the values of ratios of every constants and
the eigenvalue are determind from (2) and (). In practice, we may use the
adequate expressions for A(x, v), «f possible, the system of orthogonal normalized
fl_mctions. We shall solve some examples by this method in the following section.

3. Procedure

By the above mentioned method, we shall now solve the following three problems,
the first two of them were solved already by the miethods of Weinstein and Taylor.
A) Let us assume that a square plate with clamped edges is compressed in its
middle plane by forces uniformly distributed along the all Ly
edges.

‘Let us take the coordinate axes (x, ) in the middle plane

of a square plate of uniform small thickness such that the

origin coincides with it center, the x, y-axes are parallel to the
sides, and z-axjs perpendicular to its plane, and denote the side
length and the thickness of the plate by 2z and % respectively.

Let the density, Young’s modulus, Poisson’s ratio and the flexural rigidity of the

material of the plate, which is assumed to be uniform and isotropic be denoted

by p, E, 0, and D= —1%;\—, respectively. If we denote the magnitude of the

compressive force per unit edge by P, the vertical displacement w, that is the dis-
placement in z direction, must satisfy the following partial differential equation :
4 4, 34 2 a‘.’
D[ 2w o 2w ”f)+P(a’.f’+ “.,’)=0, (4)
\ ot 3x%3y* 2y 2x° 2y?
and the boundary conditions

__ 2w

w= =0 at x==aq,
ax

w="%2 ¢ at y==a. (5)
ay

If we introduce new variables such that
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$=v2%x, 77=%;v, ' (6)

the equations (4) and (5) are transformed into
'w 2w | 3w (a‘-’w , 2w ,
=0, .. &
354 aEZa‘OZ ! 8‘74 ’u aEZ ! av% ( )

w=ﬂ=0 at E::I:l,

* & (5)
w T
—_—— = j:—’
w po at 7 2
where #=£§,%' (7)

We shall adopt the following expression as the solution of (4) which satisfies
the boundary condition w=0 at the edges and the symmetry conditions w(&, )=

w=73Y A,(cosh a,7cosh %ﬂnn- cosh (3,7 cosh %anrr) cos nt

+3>V A, (cosha,Ecosh %‘9,,71'— cosh (3£ cosh %ann-) cos 17

where a=n, Br=n*—pH,
and 3V means to sum up with odd integers of # from 1 to oo.
As it is known that the value of ¢ is smaller than 5.33 form Rayleigh’s principle,

the above solution is transformed into

w:A,(cosh i cos% v 2—1 —cos v/ #—1 7 cosh %)cos 5

+ 2>’ An(cosh n7 cosh % Vni—p —cosh vVii—puy cosh%r)cos ns

+ Al(cosh 15 cosg— v p—1 —cos v/ p2—1 Ecosh -g—) cos?)

2
2
The remaining boundary conditions are now substituded by the following condi-

—I—"Z:Y An(COSh n€ cosh —v'#n'—p —cosh v #n*—pEcosh %)cos ny (8)

tions,

f_,, % cosjadp=0  at E=x Z,

(9)

72‘.31‘0_ iEdE=0 t =:|:£
S o7 cos j&d§ at 7 o

That is to say, we adopt as the functions Z(x, y) in § 2, the following functions
B, 7)=cosjy  at E=+T,

nE, 7)=cosj  at 77=:|:%,

in which j denotes 0 and positive integers.
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From the symmetry conditions of the solution, it is clear that the solution (8)

which satisfies the boundary conditions at S:% also satisfies the remaining bound-

ary conditions at Ez—% and 77=:i:%. The expression of (8) must satisfy the

following conditions

T
2

(
J

=7
at §=7 (9)

tola

When we insert the expression for w of (8) in (¢), we obtain the following
equatlons

3/ A, b,; =0, (10) .
where

1 . T T
b, -——[Zcos vip— 1{ 1+ smh 5 COSj + 1+]~ cosh— > sin j 2}

Sin( '/la‘—l_J) % sin( l/[lTl—l—]) %}]

T
— cosh, { VE=T—; + VE—1+]

+{sinh-722 cos% Vip—1+v p—1siny p—1 T?cosh%}

><{sin (1—4) % sin (1+j)% }’

. - . 11
1—j t 145 1
for n=3,

b =(— 1) n[Zcosh;a nw— /j( :’_] — 2 _sinh %™ 2 + {l_ = —~< —cosh—— ”; sin-— ]; )

_ nr | vVar—p 5 T _J_ = T i I
2 cosh 2 {na—/u—l-] sinh v 72 /tZCOSJZ + PR cosh V7 /1 T sin 9 }]

—l—{n sinh ——COSh“ vV ni—p—v n~—/l sinh ¥ n~_/1—cos%}

sin(n—j)2-  sin(n+j)—
x{ 2 [T } (12)

n—j ' n+j
As it is well known from the theorem of linear homogeneous equations that all the
values of A, which satisfy (10) are zero unless the value of ¢ is suitable values,
that is, the values which make the value of the determinant J being formed by
the coefficients of A, in (10), zero. When /¢ takes the smallest root %, of J=0, the
plate is in equilibrium in the buckling state and therefore the corresponding value
of p is said the critical compressive force.
If we adopt 0, 1, 2,---- as the value of j, the above determinantal equation 4=0
is expressed by the following expression :
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bio  bo  bagrereereeeeecns
J: b b;_’ b’ cesshasedasinsane
11 1 1 R — O ( 13)
Bio By Dygreeeeeeeeeeeeies
If we put
AT T
b,;=2 cos oV r—1 cosh?w;,-,
el Ry . — (14)
b,;=(—1) * 2ncosh o Ve—p 'cosh 5 Cnp for n=3,
the determinantal equation (13) is transformed into
010 6‘3 ........................
D=| ¢11 [+ S EERIERTRE T TIPREPROTRIRE =0, (15)
1o Cageeseronnerssnnneannanes
For obtain the smallest root of D=0, we put
€105 Cs0m" "0t Cam—1, 0
D,=| ¢u, Capreeereese Com-1, 1 =0. (16)
(:‘l,m—l c‘a‘,m;f"';' Com -1,m—1
Then, we calculate the series fy, fy---+* of the smallest root g, of .,=0 for

The values of ¢, will converge to a definite value ¢, as # increases. This limit-
ing value #, is our required root of the determinantal equation D=0. Table I
shows the calculated values of y,, for m=1, 2, 3 and 4

Table I. The values of ym

Dy, Dy, (even) Do (Odd)
1 5.0 5.0 5.155
2 5.308 5.304 5.2565
3 5.3034 5.3034 -+ 5.3034
4 5.3043 5.3031 5.30358

If we adopt zero and even integers as the values of j, we have the corresponding
determinantal equation D,, (even)=0. In this case, this solution is identical with
that of Taylor. The calculated values of f, are also shown in Table I

If we adopt odd integers as the values of j, we have the corresponding deter-
minantal equation D,, (odd)=0. In this case, this solution is identical with that of
Weinstein. The calculated values of Mn are also shown in Table I.

It is known frdrri the theorem of variation ¢.=5.3058

B) As the second example, let us consider a transverse vibration of a square
plate clamped at all four edges. If we use the same notations in the preceding
example, the differential equation for the transverse vibration of the plate is given
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2w *w
axt ax*ay?

*w _

d*w
+a—y;+ﬁh
in which ¢ represents time.

When the plate vibrates in a normal mode, the displacement w is of the form

w=Wecos (pt-+e), (18)
where W is a function of x, y or &, 7. If we put (18) in (17), and transform x and
y into £ and 7, we get the partial differential equation for W:

?*W W | o'W

& g oy 0 as)

where o Pha'p’ ,
kr=! . 0
Dr* 20)

As the four edges of the plate are clamped, the boundary conditions at the edges
are

w="W_o =xZ,

o€ 2
aw 1)

- T

W==py =0 7=%.

Now we adopt the following series as the solution of (19) which satisfies W=0
at edges and the symmetry conditions, from all particular solutions of (19)
W=3YAw;, (22)
where 3 means to sum up with odd integers of ¢ from 1 to oo, and

T
2

vl=(COSh % V'k+1 cos vV'k—19 —cos — vV'k—1 cosh V'&+1 ‘9)005 3
(23)

=+{ cosh % vVE+1 cos VE—1& —cos % v'E—1 cosh V' E+1 f)COS 7

- for =3

vi=(cosh % V'&+k cosh vVZ—Fk 7~cosh§ v'i2—k cosh V& k O)cosi{-‘]

(24)
+(Cosh % VEFE cosh V#—kE—cosh— vk cosh vV &k E)CosiOJ

2
The expression W of (22) must now satisfy the boundary conditions
aw =0 at §== %,
and o ' @1)
oW

2% 9 at y== =,
/A 2 )

As discussed in the preceding, we consider the following relations as the bound-
ary conditions:

§2 EI/—Vcosjvd?y=0 at E=+ =

= 9 2
and _,Ez (21//)
L0 4 . ’ T
—_— ~, = =4 —
j__@ ) cos j£ds=0 at 7 2

in place of (21'). Let us take 0 and integers as the values of j.

When we .insert (22) in the equations of (217) at &= %, we get the following
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equations .
Z_" Ab;=0, : (24)
where : o ) :
bz-,.=j (a’f )cos jodp. (25)
— ,'Z,E s = ,72"'_

It is easily proved that if the coefficients A; satisfy the relations (24), the re-

maining conditions of (21”) are also satisfied by A;.
Eliminating the A;’s between (24), we obtain the determinantal equation
by By e

e by ‘531 ...... g 26)

When we put

bj=cos % v'k—1 cosh % VEticy,,

for i=3 27)
b;;=cosh 127— v'$2—F cosh lzt— vV EERCy,
the determinantal equation becomes
Clo Cyo +owe
Cii Cay. . ooeens
D] fu Ca =p. - ] (28)
Cia sy +ooeee

If we find the smallest root %, of (28), the value of &, corresponds the frequency
of the fundamental mode of vibration which we aim. As in the preceding example,

we put
Cy0y Ci0y **** Com—1, 0
Dvn: C}l’ ............ sz'_l, 1 :O . ’ (29‘)
C1, mets *TTT Comey, met

and calculate the smallest root &, of D,=0. The value %, convefges to a definite
limit as #2 increases and this limiting value is the required value 2,. The calculated
value of #, for m=4 is shown in Table II

Table II. The values of kn

i A, (even) A, (odd)
bens 3.651 ( 3.6462 3.6461
If we put j=0, 2, 4+ (0 and even integers), we get the corresponding determi-

nantal equation D, (even)=0. The smallest root &, of D, (even)=0 is calculated
and shown in Table II. This solution is identical with that of Tomotika obtained
by the method of Taylor.

If we put j=1, 3, 5:+--- (odd integers), we get the corresponding determinantal
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equation D, (0odd)=0. The smallest root k. of D, (odd)=0 is calculated and shown
also in Table II. This solution is identical with that of Tomotika obtained by the
method of Weinstein.

C) As the third example, we shall treat the problem of a laterally loaded clamped
square plate. This is not the eigenvalue problem, but the method is also applicable
to this case. However, this problem has also discussed by Hencky, Way etc., we
shall solve it.

When we denote the lateral joad per unit area of the plate by p, the vertical
disp'acement w must satisfy the following partial differential equation

'w *w Fw )
=P, 3
a&? a&%ay? ! (30)
where 16a’p
P=—"= 31
ys (31)
As the four edges are clamped, the boundary conditions of w are
w=%= at E == LZZL )
(32)
2w T
I LA N—=+— .
w 2 0 at 7 2

We shall first solve the problem by the method of Weinstein. It is easily proved
that that the problem of obtaining the solution of (30) which satisfies the boundary
conditions (32) is equivalent to a minimum problem of computing the minimum
value of the expression :

]:H{—;—(Jw)ﬂ—Pw}dg‘do (33)
for all functions w(£, 7) which have continuous derivatives up to the fourth order in
the square S:|£| ;%, |71 ;% and which also satisfy the boundary conditions (32).

But as it is impossible to obtain such a function in practice, we consider now
the modified minimum problem which may be expressed as follows :

The modified problem: It is required to find the minimum value of the expres-
sion J of (33) for all function w(§, ) which satisfy the following boundary conditions
on C ‘

w=0, ' (34) -

and j g6 Nds=0, (=1, 2 5 2k—1) (35)

where # denotes the normal to C, ds a line element along C, and g; are taken as
follows : ) ‘
gi&, n)=cosj7 at Ez:i:-% ?
(36)
&Gl&, 7)=cosjé at '9——-—_!-%.
When we perform the variation of (33) under the conditions (34) and (35), we get
the following equations :
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Lw=P (37)
and on C
w=0, (38)
2k—1 .
and ) dw= ,ZJ: b gi& ), (39)

odd
in which 3; denotes Lagragian indeterminate multipliers, and 3}’ means to sum up
with odd integers of 7 from 1 to 2k—1.
If, therefore, we first obtain the solution of (37) satisfying (38) and (39) and then
insert it into (35), the nonvanishing values of constants in the solution will be

determined.

To get the solution, we expand P in Fourier series in |&! = %, 7| = %:

P=3Y 3V P,, cos mE cos n7), (40)
min—1
where Pp=(—1)" %" 182 (41)
T2mn

and X and X/ mean to sum up with odd integers of s and # from 1 to oo,
respectively. »
The solution which satisfies (37), (38) and (39) is as follows:

Cw=3Y 3w, COS mE COS nv+2.k?‘_;,? Sa(€) cosny

+ 3V £,7) cos ne, | (42)
16P
=—, 4
" mmn(mP4nt) 43)
£.(&)=a,(cosh nE— -j— & coth % sinh ), (44)

and @, are indeterminate constants.
When we insert w of (42) into the boundary conditions at E=% of (35), we get
the following equations
2k—1

é};aanj=Aﬁ, (j—_—]_, 3, ...... s 2k_1) (45)
in which
- 9 'ncoshzzg—r
an:anj n sinh—”— = (;oshzlllz.___ﬁ___w
2 ™ 2 sinh 2%
2
22 o8 7’[_7? 2 'l 2”_71'
_ 16wysin greiny oo (46)
n (w4 7) sinh %%
16 Psinns-( nr . m}
= 873 h—-— h?— ’ 47
Apn —“*T“‘Z*{SnStan CRRST sech® | ( )

nr”
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and R _{1, n=j
"o, n*j.
_ It is easily proved that the remaining boundary conditions are satisfied when
| the equations (45) hold.
| We can determine the values of @, from equations (45). When we take k=4,
the values of a,, a., a; and a; are determined as fbllows
a;=—0.13548P, \
a;=—6.0727X1074P, ]

' g (48)
} » a;=—1.9468X10"P,
a;=—1.2938X10~°P,
Therefore, the deflection at the center of the plate is
4 .
We—n0=0.0200512%~ (49)

D
Now, we shall apply our method to this problem. As the expression (42) satisfies
(37) and (38) but does not %1;0{ =0, at boundary C, we impose the fol'owing boundary

conditions

T

=

X »a-?—cos mdn=0 at =+ T,
_m 3¢ 2

and =l (50)

2
2w . T
.( = —_C0sjédé=0  at p==+ —,
. e cos jédg 7 5

. dw
in place of an =0.

When we adopt =0, 2,------2(k—1) and insert (42) into (50), we get the following

equations
2k~-1 2k~1
> a,B,,=XA,; (51)
n=1 n=1
where
w2 " n cosh’nr sin(n—-j)% sin(n+j)§
B',;=|nsinh ?ﬂ —“cosh™” " — p +
T sinh?” n—j n+j
2 B
7| 2n jr . . mr - 2n P

—nsin #5{———cos*—sinh— — ——
sin 725 {n‘“rf 032 in > Wt 2 T
2

+ 47(71, _% cos 2% cosh T , (52)
and m(w +]‘)‘ 2 2
16Psin™® (sin(n—j)= sin(n+j)=
2 2 2
Al =3 + . (53)
™ wn(mi+n?) n—j n+j

When we take k=4, the values of a;, @, a@; and @; are calculated as follows:
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a,==0.13651P, ]
a;=—2.058X10~4P,
, (54)
as=—1.286X10"°P,
a;=6.51X10-P.

Therefore, the deflection at the center of the plate is
\ .
wg=,,=n=0.01994625—. , . ()

When we adopt j=1, 3,------, (2k—1) we obtain the results (48). This case is
identical with that of Weinstein.
Now we consider the following expression

w=2 (o= ) r= 2 )+ Hr@cosny+ Fhcosnz.  6)

This expression satisfies (37) and (38), but does not —Z%=O at the boundary. We
impose to the solution (56) the conditions (50) in place of 2—2):0.
When we insert (56) into (50), we get the following equations
2%-1
Y a,Bly=Af. for j=1, 3, =, 2k—1 (57)

where

Bl;=0,,|n sinh 27 _ 2 cosh? —
2 = sinh’iz’z

16#%jsin %ﬂ sin ,g{ cosh? %
- (58)

712+ 5%)* sinh’%ﬂ

and All= —IZ sin 77, (59)
J 2
When k=4, from the equations (57), we get the following result
a,=—0.31931P,
a,=—89109X10°P, ] @)
a;=—1.1458X107°P,
@;=6.1297X107°P. J

The deflection of the center of the plate is given by

4
Wyan-0=0.020035 1’%. 61)

In this case, we may put s=0, 2,----- , 2(k—1) or s=0, 1, 2:-+++- k—1 and obtain the
solution in the similar way described above. It is noted that the solution (56) does
not satisfy the condition (39) and therefore, can not be applicable to the method
of Weinstein.

The deflectiqn of the center of the plate given by Hencky is

4 |
wg:q=0=o.0202,432])“— . (62)

=
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This value is in good agreement with (49), (55) and (61).

4. Conclusion

As it was seen in the preceding three examples, the new method explained in
this paper gives a good method to get the solutions of the problems in applied
mathematics, especially in elasticity and its accuracy is also satisfactorily good.

The main feature of this method is to use the boundary conditions

s Mw)h(x, y)ds=0 in place of M,(w)=0.

The problem of buckling of a clamped square submitted to the action of shearing
forces uniformly distributed along the edges will be also solved by this method. Its
solution will be published in this Bulletin.
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On Buckling of Clamped Square Plate in Shear

Misao Hasegawa

Let us consider a clamped square plate submitted to the action of shearing forces
S uniformly distributed along the edges. The purpose of this paper is to calculate
the exact critical value of shearing stress at which buckling of the plate occurs.
The method we used is as follows.

Let the coordinate axes (¥, ¥) be taken in the middle plane of the plate of uniform
small thickness in such a way that the origin coincides with the center of the
plate and the axes are parallel to the sides, and let the length of the side of the
square, the thickness, the density, Young’s modalus, and Poisson’s ratio of the plate
be denoted by 2a, %, p, E and o respectively. If w be the transversal displacement
of a point on the middle plane, the differential equation for w is given by -

*w 2w 2*w %w
D - =0 1
(ax“‘ +2 ax*ay* v ay‘*) 25 axdy (1)
where En?
D:,—-
12(1—0?)
The boundary conditions for w are
w=a—w=0 at x=+aq,
X
a A
=% _o at y==a.
oy
If we introduce the new variables such that
=T Ty
¢ 2 a’ 7 2 a
the equations (1) and (2) are transformed as follows :
'w *w 'w w
2 —A——= 3
o8t g% oyt a&ay 0 _ (o.)
_dw _ —a T
2w T (4)
=22 =0 t =%+,
w o at 7 3
in which v = ZS(ZO“ : (5)
Dr?

Combining all possible particular solutions of (3) which satisfy the relations
w(&, P=w(, &)=w(—§, —9)=w(—7, —&), we obtain as the solutions of (3)

w=Aocos v 2 (£—7)+ %}An cosh a,,(§—7) cos 3,(€—~7) cos n(E+7)
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+33 A4 sinh ,(6—7) sin 8,(6—7) cos n(&-+7)
+§:’03n cosh w,(§+7) cos #n(§—7)

+%B; €08 v,(6+7) cos n(E—7)

+%’B{, cosh @, (E-+7) cos n(€—7) (6)
where
A2 1 .
, —{ n—4— )+/ +2/In~}2 (2=0, 1, 2,-++-+- )
A2 3
Vp=— {( ) / +24n° }2 (=0, 1, 2)
1
=)= T [ =g, 4
and 2 .
ang—ﬂ,f:n"'—-?, (O!n>0, ‘3”>0) (n_——-l, Dyeeeene )
da,? n:':_l’ (n=1, 2,0+ )
Now we determine the ratio’s of unknown constants Ay : A; :--+-- so as to satisfy
the modified boundary conditions
3 sin L/
g_ﬁ‘w COS s7) 47=0,
- at E=i% (7)
T gw sinsy ‘
.g = 2f coss?)‘w 0 )
"% wsm s& dE=0,
J_= cosst y
. _‘ at 9= i—g-,
S * 2w sinsé —0
= 97 cos BT )

in place of (4).
The smallest critical value of 1 at which buckling of the plate occurs is found
from the conditions (7) and is as follows :
= 2a°S
Dn?
The value of 1=7.32-+--+- exists in the range calculated by B. Budiansky and R.
W, Connor, They obtained 7. 319 and 7,396 as the lower and upper limits of 4,




